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GWAS have identified >200 risk loci for Inflammatory Bowel Disease (IBD).
The majority of disease associations are known to be driven by regulatory
variants. To identify the putative causative genes that are perturbed by
these variants, we generate a large transcriptome dataset (9 disease-
relevant cell types) and identify 23,650 cis-eQTL. We show that these are
determined by ~9,720 regulatory modules, of which ~3,000 operate in
multiple tissues and ~970 on multiple genes. We identify regulatory
modules that drive the disease association for 63 of the 200 risk loci, and
show that these are enriched in multigenic modules. We resequence 45 of
the corresponding 100 candidate genes in 6,600 Crohn disease (CD) cases
and 5,500 controls and show that they are significantly enriched in
causative genes. Our analyses indicate that >10-fold larger sample sizes
will be required to demonstrate the causality of individual genes using

standard burden tests.

INTRODUCTION

Genome Wide Association Studies (GWAS) scan the entire genome for statistical
associations between common variants and disease status in large case-control
cohorts. GWAS have identified tens to hundreds of risk loci for nearly all studied
common complex diseases of human!. The study of Inflammatory Bowel Disease
(IBD) has been particularly successful, with more than 200 confirmed risk loci
reported to date?3. As a result of the linkage disequilibrium (LD) patterns in the
human genome (limiting the mapping resolution of association studies), GWAS-
identified risk loci typically span ~ 250 kilobases, encompassing an average of ~
5 genes (numbers ranging from zero (“gene deserts”) to more than 50) and
hundreds of associated variants. Contrary to widespread misconception, the
causative variants and genes remain unknown for the vast majority of GWAS-
identified risk loci. Yet, this remains a critical goal in order to reap the full
benefits of GWAS in identifying new drug targets and developing effective

predictive and diagnostic tools. It is the main objective of post-GWAS studies.

Distinguishing the few causative variants (i.e. the variants that are directly

causing the gene perturbation) from the many neutral variants that are only
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78  associated with the disease because they are in LD with the former in the studied
79  population, requires the use of sophisticated fine-mapping methods applied to
80 very large, densely genotyped datasets*, ideally followed-up by functional
81 studies®. Using such approaches, 18 causative variants for IBD were recently
82 fine-mapped at single base pair resolution, and 51 additional ones at < 10 base

83  pair resolution*.

84 A minority of causative variants are coding, i.e. they alter the amino-acid
85 sequence of the encoded protein. In such cases, and particularly if multiple such
86  causative coding variants are found in the same gene (i.e. in case of allelic
87  heterogeneity), the corresponding causative gene is unambiguously identified.
88 In the case of IBD, causative genes have been identified for ~ ten risk loci on the
89  basis of such “independently” (i.e. not merely reflecting LD with other variants)
90 associated coding variants, including NOD2, ATG16L1, IL23R, CARDY, FUTZ and
91 TYK2 469,

92  For the majority of risk loci, the GWAS signals are not driven by coding variants.
93  They must therefore be driven by common regulatory variants, i.e. variants that
94  perturb the expression levels of one (or more) target genes in one (or more)
95 disease relevant cell types*. Merely reflecting the proportionate sequence space
96 that is devoted to the different layers of gene regulation (transcriptional,
97  posttranscriptional, translational, posttranslational), the majority of regulatory
98 variants are likely to perturb components of “gene switches” (promoters,
99  enhancers, insulators), hence affecting transcriptional output. Indeed, fine-
100 mapped non-coding variants are enriched in known transcription-factor binding
101  sites and epigenetic signatures marking gene switch components*. Hence, the
102  majority of common causative variants underlying inherited predisposition to
103 common complex diseases must drive cis-eQTL (expression quantitative trait
104  loci) affecting the causative gene(s) in one or more disease relevant cell types.
105 The corresponding cis-eQTL are expected to operate prior to disease onset, and -
106  driven by common variants - detectable in cohorts of healthy individuals of
107  which most will never develop the disease. The term cis-eQTL refers to the fact
108 that the regulatory variants that drive them only affect the expression of
109  genes/alleles residing on the same DNA molecule, typically no more than one

110 megabase away. Causative variants, whether coding or regulatory, may
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111  secondarily perturb the expression of genes/alleles located on different DNA
112  molecules, generating trans-eQTL. Some of these trans-eQTL may participate in

113  the disease process.

114  Cis-eQTL effects are known to be very common, affecting more than 50% of
115 genes!®. Hence, finding that variants associated with a disease are also
116  associated with changes in expression levels of a neighboring gene is not
117  sufficient to incriminate the corresponding genes as causative. Firstly, one has
118 to show that the local association signal for the disease and for the eQTL are
119  driven by the same causative variants. A variety of “colocalisation” methods
120  have been developed to that effect!!-13. Secondly, regulatory variants may affect
121  elements that control the expression of multiple genes!'#4, which may not all
122 contribute to the development of the disease, i.e. be causative. Thus, additional
123  evidence is needed to obtain formal proof of gene causality. In humans, the only
124  formal test of gene causality that is applicable is the family of “burden” tests, i.e.
125  the search for a differential burden of disruptive mutations in cases and controls,
126  which is expected only for causative genes!>. Burden tests rely on the
127  assumption that - in addition to the common, mostly regulatory variants that
128  drive the GWAS signal - the causative gene will be affected by low frequency and
129  rare causative variants, including coding variants. Thus, the burden test makes
130 the assumption that allelic heterogeneity is common, which is supported by the
131  pervasiveness of allelic heterogeneity of Mendelian diseases in humans?®.
132 Burden tests compare the distribution of rare coding variants between cases and
133 controls!®>. The signal-to-noise ratio of the burden test can be increased by
134  restricting the analysis to coding variants that have a higher probability to
135  disrupt protein function!®>. In the case of IBD, burden tests have been used to
136  prove the causality of NOD2, IL23R and CARD9%8°. A distinct and very elegant
137  genetic test of gene causality is the reciprocal hemizygosity test, and the related
138  quantitative complementation assay'”18. However, with few exceptions!929, it
139  has only been applied in model organisms in which gene knock-outs can be

140 readily generated?!.

141  In this paper, we describe the generation of a new and large dataset for eQTL
142  analysis (350 healthy individuals) in nine cell types that are potentially relevant
143  for IBD. We identify and characterize ~24,000 cis-eQTL. By comparing disease
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144  and eQTL association patterns using a newly developed statistic, we identify 99
145 strong positional candidate genes in 63 GWAS-identified risk loci. We
146  resequence the 555 exons of 45 of these in 6,600 cases and 5,500 controls in an
147  attempt to prove their causality by means of burden tests. The outcome of this
148 study is relevant to post-GWAS studies of all common complex disease in

149  humans.

150

151  RESULTS

152  Clustering cis-eQTL into regulatory modules

153  We generated transcriptome data for six circulating immune cell types (CD4+ T
154  lymphocytes, CD8+ T lymphocytes, CD19+ B lymphocytes, CD14+ monocytes,
155 CD15+ granulocytes, platelets) as well as ileal, colonic and rectal biopsies (IL, TR,
156  RE), collected from 323 healthy Europeans (141 men, 182 women, average age
157 56 years, visiting the clinic as part of a national screening campaign for colon
158 cancer) using Illumina HT12 arrays (CEDAR dataset; Methods). IBD being
159  defined as an inappropriate mucosal immune response to a normal commensal
160  gut flora??, these nine cell types can all be considered to be potentially disease-
161 relevant. Using standard methods based on linear regression and one megabase
162  windows centered on the position of the interrogating probe (Methods), we
163  identified significant cis-eQTL (FDR < 0.05) for 8,804 of 18,580 tested probes
164  (corresponding to 7,216 of 13,615 tested genes) in at least one tissue, amounting
165 toatotal of 23,650 cis-eQTL effects (Supplementary Data 1). When a gene shows
166 a cis-eQTL in more than one tissue, the corresponding “eQTL association
167  patterns” (EAP) (i.e. the distribution of association -log(p) values for all the
168  variants in the region of interest) are expected to be similar if determined by the
169 same regulatory variants, and dissimilar otherwise. Likewise, if several
170  neighboring genes show cis-eQTL in the same or distinct tissues, the
171  corresponding EAP are expected to be similar if determined by the same
172 regulatory variants, and dissimilar otherwise (Fig. 1). We devised the 9 metric
173  to measure the similarity between association patterns (Methods). 9 is a
174  correlation measure for paired -log(p) values (for the two eQTL that are being

175 compared) that ranges between -1 and +1. o shrinks to zero if Pearson’s
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176  correlation between paired -log(p) values does not exceed a chosen threshold (i.e.
177  if the EAP are not similar). 9 approaches +1 when the two EAP are similar and
178 when variants that increase expression in eQTL 1 consistently increase
179  expression in eQTL 2. 9 approaches -1 when the two EAP are similar and when
180  variants that increase expression in eQTL 1 consistently decrease expression in
181 eQTL 2. Y gives more weight to variants with high -log(p) for at least one EAP
182  (i.e. it gives more weight to eQTL peaks). Based on the known distribution of 9
183  under Hp (i.e. eQTL determined by distinct variants in the same region) and Hi
184  (i.e. eQTL determined by the same variants), we selected a threshold value
185 |9| > 0.60 to consider that two EAP were determined by the same variant. This
186  corresponds to a false positive rate of 0.05, and a false negative rate of 0.23
187  (Supplementary Fig. 1). We then grouped EAP in “cis-acting regulatory modules”
188  (cRM) using |[9] and a single-link clustering approach (i.e. an EAP needs to have
189  |9| > 0.60 with at least one member of the cluster to be assigned to that cluster).
190 Clusters were visually examined and 29 single edges connecting otherwise

191  unlinked and yet tight clusters manually removed (Supplementary Fig. 2).

192  Using this approach, we clustered the 23,650 effects in 9,720 distinct “cis-
193  regulatory modules” (cRM), encompassing cis-eQTL with similar EAP
194  (Supplementary Data 2). Sixty-eight percent of cRM were gene- and tissue-
195  specific, 22% were gene-specific but operating across multiple tissues (<9
196 tissues, average 3.5), and 10% were multi-genic (<11 genes, average 2.5) and
197  nearly always multi-tissue (Fig. 2&3, Supplementary Fig. 2). In this, cRM are
198 considered gene-specific if the EAPs in the cluster concern only one gene, and
199 tissue-specific if the EAP in the cluster concern only one of the nine cell types.
200 They are, respectively, multigenic and multi-tissue otherwise. cRM operating
201  across multiple tissues tended to affect multiple genes (r = 0.47; p < 10¢). In
202 such cRM, the direction of the effects tended to be consistent across tissues and
203 genes (p < 10%). Nevertheless, we observed at least 55 probes with effect of
204  opposite sign in distinct cell types (¥ < —0.9), i.e. the corresponding regulatory
205 variants increases transcript levels in one cell type while decreasing them in
206  another (Fig. 4 and Supplementary Data 3). Individual tissues allowed for the
207  detection of 7 to 33% of all cRM, and contributed 3 to 14% unique cRM

208  (Supplementary Fig. 3). Sixty-nine percent of cRM were only detected in one cell
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209 type. The rate of cRM sharing between cell types reflects known ontogenic
210 relations. Considering cRM shared by only two cell types (i.e. what jointly
211  differentiates these two cell types from all other), revealed the close proximity of
212 the CD4-CD8, CD14-CD15, ileum-colon, and colon-rectum pairs. Adding
213  information of cRM shared by up to six cell types grouped lymphoid (CD4, CDS8,
214 CD19), myeloid (CD14, CD15 but not platelets), and intestinal (ileum, colon and
215 rectum) cells. Adding cRM with up to nine cell types revealed a link between
216 ileum and blood cells, possibly reflecting the presence of blood cells in the ileal

217  Dbiopsies (Fig. 5).
218 cRM matching IBD association signals are often multigenic

219  If regulatory variants affect disease risk by perturbing gene expression, the
220  corresponding “disease association patterns” (DAP) and EAP are expected to be
221  similar, even if obtained in distinct cohorts (yet with same ethnicity) (Fig. 6).
222 We confronted DAP and EAP using the 9 statistic and threshold (|| > 0.60)
223  described above for 200 GWAS-identified IBD risk loci. DAP for Crohn’s disease
224  and Ulcerative Colitis were obtained from the International IBD Genetics

225  Consortium (IIBDGC)?3, EAP from the CEDAR dataset.

226  The probability that two unrelated association signals in a chromosome region of
227  interest are similar (i.e. have high |9| value) is affected by the degree of LD in the
228 region. If the LD is high it is more likely that two association signals are similar
229 by chance. To account for this, we generated EAP- and locus-specific
230 distributions of || by simulating eQTL explaining the same variance as the
231  studied eQTL, yet driven by 100 variants that were randomly selected in the risk
232  locus (matched for MAF), and computing |9| with the DAP for all of these. The
233 resulting empirical distribution of || was used to compute the probability to
234  obtain a value of |9] as high or higher than the observed one, by chance alone

235  (Methods).

236  Strong correlations between DAP and EAP (|9| > 0.6, associated with low
237  empirical p-values) were observed for at least 63 IBD risk loci, involving 99
238  genes (range per locus: 1-6) (Table 1, Fig. 7, Supplementary Data 4). Increased
239  disease risk was associated equally frequently with increased as with decreased

240  expression (pcp = 0.48; puc = 0.88). An open-access website has been prepared
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241  to visualize correlated DAP-EAP within their genomic context (http://cedar-
242  web.giga.ulg.ac.be). Genes with highest |[9]| values (= 0.9) include known IBD
243  causative genes (fi. ATG16L1, CARDY, FUTZ), known immune regulators (f.i.
244  IL18R1, IL6ST, THEMIS), as well as genes with as of yet poorly defined function in
245  the context of IBD (fi. APEH, ANKRDS55, CISD1, CPEB4, DOCK7, ERAP2, GNA12,
246  GPX1, GSDMB, ORMDL3, SKAPZ, UBE2L3, ZM1Z1) (Supplementary Note 1).

247  The eQTL link with IBD has not been reported before for at least 47 of the 99
248  reported genes (Table 1). eQTL links with IBD have been previously reported for
249 111 additional genes, not mentioned in Table 1. Our data support these links for
250 19 of them, however, with |[9] < 0.6 (Supplementary Data 5). We applied SMR13
251  as alternative colocalisation method to our data. Using a Bonferroni-corrected
252 threshold of < 2.5 x 10-> for psmr and = 0.05 for puemi, SMR detected 35 of the 99
253  genes selected with 9 (Supplementary Data 4). Using the same thresholds, SMR
254  detected nine genes that were not selected by . Of these, three (ADAM15,
255 AHSAZ, UBA7) had previously been reported by others, while six (FAM189B,
256  QRICH1, RBM6, TAP2, ADO, LGALS9) were not. Of these six, three (RBM6, TAPZ,
257  ADO) were characterized by 0.45 < |9| < 0.6 (Supplementary Data 5).

258 Using an early version of the CEDAR dataset, significant (albeit modest)
259  enrichment of overlapping disease and eQTL signals was reported for CD4, ileum,
260  colon and rectum, focusing on 76 of 97 studied IBD risk loci (MAF of disease
261 variant > 0.05)* By pre-correcting fluorescence intensities with 23 to 53
262  (depending on cell type) principal components to account for unidentified
263  confounders (Methods), we increased the number of significant eQTL from 480
264  to 880 in the corresponding 97 regions (11,964 to 23,650 for the whole genome).
265  We repeated the enrichment analysis focusing on 63 of the same 97 IBD loci (CD
266  risk loci; MAF of disease variant > 0.05), using three colocalisation methods
267  including 9 (Methods). We observed a systematic excess overlap in all analyzed
268  cell types (2.5-fold on average). The enrichment was very significant with the

269  three methods in CD4 and CD8 (Supplementary Table 1).

270  The 400 analyzed DAP (200 CD and 200 UC) were found to match 76 cRM (in 63
271  risk loci) with [9| > 0.6 (Table 1), of which 25 are multigenic. =~ Knowing that
272  multigenic cRM represent 10% of all cRM (967/9,720), 25/76 (i.e. 33%)
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273  corresponds to a highly significant 3-fold enrichment (p < 10-). To ensure that
274  this apparent enrichment was not due to the fact that multigenic cRM have more
275 chance to match DAP (as by definition multiple EAP are tested for multigenic
276  cRM), we repeated the enrichment analysis by randomly sampling only one
277  representative EAP per cRM in the 200 IBD risk loci. The frequency of multigenic
278 cRM amongst DAP-matching cRM averaged 0.22, and was never < (.10
279  (p < 107%) (Supplementary Fig. 4). In loci with high LD, EAP driven by distinct
280  regulatory variants (yet in high LD) may erroneously be merged in the same cRM.
281  To ensure that the observed enrichment in multigenic cRM was not due to higher
282  levels of LD, we compared the LD-based recombination rate of the 63 cRM-
283  matching IBD risk loci with that of the rest of the genome?3. The genome-
284  average recombination rate was 1.23 centimorgan per megabase (cM/Mb), while
285  that of the 63 IBD risk loci was 1.34 cM/Mb, i.e. less LD in the 63 cRM-matching
286  IBD risk loci than in the rest of the genome. We further compared the average
287  recombination rate in the 63 cRM-matching IBD regions with that of sets of 63
288 loci centered on randomly drawn cRM (from the list of 9,720), matched for size
289 and chromosome number (as cM/Mb is affected by chromosome size). The
290 average recombination rate around all cRM was 1.43 cM/Mb, and this didn’t
291  differ significantly from the 63 cRM-matching IBD regions (p=0.46)
292  (Supplementary Fig. 5). Therefore, the observed enrichment cannot be
293  explained by a higher LD in the 63 studied IBD risk loci. Taken together, EAP
294  that are strongly correlated with DAP (|9| = 0.60), map to regulatory modules
295  that are 2- to 3-fold enriched in multigenic cRM when compared to the genome
296 average and include four of the top 10 (of 9,720) cRM ranked by number of
297  affected genes.

298  DAP-matching cRM are enriched in causative genes for IBD

299  For truly causative genes, the burden of rare disruptive variants is expected to
300 differ between cases and controls?4. We therefore performed targeted
301 sequencing for the 555 coding exons (~88 Kb) of 38 genes selected amongst
302  those with strongest DAP-EAP correlations, plus seven genes with suggestive
303 DAP-EAP evidence backed by literature (Table 1), in 6,597 European CD cases
304 and 5,502 matched controls (ref. 25 and Methods). Eighteen of these were part
305 of single-gene cRM and the only gene highlighted in the corresponding locus. The
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306 remaining 27 corresponded to multi-gene cRM mapping to 15 risk loci. We
307 added the well-established NODZ2 and ILZ3R causative IBD genes as positive
308 controls. We identified a total of 174 loss-of-function (LoF) variants, 2,567
309 missense variants (of which 991 predicted by SIFT?¢6 to be damaging and
310 Polyphen-227 to be either possibly or probably damaging), and 1,434
311 synonymous variants (Fig. 8 and Supplementary Data 6). 1,781 of these were
312  also reported in the Genome Aggregation Database?® with nearly identical allelic
313 frequencies (Supplementary Fig. 6). We designed a gene-based burden test to
314 simultaneously evaluate hypothesis (i): all disruptive variants enriched in cases
315  (when 9 < 0; risk variants) or all disruptive variants enriched in controls (when 9
316 > 0; protective variants), and hypothesis (ii): some disruptive variants enriched
317 in cases and others in controls. Hypothesis (i) was tested with CAST?°, and
318  hypothesis (ii) with SKAT30 (Methods). We restricted the analysis to 1,141 LoF
319 and damaging missense variants with minor allele frequency (MAF) < 0.005 to
320 ensure that any new association signal would be independent of the signals from
321 common and low frequency variants having led to the initial identification and
322  fine-mapping of the corresponding loci*. For NODZ (p = 6.9 x 10-7) and IL23R (p
323 = 1.8 x 10%), LoF and damaging variants were significantly enriched in
324  respectively cases and controls as expected. When considering the 45 newly
325  tested genes as a whole, we observed a significant (p = 6.9 x 10-4) shift towards
326 lower p-values when compared to expectation, while synonymous variants
327  behaved as expected (p = 0.66) (Fig. 9 and Supplementary Data 7). This strongly
328  suggests that the sequenced list includes causative genes. CARD9, TYKZ and
329 FUT2 have recently been shown to be causative genes based on disease-
330 associated low-frequency coding variants (MAF > 0.005)* The shift towards
331 lower p-values remained significant without these (p = 1.7 x 10-3), pointing

332  towards novel causative genes amongst the 42 remaining candidate genes.
333  Proving gene causality requires larger case-control cohorts.

334 Despite the significant shift towards lower p-values when considering the 45

335 genes jointly, none of these were individually significant when accounting for
336 multiple testing (p < %z 0.0006) (Supplemental Data 7). Near identical

337  results were obtained when classifying variants using the Combined Annotation
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338 Dependent Depletion (CADD) tool3! instead of SIFT/PolyPhen-2 (Supplementary
339 Data 7). We explored three approaches to increase the power of the burden test.
340 The first built on the observation that cRM matching DAP are enriched in
341 multigenic modules. This suggests that part of IBD risk loci harbor multiple co-
342  regulated and hence functionally related genes, of which several (rather than one,
343  as generally assumed) may be causally involved in disease predisposition. To
344  test this hypothesis, we designed a module- rather than gene-based burden test

345 (Methods). However, none of the 30 tested modules reached the experiment-

346  wide significance threshold (p < % ~ 0.0008). Moreover, the shift towards

347 lower p-values for the 30 modules was not more significant (p = 2.3 x 1073)
348  than for the gene-based test (Supplementary Fig. 7A and Supplementary Table 7).
349  The second and third approaches derive from the common assumption that the
350 heritability of disease predisposition may be larger in familial and early-onset
351 cases32. We devised orthogonal tests for age-of-onset and familiality and
352 combined them with our burden tests (Methods). Neither approach would

353 improve the results (Supplementary Fig. 7B&C and Supplementary Data 7).

354  Assuming that TYKZ and CARD9 are truly causative and their effect sizes in our
355 data unbiased, we estimated that a case-control cohort ranging from ~ 50,000
356 (TYK2) to ~200,000 (CARD9) individuals would have been needed to achieve
357 experiment-wide significance (testing 45 candidate genes), and from ~ 78,000
358 (TYK2) to >500,000 (CARDY) individuals to achieve genome-wide significance
359  (testing 20,000 genes) in the gene-based burden test (Supplementary Fig. 8).

360
361 DiscussSION

362  We herein describe a novel dataset comprising array-based transcriptome data
363  for six circulating immune cell types and intestinal biopsies at three locations
364 collected on ~300 healthy European individuals. = We use this CEDAR dataset
365 (“Correlated Expression and Disease Association Research”) to identify 23,650
366  significant cis-eQTL, which fall into 9,720 regulatory modules of which at least
367 ~889 affect more than one gene in more than one tissue. We provide strong

368 evidence that 63 of 200 known IBD GWAS signals reflect the activity of common
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369 regulatory variants that preferentially drive multigenic modules. We perform
370  an exon-based burden test for 45 positional candidate CD genes mapping to 33
371 modules, in 5,500 CD cases and 6,500 controls. By demonstrating a significant
372 (p = 6.9 x 10~*) upwards shift of log(1/p) values for damaging when compared
373 to synonymous variants, we show that the sequenced genes include new

374  causative CD genes.

375 Individually, none of the sequenced genes (other than the positive NOD2 and
376  IL23R controls) exceed the experiment-wide significance threshold, precluding
377  us from definitively pinpointing any novel causative genes. However, we note
378  IL18R1 amongst the top-ranking genes (see also Supplementary Note 1). IL18R1
379  is the only gene in an otherwise relatively gene-poor region (also encompassing
380 ILIR1 and IL18RAP) characterized by robust cis-eQTL in CD4 and CDS8 that are
381  strongly correlated with the DAP for CD and UC (0.68 < |9| < 0.93). Reduced
382  transcript levels of IL18R1 in these cell types is associated with increased risk for
383 IBD. Accordingly, rare (MAF < 0.005) damaging variants were cumulatively
384  enriched in CD cases (CAST p = 0.05). The cumulative allelic frequency of rare
385 damaging variants was found to be higher in familial CD cases (0.0027), when
386 compared to non-familial CD cases (0.0016; p = 0.09) and controls (0.0010; p =
387 0.03). When ignoring carriers of deleterious NODZ mutations, average age-of-
388 onset was reduced by ~3 years (25.3 vs 28.2 years) for carriers of rare damaging

389  IL18R1 variants but this difference was not significant (p = 0.18).

390 While the identification of matching cRM for 63/200 DAP points towards a
391 number of strong candidate causative genes, it leaves most risk loci without
392  matching eQTL despite the analysis of nine disease-relevant cell types. This
393 finding is in agreement with previous reports#33. It suggests that cis-eQTL
394 underlying disease predisposition operate in cell types, cell states (f.i. resting vs
395 activated) or developmental stages that were not explored in this and other
396  studies. It calls for the enlargement and extension of eQTL studies to more
397 diverse and granular cellular panelsi®34, possibly by including single-cell
398 sequencing or spatial transcriptomic approaches. By performing eQTL studies in
399  a cohort of healthy individuals, we have made the reasonable assumption that
400 the common regulatory variants that are driving the majority of GWAS signals

401 are acting before disease onset, including in individuals that will never develop
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402  the disease. An added advantage of studying a healthy cohort, is that the
403  corresponding dataset is “generic”, usable for the study of perturbation of gene
404 regulation for any common complex disease. However, it is conceivable that
405 some eQTL underlying increased disease risk only manifest themselves once the
406 disease process is initiated, for instance as a result of a modified inflammatory
407  status. Thus, it may be useful to perform eQTL studies with samples collected
408 from affected individuals to see in how far the eQTL landscape is affected by

409  disease status.

410  One of the most striking results of this work is the observation that cRM that
411 match DAP are >2-fold enriched in multi-genic modules. = We cannot fully
412  exclude that this is due to ascertainment bias. As multi-genic modules tend to
413  also be multi-tissue, multi-genic cRM matching a DAP in a non-explored disease-
414  relevant cell type have a higher probability to be detected in the explored cell
415  types than the equivalent monogenic (and hence more likely cell type specific)
416  cRM. The alternative explanation is that cRM matching DAP are truly enriched in
417  multi-genic cRM. It is tempting to surmise that loci harboring clusters of co-
418 regulated, functionally related causative genes have a higher probability to be
419  detected in GWAS, reflecting a relatively larger target space for causative
420 mutations. We herein tested this hypothesis by applying a module rather than
421 gene-based test. Although this did not appear to increase the power of the
422  burden test in this work, it remains a valuable approach to explore in further
423  studies. Supplementary Data 2 provides a list of >900 multigenic modules

424  detected in this work that could be used in this context.

425  Although we re-sequenced the ORF of 45 carefully selected candidate genes in a
426  total of 5,500 CD cases and 6,600 controls, none of the tested genes exceeded the
427  experiment-wide threshold of significance. This is despite the fact that we used
428  a one-sided, eQTL-informed test to potentially increase power. Established IBD
429  causative genes used as positive control, NODZ and IL23R, were positive
430 indicating that the experiment was properly conducted. We were not able to
431 improve the signal strength by considering information about regulatory
432  modules, familiality or age-of-onset. We estimated that >10-fold larger sample

433  sizes will be needed to achieve adequate power if using the same approach.
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434  Although challenging, these numbers are potentially within reach of

435 international consortia for several common diseases including IBD.

436  Itis conceivable that the organ-specificity of nearly all complex diseases (such as
437  the digestive tract for IBD), reflects tissue-specific perturbation of broadly
438  expressed causative genes that may fulfill diverse functions in different organs.
439 If this is true, coding variants may not be the appropriate substrate to perform
440 burden tests, as these will affect the gene across all tissues. In such instances,
441  the disruptive variants of interest may be those perturbing tissue-specific gene
442  switches. Also, it has recently been proposed that the extreme polygenic nature
443  of common complex diseases may reflect the trans-effects of a large proportion
444  of regulatory variants active in a given cell type on a limited number of core
445  genes via perturbation of highly connected gene networks3s. Identifying rare
446 regulatory variants is still challenging, however, as tissue-specific gene switches
447  remain poorly catalogued, and the effect of variants on their function difficult to
448 predict. The corresponding sequence space may also be limited in size, hence
449 limiting power. Nevertheless, a reasonable start may be to re-sequence the
450 regions surrounding common regulatory variants that have been fine-mapped at

451 near single base pair resolution*.

452  In conclusion, we hereby provide to the scientific community a collection of
453  ~24,000 cis-eQTL in nine cell types that are highly relevant for the study of
454  inflammatory and immune-mediated diseases, particularly of the intestinal tract.
455 The CEDAR dataset advantageously complements existing eQTL datasets
456 including GTEx1034 We propose a paradigm to rationally organize cis-eQTL
457  effects in co-regulated clusters or regulatory modules. We identify ~100
458 candidate causative genes in 63 out of 200 analyzed risk loci, on the basis of
459  correlated DAP and EAP. We have developed a web-based browser to share the
460  ensuing results with the scientific community (http://cedar-web.giga.ulg.ac.be).
461 The CEDAR website will imminently be extended to accommodate additional
462 common complex disease for which GWAS data are publicly available. We show
463  that the corresponding candidate genes are enriched in causative genes, however,
464 that case-control cohorts larger than those used in this study (12,000
465 individuals) are required to formally demonstrate causality by means of

466 presently available burden tests.
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467
468 METHODS
469 Sample collection in the CEDAR cohort

470  We collected peripheral blood as well as intestinal biopsies (ileum, transverse
471  colon, rectum) from 323 healthy Europeans visiting the Academic Hospital of the
472  University of Liege as part of a national screening campaign for colon cancer.
473  Participants included 182 women and 141 men, averaging 56 years of age
474  (range: 19-86). Enrolled individuals were not suffering any autoimmune or
475 inflammatory disease and were not taking corticosteroids or non-steroid anti-
476  inflammatory drugs (with the exception of low doses of aspirin to prevent
477  thrombosis). We recorded birth date, weight, height, smoking history, declared
478  ethnicity and hematological parameters (red blood cell count, platelet count,
479  differential white blood cell count) for each individual. The experimental
480 protocol was approved by the ethics committee of the University of Liege
481 Academic Hospital. Informed consent was obtained prior to donation in
482 agreement with the recommendations of the declaration of Helsinki for
483  experiments involving human subjects. ~We refer to this cohort as CEDAR for

484  Correlated Expression and Disease Association Research.
485  SNP genotyping and imputation

486 Total DNA was extracted from EDTA-collected peripheral blood using the
487  MagAttract DNA blood Midi M48 Kit on a QIAcube robot (Qiagen). DNA
488  concentrations were measured using the Quant-iT Picogreen ds DNA Reagents
489  (Invitrogen). Individuals were genotyped for > 700K SNPs using Illumina’s
490 Human OmniExpress BeadChips, an iScan system and the Genome Studio
491  software following the guidelines of the manufacturer. We eliminated variants
492  with call rate < 0.95, deviating from Hardy-Weinberg equilibrium (p < 10-4), or
493  which were monomorphic. We confirmed European ancestry of all individuals
494 by PCA using the HapMap population as reference. Using the real genotypes of
495 629,570 quality-controlled autosomal SNPs as anchors, we used the Sanger
496 Imputation Services with the UK10K + 1,000 Genomes Phase 3 Haplotype

497  panels#*3-46 to impute genotypes at autosomal variants in our population. We
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498 eliminated indels, SNPs with MAF < 0.05, deviating from Hardy-Weinberg
499  equilibrium (p < 10-3), and with low imputation quality (INFO < 0.4), leaving
500 6,019,462 high quality SNPs for eQTL analysis.

501 Transcriptome analysis

502 Blood samples were kept on ice and treated within one hour after collection as
503 follows. EDTA-collected blood was layered on Ficoll-Paque PLUS (GE
504 Healthcare) to isolate peripheral blood mononuclear cells by density gradient
505 centrifugation. CD4+ T lymphocytes, CD8+ T lymphocytes, CD19+ B lymphocytes,
506 CD14+ monocytes, CD15+ granulocytes were isolated by positive selection using
507 the MACS technology (Miltenyi Biotec). To isolate platelets, blood collected on
508 acid-citrate-dextrose (ACD) anticoagulant was centrifuged at 150g for 10
509 minutes. The platelet rich plasma (PRP) was collected, diluted 2-fold in ACD
510 buffer and centrifuged at 800g for 10 minutes. The platelet pellet was
511 resuspended in MACS buffer (Miltenyi Biotec) and platelets purified by negative
512  selection using CD45 microbeads (Miltenyi Biotec). Intestinal biopsies were
513 flash frozen in liquid nitrogen immediately after collection and kept at -80°C
514 until RNA extraction. Total RNA was extracted from the purified leucocyte
515 populations and intestinal biopsies using the AllPrep Micro Kit and a QIAcube
516 robot (Qiagen). For platelets, total RNA was extracted manually with the RNeasy
517  Mini Kit (Qiagen). Whole genome expression data were generated using HT-12
518 Expression Beadchips following the instructions of the manufacturer (Illumina).
519 Technical outliers were removed using controls recommended by Illumina and
520 the Lumi package*’. We kept 29,464/47,323 autosomal probes (corresponding
521 to 19,731 genes) mapped by Re-Annotator*® to a single gene body with < 2
522 mismatches and not spanning known variants with MAF > 0.05. Within cell
523 types, we only considered probes (i.e. “usable” probes) with detection p-value <
524  0.05 in = 25% of the samples. Fluorescence intensities were Log: transformed
525 and Robust Spline Normalized (RSN) with Lumi4’. Normalized expression data
526  were corrected for sex, age, smoking status and Sentrix Id using ComBat from the
527  SVARlibrary#®. We further corrected the ensuing residuals within tissue for the
528 number of Principal Components (PC) that maximized the number of cis-eQTL
529 with p < 106 50, Supplementary Table 2 summarizes the number of usable

530 samples, probes and PC for each tissue type.
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531 Cis-eQTL analysis

532  C(Cis-eQTL analyses were conducted with PLINK and using the expression levels
533 precorrected for fixed effects and PC as described above>l52. Analyses were
534  conducted under an additive model, i.e. assuming that the average expression
535 level of heterozygotes is at the midpoint between alternate homozygotes. To
536  identify cis-eQTL we tested all SNPs in a 2ZMb window centered around the probe
537  (if “usable”). P-values for individual SNPs were corrected for the multiple
538 testing within the window by permutation (10,000 permutations). For each
539  probe-tissue combination we kept the best (corrected) p-value.  Within each
540 individual cell type, the ensuing list of corrected p-values was used to compute
541  the corresponding false discovery rates (FDR or g-value). Supplementary Table
542 3 reports the number of cis-eQTL found in the nine analyzed cell types for

543  different FDR thresholds (see also Supplementary Figure 9).
544  Comparing EAP with 9 to identify cis Regulatory Modules

545 If the transcript levels of a given gene are influenced by the same regulatory
546  variants (one or several) in two tissues, the corresponding EQTL Association
547  Patterns (EAP)(i.e. the -log(p) values of association for the SNPs surrounding the
548 gene) are expected to be similar. Likewise, if the transcript levels of different
549  genes are influenced by the same regulatory variants in the same or in different
550 tissues, the corresponding EAP are expected to be similar (cfr. main text, Fig. 1).
551 We devised a metric, 9, to quantify the similarity between EAP. If two EAP are
552  similar, one can expect the corresponding -log(p) values to be positively
553  correlated. One particularly wants the EAP peaks, i.e. the highest -log(p) values,
554  to coincide in order to be convinced that the corresponding cis-eQTL are driven
555 by the same regulatory variants. To quantify the similarity between EAP while
556 emphasizing the peaks we developed a weighted correlation. Imagine two
557  vectors X and Y of -log(p) values for n SNPs surrounding the gene(s) of interest.
558 Using the same nomenclature as in Fig. 1A, X could correspond to gene A in
559 tissue 1, and Y to gene A in tissue 2, or X could correspond to gene A in tissue 1,
560 and Y to gene B in tissue 2. We only consider for analysis, SNPs within 1Mb of
561 either gene (probe) and for which x; and/or y; is superior to 1.3 (i.e. p-value <

562 0.05) hence informative for at least one of the two cis-eQTL. Indeed, the
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563 majority of variants with -log(p) < 1.3 (p > 0.05) for both EAP are by definition
564 not associated with either trait. There is therefore no reason to expect that they
565 could contribute useful information to the correlation metric: their ranking in
566 terms of -log(p) values becomes more and more random as the -log(p)

567 decreases. We define the weight to be given to each SNP in the correlation as:

p
x. M
w; = MAX< —, yl)
Xpmax Ymax

568 The larger p, the more weight is given to the top SNPs. In this work, p was set at
569 one.

570 The weighted correlation between the two EAP, rv, is then computed as:

o1 Z" Wl(%‘ﬁ) Yi ~ Yw
v Z?=1Wi i=1 ' oy ay

y

571 in which
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572

573  The larger rw, the larger the similarity between the EAP, particularly for their

574  respective peak SNPs.

575  rwignores an important source of information. If two EAP are driven by the same
576  regulatory variant, there should be consistency in the signs of the effects across
577  SNPs in the region. We will refer to the effect of the “reference” allele of SNP i on

578 the expression levels for the first and second cis-eQTL as 8 and B/. If the
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579 reference allele of the regulatory variant increases expression for both cis-eQTL,
580 the B and B} ‘s for a SNPs in LD with the regulatory variant are expected to have
581 the same sign (positive or negative depending on the sign of D for the considered
582  SNP). If the reference allele of the regulatory variant increases expression for
583  one cis-eQTL and decreases expression for the other, the 8 and ‘s for a SNPs
584 in LD with the regulatory variant are expected to have opposite sign. We used
585  this notion to develop a weighted and signed measure of correlation, rws. The
586  approach was the same as for rw, except that the values of y; were multiplied by -
587 1 if the signs of 8 and B} were opposite. rusis expected to be positive if the
588 regulatory variant affects the expression of both cis-eQTL in the same direction

589 and negative otherwise.

590 We finally combined r, and rws in a single score referred to as ¥, as follows:

n

¥ = T ke
591 9 penalizes rws as a function of the value of ry. The aim is to avoid considering
592  EAP pairs with strong but negative ry (which is often the case when the two EAP
593 are driven by very distinct variants). The link function is a sigmoid-shaped
594  logistic function with k as steepness parameter and T as sigmoid mid-point. In
595 this work, we used a value of k of 30, and a value of T of 0.3 (Supplementary
596  Figure 10).

597 We first evaluated the distribution of 9 for pairs of EAP driven by the same
598 regulatory variants by studying 4,693 significant cis-eQTL (FDR < 0.05). For
599 these, we repeatedly (100 x) split our CEDAR population in two halves,
600 performed the cis-eQTL analysis separately on both halves and computed 9 for

601  the ensuing EAP pairs. Supplementary Figure 1 is showing the obtained results.

602 We then evaluated the distribution of ¥ for pairs of EAP driven by distinct
603  regulatory variants in the same chromosomal region as follows. We considered
604 1,207 significant cis-eQTL (mapping to the 200 IBD risk loci described above).
605  For each one of these, we generated a set of 100 “matching” cis-eQTL effects in
606 silico, sequentially considering 100 randomly selected SNPs (from the same
607 locus) as causal. The in silico cis-eQTL were designed such that they would

608 explain the same fraction of expression variance as the corresponding real cis-
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609 eQTL detected with PLINK (cfr. above). When performing cis-eQTL analysis
610 under an additive model, PLINK estimates S, (i.e. the intercept), and S, (i.e. the
611  slope of the regression), including for the top SNP. Assume that the expression
612 level of the studied gene, Z, for individual i is z;. Assume that the sample
613 comprises nr individuals in total, of which n;; are of genotype “11”, niz of
614 genotype “12”, and nzz of genotype “22”, for the top cis-eQTL SNP. The total

615 expression variance for gene Z equals:

(o) =

616  The variance in expression level due to the cis-eQTL equals:

2 n11(Bo — Zr)% + i, (Bo + B — Z7)? + npp (B + 261 — 77)°
OcorL = oy

617 The heritability of expression due to the cis-eQTL, i.e. the fraction of the

618  expression variance that is due to the cis-eQTL is therefore:

2
_ OeqrL

619 To simulate cis-eQTL explaining the same thTL as the real eQTL in the CEDAR
620 dataset, we sequentially considered all SNPs in the region. Each one of these
621  SNPs would be characterized by n;; individuals of genotype “11”, ni2 of genotype
622  “12”, and nz; of genotype “22”, for a total of nr genotyped individuals. We would
623  arbitrarily set z;7, Z;;,and Z,, at -1, 0 and +1. As a consequence, the variance

624  due to this cis-eQTL equals:

ny (=1 - E)Z +n4,(0 — E)z +ny,(1 - E)Z

nr

2
OcorL =

625 in which E = (nzz - Tlll)/nT.
626  Knowing 62yr;, and hZyr,, and knowing that

2
th _ OcQrL
eQTL — _2 2
OcorL t OREs

627  the residual variance o3 can be computed as
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1
O-I%ES = UeZQTL <— - 1)

2
heQTL

628 Individual expression data for the corresponding cis-eQTL (for all individuals of

629  the CEDAR dataset) were hence sampled from the normal distribution
2;~N (Zxz, Ofgs)

630 where Z,, is -1, 0 or +1 depending on the genotype of the individual (11, 12, or
631 22). We then performed cis-eQTL on the corresponding data set using EAP,
632  generating an in silico EAP. Real and in silico EAP were then compared using 9.
633  Supplementary Figure 1 shows the corresponding distribution of 9 values for

634  EAP driven by distinct regulatory variants.

635  The corresponding distributions of 9 under Hy and Ho (Supplementary Figure 1)
636  show that 9 discriminates very effectively between H1 and Ho especially for the
637  most significant cis-eQTL. In the experiment described above, this would yield a
638 false positive rate of 0.05, and a false negative rate of 0.23. We chose a threshold
639 of [9] > 0.6 to cluster EAP in cis-acting regulatory elements or cRM (Fig. 2).
640  Clusters were visually examined as show in Supplementary Figure 2. Twenty-
641 nine edges connecting otherwise unlinked and yet tight clusters were manually

642 removed.
643 Testing for an excess sharing of cRM between cell types

644  Assume that cell type 1 is part of n;; cRM, including n,; private cRM, n;, cRM
645  shared with cell type 2, n,3 cRM shared with cell type 2, ..., and n,;9 cRM shared
646  with cell type 9. Note that Y';_, n;; = n,7, because cRM may include more than
647  two cell types. Assume that n;g = Y;., ny; is the sum of pair-wise sharing events
648  for cell type 1. We computed, for each cell type i # 1, the probability to observe
649 > ny; sharing events with cell type 1 assuming that the expected number (under

650  the hypothesis of random assortment) is

it
nlsx—9
j=1 YT
651 Pair-wise sharing events between tissue 1 and the eight other tissues were

652  generated in silico under this model of random assortment (5,000 simulations).
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653  The p-value for ny; was computed as the proportion of simulations that would
654  yield values that would be as large or larger than n;;. The same approach was
655  used for the nine cell types. Thus, two p-values of enrichment are obtained for
656  each pair of cell typesiand j, one using i as reference cell type, and the other
657  usingj as reference cell type. As can be seen from Fig. 5, the corresponding pairs

658  of p-values were always perfectly consistent.

659 We performed eight distinct analyses. In the first analysis, we only considered
660 cRM involving no more than two tissues (i.e. unique for specific pairs of cell
661 types). In subsequent analyses, we progressively included cRM with no more

662  than three, four, ..., and nine cell types.
663 Comparing EAP and DAP using 9

664 The approach used to cluster EAP in cRM was also used to assign Disease
665  Association Patterns (DAP) for Inflammatory Bowel Disease (IBD) to EAP-
666 defined cRM. We studied 200 IBD risk loci identified in recent GWAS meta-
667 analyses?3. The limits of the corresponding risk loci were as defined in the
668  corresponding publications. We measured the similarity between DAP and
669  EAP using the 9 metric for all cis-eQTL mapping to the corresponding intervals
670  (i.e. for all cis-eQTL for which the top SNP mapped within the interval). To
671  compute the correlations between DAP and EAP we used all SNPs mapping to the
672  disease interval with -log(p) value = 1.3 either for DAP, EAP or both.

673 In addition to computing 9 as described in section 5, we computed an empirical
674  p-value for 9 using the approach (based on in silico generated cis-eQTL)
675 described above to generate the locus-specific distribution of 9 values for EAP
676  driven by distinct regulatory variants. From this distribution, one can deduce
677  the probability that a randomly generated EAP (explaining as much variance as
678 the real tested EAP) and the DAP would by chance have a || value that is as high
679  or higher than the real EAP. The corresponding empirical p-value accounts for

680 thelocal LD structure between SNPs.

681 Evaluating the enrichment of DAP-EAP matching

682 To evaluate whether DAP matched EAP more often than expected by chance

683  alone, we analyzed 97 IBD risk loci interrogated by the Immunochip, (i) in order
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684 to allow for convenient comparison with Huang et al.4, and (ii) because we
685 needed extensively QC genotypes for the IIBDGC data to perform the enrichment
686  analysis with the J-based method (see hereafter). Within these 97 IBD risk loci,
687 we focused on 63 regions affecting CD%, encompassing at least one significant
688 eQTL, and for which the lead CD-associated SNP had MAF > 0.05. Indeed, eQTL
689 analyses in the CEDAR dataset were restricted to SNPs with MAF > 0.05 (see
690 above). We used three methods to evaluate whether the observed number of
691 DAP-EAP matches were higher than expected by chance alone: naive, frequentist

692 and J-based. Analyses were performed separately for the nine cell types.

693 In the “naive” approach, DAP and EAP were assumed to match if the
694  corresponding lead SNPs were in LD withr2 > 0.8. This would yield ny < 63
695 risk loci for which the DAP would match at least one EAP. To measure the
696  statistical significance of ny, we sampled a SNP (MAF > 0.05) at random in each
697  of the 63 risk loci, and counted the number of loci with at least one matching EAP.
698 This “simulation” was repeated 1,000 times. The significance of ny was

699 measured as the proportion of simulations that would yield > ny matches.

700  The frequentist approach used the method described by Nica et al.>3. DAP and
701  EAP were assumed to match if fitting the disease-associated lead SNP in the
702  eQTL analysis caused a larger drop in -log (p) than 95% of the SNPs with MAF >
703  0.05 in the analyzed risk locus. This would yield ny < 63 risk loci for which the
704  DAP would match at least one EAP. To measure the statistical significance of ng,
705 we sampled a SNP (MAF > 0.05) at random in each of the 63 risk loci, and
706  counted the number of loci with at least one matching EAP. This “simulation”
707 was repeated 1,000 times. The significance of np was measured as the

708  proportion of simulations that would yield > ny matches.

709  Finally, we used our 9-based approach in which DAP and EAP were assumed to
710  match if [9] > 0.6. This would yield ny < 63 risk loci for which the DAP would
711 match at least one EAP. To measure the statistical significance of ny we sampled
712  a SNP (MAF > 0.05) at random in each of the 63 risk loci, and generated a DAP

713  assuming that the corresponding SNPs were causal as follows.
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Assume a cohort with n; cases and n, controls (f.i. the IBDGC cohort). Assume a
SNP with an allelic frequency of p in the cases + controls, an allelic frequency of

(p + d) in cases and (p + &) in controls.

One can easily show that:

§=—-d=2 (1)

nz
The odds ratio (OR) for that SNP equals:

@+ d)A-p-0)
R=p+od-p-d

The ratio between the between-cohort (i.e. cases and controls) variance versus

within-cohort variance (corresponding to an F test) can be shown to equal:

d? (1+3)

TR e-m-a(1+D)

If we fix F based on the real top SNP in the IIBDGC data in a given GWAS
identified risk loci, we can determine d (and hence § using equation 1) for the
randomly selected SNP (that will become an “in silico causative variant”) with

allelic frequency in (cases + controls) of p (different from the real top SNP), by

solving
de —B £+p? —4ay
B 2a
where

- 1+Ma
a=( +n—2)( +F)
B=0
2 n
V=—(P—P)<1+n—1>F

Once we know (p + d) (i.e. the frequency of the SNP in cases), and hence (p + §)

(i.e. the frequency of the SNP in controls), we can use Hardy-Weinberg to

determine the frequency of the three genotypes in cases (pEP, p!EP, piEP) and
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731  controls (p§i%, pSER, pSER). We then create an in silico case-control cohort by
732  sampling (with replacement) n,;xp/BP AA cases, n;xp!EP AB cases, .., and

733 nyxpSER BB controls from the individuals of the IIBDGC (without discriminating
734  real case and control status). Association analysis of the corresponding dataset
735 in the chromosome region of interest generates DAP with max -log(p) value
736  similar to the real DAP. This “simulation” was repeated 1,000 times. The
737  significance of ny was measured as the proportion of simulations that would

738 yield = ny matches.
739 Targeted exon resequencing in CD cases and controls

740  Genes for which EAP match the DAP tightly (high |9| values) are strong
741 candidate causal genes for the studied disease. In the case of IBD, we identified
742  ~100 such genes (Table 1). Ultimate proof of causality can be obtained by
743  demonstrating a differential burden of rare disruptive variants in cases and
744  controls. Burden tests preferably focus on coding gene segments, in which
745  disruptive variants are most effectively recognized. Analyses are restricted to

746  rare variants to ensure independence from the GWAS signals.

747  To perform burden tests, we collected DNA samples from 7,323 Crohn Disease
748  (CD) cases and 6,342 controls of European descent in France (cases: 1,899 -
749  ctrls: 1,731), the Netherlands (2,002 - 1,923) and Belgium (3,422 - 2,688). The
750  study protocols were approved by the institutional review board at each centre
751  involved with recruitment. Informed consent and permission to share the data
752  were obtained from all subjects, in compliance with the guidelines specified by

753  the recruiting centre’s institutional review board.

754  During the course of this project, we selected 45 genes with high |9| values for
755 resequencing (Table 1). We designed primers to amplify all corresponding
756  coding exons plus exon-intron boundaries corresponding to all transcripts
757  reported in the CCDS release 1554 (Supplemental data 8). Following Momozawa
758 et al.55 the primers were merged in five pools to perform a first round of PCR
759  amplification (25 cycles). We then added 8-bp barcodes and common adaptors
760  (for sequencing) to all PCR products by performing a second round of PCR
761 amplification (4 cycles) using primers targeting shared 5’overhangs introduced

762  during the first PCR. The ensuing libraries were purified, quality controlled and
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763  sequenced (2 x 150-bp paired-end reads) on a HiSeq 2500 (Illumina) instrument.
764  Sequence reads were sorted by individual using the barcodes, aligned to the
765 human reference sequence (hgl9) with the Burrows-Wheeler Aligner (ver.
766  0.7.12)°¢, and further processed using Genome Analysis Toolkit (GATK, ver. 3.2-
767  2)57. We only considered individuals for further analyses if = 95% of the target
768 regions was covered 2 20 sequence reads. Average sequence depth across
769  individuals and target regions was 1,060. We called variants for each individual
770  separately using the UnifiedGenotyper and HaplotypeCaller of GATK, as well as
771  VCMM (ver. 1.0.2)%8, and listed all variants detected by either method. Genotypes
772  for all individuals were determined for each variant based on the ratio of
773 reference and alternative alleles amongst sequence reads as determined by
774  Samtools®?. Individuals were labelled homozygote reference, heterozygote, or
775 homozygote derived when the alternative allele frequency was between 0 and
776  0.15, between 0.25 and 0.75, and between 0.85 and 1, respectively. If the
777  alternative allele frequency was outside these ranges or a variant position was
778  covered with < 20 sequencing reads, the genotype was considered missing. We
779  excluded variants with call rates < 95% or variants that were not in Hardy-
780  Weinberg equilibrium (P < 1 x 10-6). We excluded 281 individuals with = 2 minor
781  alleles at 23 variants selected to have a MAF < 0.01 in non-Finnish Europeans

782  and 2 0.10 in Africans or East-Asians in the Exome Aggregation Consortium?®°.

783  In the end, we used 6,597 cases and 5,502 controls for further analyses, while
784  98.5% of the target regions on average was covered with 20 or more sequence

785  reads.
786  Gene-based burden test

787  We first used SIFT®! and Polyphen-262 to sort the 4,175 variants identified by
788  sequencing in four categories: (i) loss-of-function (LoF) or severe, corresponding
789  to stop gain, stop loss, frameshift and splice-site variants, (ii) damaging,
790 corresponding to missense variants predicted by SIFT to be damaging and
791  Polyphen-2 to be possibly or probably damaging, (iii) benign, corresponding to
792  the other missense variants, and (iv) synonymous. We performed the burden
793  test using the LoF plus damaging variants, and used the synonymous variants as

794  controls. We only considered variants with MAF (computed for the entire
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795  dataset, i.e. cases plus controls) < 0.005. We indeed showed in a previous fine-
796  mapping study that all reported independent effects were driven by variants
797  with MAF = 0.01%. By doing so we ensure that the signals of the burden test are
798 independent of previously reported association signals. Thus, 174 LoF, 991

799  damaging, and 1,434 synonymous were ultimately used to perform burden tests.

800  Burden tests come in two main flavors. In the first, one assumes that disruptive
801 variants will be enriched in either cases (i.e. disruptive variants increase risk) or
802  in controls (i.e. disruptive variance decrease risk). In the second, one assumes
803  that - for a given gene - some disruptive variants will be enriched in cases, while
804 other may be enriched in controls (Supplementary Fig. 11). The first was
805 implemented using CAST®. To increase power, we exploited the DAP-EAP
806 information to perform one-sided (rather than two-sided) tests. When 9 < 0, we
807  tested for an enrichment of disruptive variants in cases; when 9 > 0, for an
808 enrichment of disruptive variants in controls. P-values were computed by
809 phenotype permutation, i.e. shuffling case-control status. When applying this
810 test on a gene-by-gene basis using synonymous variants (MAF > 0.005), the
811 distribution of p-values (QQ-plot) indicated that the CAST test was conservative
812  (A¢¢ = 0.51) (Supplementary Fig. 12). The second kind of burden test was
813 implemented with SKAT®4. It is noteworthy that SKAT ignores information from
814  singletons (Supplementary Fig. 11). Just as for CAST, p-values were computed by
815 phenotype permutation, i.e. shuffling case-control status. When applying this
816  test on a gene-by-gene basis using synonymous variants (MAF < 0.005), the
817  distribution of p-values (QQ-plot) indicated that the SKAT test is too permissive
818 (Agc = 1.73) (Supplementary Fig. 12). Consequently, gene-based p-values
819 obtained with SKAT were systematically GC corrected using this value of 1.
820 We performed the two kinds of analyses for each gene, as one doesn’t a priori

821  know what hypothesis will match the reality best for a given gene.

822  We also extracted information from the distribution of p-values (or -log(p)
823  values) across the 45 analyzed genes. Even if individual genes do not yield -
824  log(p) values that exceed the significance threshold (accounting for the number
825  of analyzed genes and tests performed), the distribution of -log(p) values may
826  significantly depart from expectations, indicating that the analyzed genes include

827  atleast some causative genes. This was done by taking for each gene, the best p-
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828 value (whether obtained with CAST or SKAT) and then rank the genes by
829  corresponding -log(p) value. The same was done for 10° phenotype
830 permutations, allowing us to examine the distribution of -log(p) values for given

831 ranks and compute the corresponding medians and limits of the 95% confidence

832  band, as well as to compute the probability that - 2 .7, In (p;) (Fisher’s equation
833  to combine p-values) equals or exceeds the observed. = Our results show that
834  there is a significant departure from expectation when analyzing the damaging
835  variants (p = 6.9 x 104) but not when analyzing the synonymous variants (p =
836  0.66) supporting the presence of genuine causative genes amongst the analyzed

837 list
838 cRM-based burden test

839  The enrichment of multi-genic cRM in IBD risk loci suggests that risk loci may
840 have more than one causative gene belonging to the same cRM. To capitalize on
841 this hypothesis, we developed a cRM-based burden test. Gene-specific p-values
842  were combined within cRM using Fisher’s method. For each gene, we considered
843  the best p-value whether obtained with CAST or SKAT. Statistical significance
844  was evaluated by phenotype permutation exactly as described for the gene-
845  based burden test. By doing so we observed a departure from expectation when
846  using the damaging variants (p = 2.3 x 10-3), but not when using the synonymous

847  variants (p = 0.72).
848  Orthogonal tests for age-of-onset and familiality

849 It is commonly assumed that the heritability for common complex diseases is
850 higher in familial and early onset cases®>. To extract the corresponding
851 information from our data in a manner that would be orthogonal to the gene-
852 and module-based tests described above (i.e. the information about age-of-onset
853 and familiality would be independent of these burden tests), we devised the

854 following approach.

855 For age-of-onset, we summed the age-of-onset of the n¢ cases carrying rare
856  disruptive variants for the gene of interest. We then computed the probability
857  that the sum of the age-of-onset of n¢ randomly chosen cases was as different

858 from the mean of age-of-onset as the observed one, yielding a gene-specific two-
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859  sided pskar value. In addition, we used the eQTL information to generate gene-
860  specific one-sided pcasr values, corresponding to the probability that the sum of
861 the age-of-onset of n¢ randomly chosen cases was as low or lower than the
862  observed one (for genes for which decrease in expression level as associated
863  with increased risk), or to the probability that the sum of the age-of-onset of n¢
864 randomly chosen cases was as high or higher than the observed one (for genes
865  for which increase in expression level as associated with increased risk). These
866  age-of-onset p-values were then combined with the corresponding p-values from

867  the burden test (CAST with CAST, SKAT with SKAT) using Fisher’s method.

868  For familiality, we determined what fraction of the n¢ cases carrying rare
869  disruptive variants for the gene of interest were familial (affected first degree
870 relative). We then computed the probability that the fraction of familial cases
871 amongst nc randomly chosen cases was as different from the overall proportion
872  of familial cases, yielding a gene-specific two-sided pskar value. In addition, we
873 used the eQTL information to generate gene-specific one-sided pcast values,
874  corresponding to the probability that the fraction of familial cases amongst n¢
875 randomly chosen cases was as high or higher than the observed one (for genes
876  for which decrease in expression level as associated with increased risk), or to
877  the probability that the sum of the age-of-onset of nc randomly chosen was as
878 low or lower than the observed one (for genes for which increase in expression
879 level as associated with increased risk). These familial p-values were then
880 combined with the corresponding p-values from the burden test (CAST with
881  CAST, SKAT with SKAT) using Fisher’s method.

882
883 DATA AVAILABILITY

884  The complete CEDAR eQTL dataset can be downloaded from the Array Express
885  website (https://www.ebi.ac.uk/arrayexpress/), accession numbers E-MTAB-
886 6666 (genotypes) and E-MTAB-6667 (expression data). The data, preprocessed
887 as described in Methods, can be downloaded from the CEDAR website
888  (http://cedar-web.giga.ulg.ac.be).

889
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1072  Figure Legends

1073  Figure 1: cis Regulatory Module (cRM). A cis-eQTL affecting gene A in tissue 1
1074  reveals itself by an “eQTL Association Pattern” (EAPa,1), i.e. the pattern of -log(p)
1075  values for variants in the region. Multiple EAP can be observed in a given
1076  chromosome region, affecting one or more genes in one or more cell types. EAP
1077  that are driven by the same underlying variants are expected to be similar, while
1078  EAP driven by distinct variants (f.i. the green and red regulatory variants in the
1079 figure) are not. Based on the measure of similarity introduced in this work, 9, we
1080  cluster the EAP in cis-Regulatory Modules (cRM). For EAP in the same module, 9
1081 can be positive or negative, indicating that the variants have the same sign of

1082  effect (increasing or decreasing expression) for the corresponding EAP pair.

1083  Figure 2: Single-gene/tissue versus multi-gene/tissue cRM. Using 9| > 0.6,
1084  the 23,950 cis-eQTL (FDR < 0.05) detected in the nine analyzed cell types were
1085  clustered in 9,691 cis-Regulatory Modules (cRM). 68% of these were single-gene,
1086  single-tissue cRM (green), 22% were single-gene, multi-tissue cRM (blue), and
1087 10% were multi-gene, mostly multi-tissue cRM (red). The number of
1088 observations for single-gene cRM were divided by 10 in the graph for clarity.
1089 Thus, there are more cases of single-gene, multi-tissue cRM (blue; 2,155) than

1090 multi-gene cRM (red; 967).

1091 Figure 3: Example of a multi-gene, multi-tissue cRM. Gene-tissue
1092  combinations for which no expression could be detected are marked by “-“, with
1093  detectable expression but without evidence for cis-eQTL as “—”, with detectable
1094  expression and evidence for a cis-eQTL as “1” or “l” (large arrows: FDR < 0.05;
1095 small arrows: FDR > 0.05 but high |[9] values). eQTL labelled by the yellow
1096 arrows constitute the multi-genic and multi-tissular cRM n°57. The
1097  corresponding regulatory variant(s) increase expression of the GINM1, NUP43
1098 and probably KATNA1 genes (left side of the cRM), while decreasing expression
1099  of the PCMT1 and LRP11 genes (right side of the cRM). The expression of GINM1
1100 in CD15 and LRP11 in CD4 appears to be regulated in opposite directions by a
1101  distinct cRM (n°3694, green). The LATS1 gene, in the same region, is not affected

1102 by the same regulatory variants in the studied tissues. Inset 1: 9 values for all
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1103  EAP pairs. EAP pairs with |[9| > 0.6 are bordered in yellow when corresponding

1104 to cRM n°57, in green when corresponding to cRM n°3694 (+ green arrow).

1105 Figure 4: Variant(s) with opposite effects on expression in two cell types.
1106  Example of a gene (PNKD) affected by a cis-eQTL in at least two cell types (CD14
1107 and platelets) that are characterized by EAP with 9 = -0.97, indicating that the
1108 gene’s expression level is affected by the same regulatory variant in these two
1109 cell types, yet with opposite effects, i.e. the variant that is increasing expression

1110 in platelets is decreasing expression in CD14.

1111  Figure 5: Significance of the excess sharing of cRM between cell types. (red:
1112 p < 0.0002 (Bonferroni corrected 0.0144), orange: p < 0.001 (0.072), rose: p <
1113  0.01 (0.51)). The numbers in the lower-left corner of the squares indicate which
1114  cRM were used for the analysis: (2) cRM affecting no more than two cell types,
1115 (3) cRM affecting no more than three cell types, etc. The upper-left square
1116 indicates the position of the lymphoid cell types (L)(CD4, CD8, CD19), the
1117 myeloid cell types (M)(CD14,CD15,PLA), and the intestinal cell types (I)(IL, TR,
1118 RE). For each pair of cell types i and j, we computed two p-values, one using i as
1119 reference, the other using j as reference (Methods). Pairs of p-values were

1120  always consistent.

1121  Figure 6: DAP-matching cRM. If a regulatory variant (red) affects disease risk
1122 Dby altering the expression levels of gene B in tissue 2, the EAPg2 is expected to be
1123  similar (high |9]) to the “disease association pattern” (DAP), both assigned
1124  therefore to the same cRM. 9 is positive if increased gene expression is
1125 associated with increased disease risk, negative otherwise. A cis-eQTL that is
1126  driven by a regulatory variant (green) that does not directly affect disease risk,
1127  will be characterized by an EAP (say gene A, tissue 2, EAP4?) that is not similar to
1128  the DAP (low [|9]).

1129 Figure 7: Screen shots of the CEDAR website, showing (i) known CD risk loci
1130 on the human karyotype, (ii) a zoom in the HD35 risk locus showing the Refseq
1131  gene content and summarizing local CEDAR cis-eQTL data (white: no expression
1132  data, gray: expression data but no evidence for cis-e, black: significant cis-eQTL
1133  but no correlation with DAP, red: significant cis-eQTL similar to DAP (9 <
1134  —0.75), green: significant cis-eQTL similar to DAP (9 = 0.75)), and (iii) a zoom in
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1135 the DAP for Crohn’s disease (black) and EAP for IL18R1 (red), as well as the
1136  signed correlation between DAP and EAP.

1137  Figure 8: Variants detected by sequencing the coding exons of 45 candidate
1138 genes. Variants are sorted in LoF (Loss-of-Function, i.e. stop gain, frame-shift,
1139  splice site), Damaging MS (missense variants considered as damaging by SIFT>
1140 and damaging or possibly damaging by Polyphen-2¢), Benign MS (other missense
1141  variants), and Synonymous. Blue: variants with MAF < 0.005, Red: variants with

1142  MAF = 0.005.

1143  Figure 9: QQ-plot for the gene-based burden test. Ranked log(1/p) values
1144  obtained when considering LoF and damaging variants (full circles), or
1145 synonymous variants (empty circles). The circles are labeled in blue when the
1146  best p-value for that gene is obtained with CAST, in red when the best p-value is
1147  obtained with SKAT. The black line corresponds to the median log(1/p) value
1148 obtained (for the corresponding rank) using the same approach on permuted
1149 data (LoF and damaging variants). The grey line marks the upper limit of the
1150 95% confidence band. The name of the genes with nominal p-value < 0.05 are
1151 given. Known causative genes are italicized. The inset p-value corresponds to

1152  the significance of the upwards shift in log(1/p) values estimated by permutation.
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1155 Table 1: IBD risk loci for which at least one cis-eQTL association pattern (EAP)
1156 was found to match the disease association pattern (DAP). Given are (i) the
1157 name and chromosomal coordinates of the corresponding loci (Locus, Chr, Beg,
1158 End)( GRCh37/hg19 in Mb), (ii) the identifier and total number of genes in the
1159 matching cis-acting regulatory module (cRM, Nr), (iii) the genes and tissues
1160 involved in matching DAP-EAP (|9| > 0.6) (bold when [9]| = 0.9), (iv) the best ¥-
1161 values and corresponding empirical p-values obtained for CD and UC,
1162  respectively, and (vi) references reporting a link between one or more of the
1163 same genes and IBD on the basis of eQTL information. Genes that were
1164 resequenced are shown in italics. Genes that were resequenced despite |[9| <
1165 0.6 are bracketed, and the supporting references provided in “Ref”. The higher
1166  number of matching DAP-EAP in this study when compared to Huang et al. 4 are
1167  primarily due to the fact that (i) we herein study 200 IBD risk loci (vs 97), and
1168  (ii) we increase the number of detected cis-eQTL approximately two-fold by

1169  correcting for hidden confounders using PCs.

1170
1171
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Supplementary Information

IBD risk loci are enriched in multigenic regulatory modules encompassing

causative genes.
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Supplementary note 1: Genes with strong DAP-EAP correlation

IL18R1 encodes the IL-18r1, the receptor of IL-18, a potent proinflammatory
cytokine governing host-microorganism homeostasis and is postulated to play a
role in IBD12. However, IL-18/IL-18r1 precise contribution to the disease remains
controversial. Indeed, compared to wild-type mice, 118/~ and 1118r1-/- full KO mice
are more susceptible to AOM/DSS-induced colitis and polyp formation3. However,
targeted deletion of [118/- and Il18r1-/- in intestinal epithelial cells confers
protection from colitis and mucosal damage in mice*. In human, several studies
have associated circulating or local IL-18 with IBD severity, suggesting that IL-18

could be an effector cytokine in IBD®.

IL6ST encodes the interleukin 6 signal transducer protein (IL6ST), also called IL6
beta, GP130 or CD130. IL6ST is a common transmenbrane receptor for all family
members of IL6 that include IL-6, IL-11, ciliary neurotrophic factor (CNTF),
cardiotrophin-1 (CT-1), cardiotrophin like cytokine (CLC), leukaemia inhibitory
factor (LIF), oncostatin M (OSM), neuropoitin (NPN) and interleukin-27 (IL-27)¢.
IL6 family members / IL6ST signaling pathways involve the activation of JAK
(Janus kinase) family members, leading to the activation of STAT (signal
transducers and activators of transcription) family, as well as the activation of
MAPK (mitogen-activated protein kinase) pathway. These pathways are involved
in cell survival, apoptosis, differentiation and proliferation®. The involvement of
IL6/IL6ST/STAT3 in the pathophysiology of IBD is well documented?’. Indeed,
high circulating levels of IL6 is associated with increased severity of the disease’.
T cells from IBD patient show increased STAT3 activation with increased
expression of IL6ST and enhanced resistance to apoptosis®. A pilot clinical trial
(phase 1) targeting of IL6/IL6ST pathway in patients with CD has shown that
blocking this pathway has effects similar to the inhibition of TNF?10,

THEMIS encodes the thymocyte-expressed molecule involved in selection
(THEMIS), the expression of which is limited to lymphoid tissues. In mice, THEMIS
is highly expressed in pre-TcR thymocytes and plays an important role in T-cell
development and TCR activation signaling!!12. Its expression is reduced in

differentiated T lymphocytes'?. THEMIS deficiency in mice is associated with the
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presence of higher percent of Treg cells, with reduced TCR-mediated T cell
response, increased proportion of memory CD4 and CD8 T cells and reduced
proportions of naive-phenotype populations'2. Interestingly, all these T cells
associated feathers are implicated in the pathogenesis of IBD. Indeed, lamina
propria T cells in IBD are hypo-responsive to TCR stimulation and high number of
effector T cells are present in the inflamed bowel!3. As for Treg, only moderate
expansion was seen in intestinal lesions of Crohn’s patients suggesting that their
suppressive activity is probably not sufficient against the overwhelming effector

T cells activity3.

APEH encodes the acylpeptide hydrolase (APEH) enzyme that contributes to
protein degradation processes in concert with the proteasome. It catalyzes the
removal of N-acylated amino acids from acetylated peptides!4. Its physiological
role is not well undertood. SNPs in APEH gene hves been associated with both CD
and UC?>. Like other ubiquitin proteasome systems (UPS) such as USP40 or CYLD,
APEH may also regulate the NF-kB pathway. Under this scenario, an alteration of

NF-kB signaling may lead to aberrant immune response and inflammation.

ANKRD55 encodes an Ankyrin repeat domain-containing protein 55 with
unknown function. Ankyrin repeats are composed of 33-34 aa and are the most
abundant motifs in nature with highly diverse cellular functions'®. SNPs at the

ANKRDS55 locus have also been associated with multiple sclerosis!” and RA18.

CISD1 gene encodes a highly conserved iron-sulfur domain-containing protein A,
known as mitoNEET. This iron-containing protein is a dynamic redox-sensitive
molecule that serves an important role in mitochondrial functions. It participates
in critical process such as electron shuttling through the electron transport chain,
regulation of enzymatic activity, and synthesis of heme and iron-sulfur
clusters'®20, Deregulation of iron metabolism and associated anemia has been
associated with IBD?. The role that mitoNEET plays in the etiology of IBD remains

to be determined.

CPEB4 gene encodes the cytoplasmic polyadenylation element-binding protein 4
(CEBP4), which belongs to a family of proteins that bind mRNAs and contain a
cytoplasmic polyadenylation element (CPE) in their 3’-UTR. Binding results in 3'-
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poly(A) tail extension and translational upregulation of target mRNAs. Cpeb4
mRNA is rhythmically regulated in mouse liver, conferring temporal translational
regulation. In the absence of CPEB4, a large number of mRNAs are transcribed,
but remain untranslated until needed?2. A recent study, using knockout mice
models, showed that CPEB4 was required for translation of numerous proteins
involved in ER homeostasis and CPEB4 loss resulted in mitochondrial dysfunction
and defective lipid metabolism, two hallmarks of ER stress. Cpeb4 KO livers were
highly susceptible to ER stress-induced apoptosis and to development of NAFLD?23.

In CD, reduced CPEB4 may also lead to ER stress and mitochondrial dysfunction.

DOCK7 encodes dedicator of cytokinesis 7 protein (Dock7), a member of Dock
proteins family and an activator of Rac GTPases. DOCK7 plays an important role
in axon outgrowth, Schwann cell migration, and axon myelination?4. Mutation in
this gene in mice leads to hypopigmentation suggesting a non-redundant role in
the distribution and function of dermal and follicular melanocytes. However,
mutant mice show normal neuronal function despite the high expession of DOCK7
in the developping brain, suggesting redundancy with other Docks?5. The role of

DOCK?7 in IBD and immune cells function is totally unknown.

ERAP2 gene encodes an endoplasmic reticulum aminopeptidase (ERAP2Z), an
enzyme involved in trimming of peptides for MHC-I loading. Aberrant ERAP2
function could influence peptide-HLA-B27 stability, formation of MHC-I free heavy
chains and ER stress?6:27.28, SNPs in ERAPZ gene have been associated with CD?°.
Although the underlying mechanisms are not known, it is possible that ERAP2
modification contributes to the reported reduction of MHCI on CD4 T cells from
CD patients30. ERAP2 modification may also contribute to the epithelial ER stress
associated with CD and UC.

GNA12 encodes Guanine nucleotide-binding protein subunit alpha-12 or Ga1z,
which belongs to the heterotrimeric G proteins. Gaiz is found in tight junctions
(T]) where it interacts with Z0-131 and plays important roles in para-cellular
permeability3233. Gaiz is ubiquitously expressed and interacts, upon receptor-
mediated activation, with certain Rho guanine nucleotide exchange factors

(RhoGEFs) which in turn mediate activation of the small GTPase RhoA3#. Intestinal
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permeability and barrier dysfunction is a hallmark of CD and UC. Several studies
reported changes in the expression of several T] proteins in both diseases3®. Itis
conceivable that modifications in the Gaiz pool leads to alteration of intestinal
permeability. Tissue-specific Gaiz-deficient mice revealed important functions of
this protein in modulating T cell trafficking and proliferation, as well as in the
response to foreign and self antigens36, important processes that may affect

susceptibility for T cell-mediated diseases.

GPX1 encodes the glutathione peroxidase 1 (GPX1), a highly abundant and
ubiquitously expressed cytosolic enzyme. Like all glutathione peroxidases family
members, GPX1 catalyzes the reduction of H202 by glutathione and consequently,
protects cells from oxidative damage. In IBD, it is believed that intestinal and
colonic injuries and dysfunction is at least partially due to elevation of reactive
metabolites of oxygen and nitrogen3’. Although the role of GPX1 is not known in
IBD, deficiency of both GPX1 and GPX2 in mice lead to spontaneous ileo-colitis and
intestinal cancer38. A protective role of GPX1 and GPX2 against oxidative stress has
also been suggested by studies reporting elevated Gpx1/2 gene expression in
gastric mucosa after H. pylori infection3?. Association of the elevated expression of

Gpx1/2 gene with tumorigenesis could be due to its anti-apoptotic activity4.

GSDMB encodes Gasdermin-B protein (GSDMB) the function of which is largely
unknown. The expression of GSDMB has been associated with differentiated
epithelial cells and with regions containing proliferating cells or stem cells,

respectively, of the esophagus and the gastric mucosa*!42,

JAZF1, also known as TIP27, encodes a transcriptional repressor of NR2(CZ2, also
known as TAKI or TR476. Mice deficient in NR2C2 show low IGF1 serum
concentrations and perinatal and early postnatal hypoglycemia, as well as growth
retardation’’. JAZF1 also affects variation in human height’8. SNPs in JAZ1F have
been associated with type II diabetes??, prostate8? and endometrial cancer8! and
with systemic lupus erythematosus®2. However, the role of JAZF1 in immune

response and autoimmunity remains to be elucidated.

LSP1 encodes a leukocyte-specific protein 1 (LSP1), a Ca?*-activated, intracellular
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filamentous actin-binding protein that interacts with the cytoskeleton and is
expressed in hematopoietic lineage and in endothelial cells”?. Evidence from mice
model studies suggest that LSP1 plays a negative regulatory role on neutrophil
and T cell migration’172, A recent study identified a novel LSP1 deletion variant
for RA susceptibility through CNV GWAS73. The copy number of LSP1 was found
to be significantly lower in RA patients and was associated with increased T cell
migration’3. We found a positive correlation of LSP1 expression (in CD14+ cells)
with UC, but not with CD. UC, as well as CD, is characterized by an increased
infiltration of immune cells in inflamed tissues. Our finding is therefore surprising
if we consider the concept of an association between increased cell migration
with LSP1 CNVs and LSP1 insufficiency. It is possible that LSP1 plays an additional,
yet unknown role in monocytes. On the other hand, if LSP1 participates actively in
the cross-talk between leukocytes and endothelial cells during leukocyte
transmigration, the physiological differences in microvasculature and the
integrins involved may dictate organ-specific roles for LSP1 in leukocyte

recruitment into the inflammatory sites.

NXPE1: Encodes Neuroexophilin and PC-esterase domain family member 1
(NXPE1). A human gastointestinal tract (GIT) specific transcriptome and
proteome study validate the expression pattern of this gene and protein in the
intestine 74, NXPE1 was recently identified as a novel target gene for IBD-

associated variants?>. Its function remains largely unknown.

ORMDL3 encodes ORM1-like protein 3, a negative regulator of sphingolipid
synthesis and a regulator of endoplasmic reticulum-mediated calcium signaling*>.
ORMDL3 is involved in the regulation of eosinophil and T cell functios**4’. It also
facilitate B cells survival and regulates autophagy through the ATF6 signaling
pathway*8. Genetic variants regulating ORMDL3 expression have been associated
with susceptibility to ashma*?, T1D59, atherosclerosis®!, ankylosing spondylitis>2
and IBD>3. ORMDL3 might be associated with IBDs and other autoimmune and
inflammatory diseases by activating ERS, inducing autophagy and/or promoting

immune cells activation.
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REXO02Z2 encodes an oligoribonuclease protein. Its depletion, using RNAI, causes a
significant decrease of mtDNA and mtRNA and impaired de novo mitochondrial
protein synthesis83. REX02’s function remains unknown but it may be involved in

the well documented mitochondrial defects associated with IBD84.

RNASETZ2 is the only RNase T2 family member in humans and is potentially
involved in the inhibition of tumorigenesis, metastasis and angiogenesis8>8°, Loss-
of-function of RNASET2 protects fibroblasts from oxidative stress8® while its
overexpression in melanocytes and keratinocytes sensitizes these cells to
oxidative-stress-induced apoptosis?. Interestingly, CD is characterized by an
impaired immune cells apoptosis associated with elevated H202 in PBMC during
the active phase of the disease®l. Although speculative, it is possible that reduced

RNASET?2 contributes to the altered oxidative stress in CD.

SKAPZ2 encodes the Src kinase-associated phosphoprotein 2 (Skap2), a cytosolic
adaptor protein expressed in a variety of cell types including hematopoietic
cells>#5556, Skap2 has been implicated in cell adhesion through association to
integrins and cytoplasmic actin®5, and is required for global actin reorganization.
It interacts with different molecules implicated in integrin signaling events>456.57,
Loss of SkapZ in mice results in reduced inflammation in experimental
autoimmune encephalomyelitis as well as defects in macrophage migration into
tumor metastasis, suggesting a physiologically important role of Skap2 for

leukocyte recruitment in vivo5558,

UBEZL3 gene encodes an atypical Ubiquitin E2 Conjugase (UBE2L3) the role of
which has been recently uncovered. It is an indirect human and mouse Caspase-1
target and plays an important role in the maturation of IL-1§3. UBE2L3 depletion
in mice increases pro-IL-13 levels and mature-IL-13 secretion by
inflammasomes®l. Several GWAS identified polymorphisms in the genomic locus
of UBEZL3 that are associated with multiple autoimmune diseases®? including
CD?°. Decreased secretion of the inflammasome cytokine IL-13 was noted in
monocytes of Crohn’s disease patients®3. It is therefore tempting to speculate that

UBEZL3 contributes to disease at least partially by modulating IL-1f3 secretion.
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ZMIZ1 encodes Zmiz1,a member of the protein inhibitor of activated STAT (PIAS)-
like family of coregulators®4. Zmiz1 is widely and variably expressed®. In GWAS,
a SNP within ZMIZ1 gene was associated with early-onset Crohn’s disease and
IBD®%. ZMIZ1 is co-expressed with activated NOTCH1 across a broad range of T-
ALL oncogenomic subgroups. Its inhibition slows human T-ALL cell proliferation
and/or sensitizes them to y-Secretase inhibitors (GSI)¢’. Evidence from Zmiz1-
deficient mice demonstrated that Zmizl is a direct Notchl cofactor that
heterogeneously regulates Notch1 target genes and plays an important role in T
cells development®8. Altered expression of ZMIZ1 has been reported to affect
Smad3-mediated transcription®. Interestingly, our analysis shows that increased
UC disease risk was associated with decrease of both SMAD3 and ZMIZ1
expression while no association was observed with NOTCH1. This association was
observed in different tissues/cell types suggesting a possible trans effect of ZMIZ1
on SMAD3 expression.
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Supplementary Table 1

Naive (r*2 based) Frequentist (Nica et al., 2010) Theta-based
Cell type Overlaps Overlaps Overlaps Overlaps Overlaps Overlaps
P value P value P value
observed expected observed expected observed expected
CD4 12 3.3 <0.01 14 4.9 <0.01 17 8.4 <0.01
CD8 12 3.5 <0.01 18 4.3 <0.01 16 6.9 <0.01
CD14 8 33 0.061 9 4.7 0.211 10 7.1 0.720
CD15 4 1.9 0.646 4 2 0.720 7 5.1 0.909
CD19 7 2 0.010 7 3.6 0.410 12 5.8 0.044
PLA 4 0.9 0.010 3 0.9 0.475 5 1.8 0.119
IL 4 1.6 0.432 7 2.1 0.027 8 4.1 0.281
TR 6 2.6 0.211 5 35 0.928 11 6 0.086
RE 5 1.5 0.103 6 2.4 0.204 9 5.5 0.509

Enrichment of DAP-EAP matching in 63 of 97 CD risk loci covered by the Immunochip. For each cell type, we provide the number of
matches (or overlaps) observed with the top disease-associated SNPs (MAF > 0.05), as well as the number of matches expected with the
same number of SNPs (MAF > 0.05) sampled at random in the same 63 risk loci. The analyses were conducted using three "colocalisation”
methods (Naive, Frequentists and Theta-based). The p-values were determined by simulation (1,000 sets of 63 randomly sampled SNPs)
and Bonferroni corrected for the analysis of 9 cell types. < 0.01 means that the number of matches observed with the real disease-
associated SNPs was never observed with any set (out of 1,000) of randomly sampled SNPs.
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Tissue ‘ Nr of samples ‘ Nr of probes Nr of PCs

CD4 303 13,466 38
CD8 294 13,317 35
CDh19 282 12,648 40
CD14 286 13,170 36
CD15 289 11,069 27
PLA 251 6,565 23
IL 200 15,401 59
TR 271 15,082 50
RE 267 14,844 53

Number of usable samples, probes and PC for each tissue type.



Momozawa et al. Supplemental material Page 11 of 32

219  Supplementary Table 3

220
Tissue Nrofprobes FDR<0.25 FDR<0.10 FDR<0.05 FDR<0.01
CD4 13,466 7,417 4,957 4,176 3,247
CD8 13,317 6,760 4,309 3,599 2,779
CD19 | 12,648 4,984 3,138 2,549 1,953
CDh14 | 13,170 7,118 4,728 3,961 3,106
CD15 | 11,069 3,611 2,396 1,983 1,512
PLA 6,565 1,404 996 854 653
IL 15,401 2,769 1,728 1,426 1,031
TR 15,082 5,183 3,391 2,807 2,160
RE 14,844 4,180 2,726 2,295 1,731

221

222 Number of cis-eQTL found in the nine analyzed cell types for different FDR
223  thresholds (see also Suppl. Figure 7).
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Supplementary Figures

1. Supplementary Figure 1
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Absolute values of 9 for pairs of eQTL driven by distinct regulatory variants (blue),
and for pairs of eQTL driven by the same regulatory variants (red). The first (blue)
were obtained by confronting real cis-eQTL with in silico simulated eQTL
explaining the same variance as the real eQTL but driven by a randomly chosen
SNPs in a 2Mb window centered around the probe. The second (red) were
obtained by confronting eQTL obtained by reanalyzing two mutually exclusive
halves of the CEDAR population separately in a region harboring a real cis-eQTL.
It can be seen that 9 very effectively discriminates between pairs of eQTL driven
by distinct (blue) vs the same (red) regulatory variants. By choosing 0.6 as
threshold value for 9, one captures most red pairs (~88%) with minimum
contamination of blue pairs (~5%). Log(1/p): eQTL are sorted by the smallest
log(1/p) value of the two eQTL being compared.
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241 2. Supplementary Figure 2
242

243

244  Graphical representation (using Cytoscapel) of 269 cis acting regulatory modules
245  (cRM) including at least three genes (see Suppl. Table 2). Every node corresponds
246  toacis-eQTL involving a specific gene-tissue combination. Edges connect pairs of
%47 cis-eQTL for which |9 = 0.6.

248 1. Shannon, P. et al. Genome Res. 13, 2498-2504 (2003).
249
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250 3. Supplementary Figure 3
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253 Number of cRM detected in each cell type. Blue: shared cRM (i.e. also detected
254 in at least one other cell type). Red: Unique (i.e. detected only in that cell type).
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4. Supplementary Figure 4
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Proportion of multigenic cRM amongst DAP matching cRM

Across the entire genome, the proportion of multigenic cRM was shown to be
0.10 (see also main text, figure 1B). Amongst DAP matching cRM (mapping to
63 of 200 studied IBD risk loci; main text Table 1) this proportion was shown
to be 0.33, hence a highly significant enrichment. To ensure that this
enrichment was not only due to the fact that matching between DAP and EAP
was de facto tested multiple times for multigenic cRM and only once for other
cRM, we only tested one randomly sampled EAP per cRM (whether monogenic
or multigenic). This was repeated 100,000 times and yielded the distribution
of the proportion of multigenic cRM amongst DAP matching cRM shown above.
The average was 0.22, and we never observed values < 0.11, i.e. the genome-
wide average.
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5. Supplementary Figure 5
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The 63 IBD risk loci with matching cRM are 2- to 3-fold enriched in multigenic
cRM (p < 107°). This could be due to the fact that the LD is higher in IBD
regions than in the rest of the genome. To test this, we downloaded LD-based
recombination maps of the human genome from
https://github.com/joepickrell/1000-genomes-genetic-maps. The average
recombination rate across the human genome was 1.23 centimorgan per
megabase (cM/Mb). The average recombination rate for the 63 IBD risk loci
with matching cRM was 1.34 cM/Mb, i.e.less LD than in the rest of the genome.
Regions encompassing eQTL (and hence cRM) may differ from the rest of the
genome with regards to LD. Thus, we further sampled 1,000 sets of 63 loci
centered on cRM (from our list of 9,720) that were matched for size and
chromosomal location with the 63 cRM-matching IBD risk loci. The mean
recombination rate for the cRM-centered genome was 1.43 cM/Mb. The figure
shows the frequency distribution of the corresponding mean cRM/Mb per set
(black), the mean of means of the 1,000 sets of 63 randomly drawn loci (red),
and the mean of the 3 IBD risk loci (blue). The mean of the 63 IBD risk loci did
not differ significantly from the rest of the cRM centered portion of the genome
(two-tailed p-value: 0.46).
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292 6. Supplemental Figure 6
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295  Comparison of the alternative allele frequency for 1,781 variants observed in this
296  study and in 55,860 non-Finnish European samples from the GNMAD study.

297



298
299

300

301

Momozawa et al. Supplemental material

7. Supplementary Figure 7
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QQ-plot for the module-based burden test (A), disease plus age-of-onset-based
burden test (B), and disease plus familiality-based burden test (C). Ranked
log(1/p) values obtained when considering LoF and damaging variants (full
circles), or synonymous variants (empty circles). The circles are labeled in blue
when the best p-value for that gene is obtained with CAST, in red when the best
p-value is obtained with SKAT, or in purple for the module-based test (as some
genes in the module may have their best p-value with CAST and other with
SKAT). The black line corresponds to the median log(1/p) value obtained (for
the corresponding rank) using the same approach on permuted data (LoF and
damaging variants). The grey line marks the upper limit of the 95% confidence
band. The name of the genes/modules exceeding the nominal p-value of 0.05
are given. The inset p-values correspond to the significance of the upwards
shift in log(1/p) values estimated by permutation.
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8. Supplementary Figure 8

=0=TYK2 ==ERAP2 CARDS
12

10

Log(1/p)

0 2 4 6 8 10 12 14 16 18
Fold increase in sample size (wWhen compared to this study)

Present study: 6,600 CD cases and 5,500 controls

Effect of increasing sample size on the log(1/p) values of a one-sided burden
test assuming that the effects observed for TYKZ (blue), ERAPZ (red) and
CARD9 (green) observed in this study are real unbiased. The dotted horizontal
black line corresponds to an hypothetical experiment-wide significance
threshold assuming the realization of 200 independent tests (targeting for
instance 100-200 genes selected on the basis of coincident DAP-EAP patterns).
The plain horizontal black line corresponds to an hypothetical genome-wide
significance threshold assuming the realization of 20,000 independent tests
(targeting all genes). It can be seen that an at least 4-fold increase in sample
size is needed to achieve significance in the first scenario and at least 7-fold
increase in the second scenario.
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9. Supplementary Figure 9
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Proportion of usable probes with cis-eQTL at various levels of FDR in the nine
analyzed cell types.
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10. Supplementary Figure 10
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Graphical illustration of the relationship between rw, rws and 9. The penalty
function applied to rws to generate 9, corresponds to m The graph is

shown for k= 30 and T=0.3, the values used in this study.

The point here is that if two association patterns are “similar” (driven by the same
variants), the correlation (rw in Suppl. Methods) between -log(1/p) values is
expected to be positive. If two association patterns are different (driven by
distinct variants) they may generate strong negative correlations (rw). The first
part of the method aims at weeding out such instances (negative rv). One way to
do this is to choose a simple threshold value for rw. We herein propose an
approach that offers more flexibility: it generates a penalty that increases when
the correlation decreases with an adaptable rate. As shown in Suppl. Fig. 8, the
values of k=30 and T=0.3 essentially correspond to a threshold value of 0.3. As
can also be seen from Suppl. Fig. 8, there is (as expected) a strong linear
relationship with slope 1 between rwand |7,¢| (and hence between ry and |9| for
pairs with ry > 0.3). Because we subsequently use a threshold value || > 0.6, the
choice T has very little impact on the outcome unless one approaches 0.6.



361
362

363
364
365
366
367
368
369
370
371
372
373
374
375

376
377
378
379
380
381
382

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

399

Momozawa et al. Supplemental material Page 23 of 32

11.Supplementary Figure 11
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Schematic representation of the key features of the implemented “burden test”.

The analysis is restricted to rare variants with MAF < 0.005 to ensure that the new
signal is independent of the one that lead to the identification of the corresponding
risk loci by GWAS (based on common and low frequency variants). Variants can
be sorted in (i) singletons (i.e. observed only ones in the analyzed samples), (ii)
perfect (i.e. observed more than ones in the sample but perfectly associated with
disease status), and (iii) other (i.e. observed more than ones in the sample in both
cases and controls).

We test two hypotheses. The first assumes that disruptive variants are either
enriched in cases or in controls as a function of the sign of the correlation between
DAP and EAP (if decreased expression is associated with increased risk, disruptive
“risk” variants are expected to be enriched in cases; if increased expression is
associated with increased risk, disruptive “protective” variants are expected to be
enriched in controls). Thetestisimplemented with CAST and in essence performs
a one-sided test of independence (what is the probability to observe the excess of
disruptive variants in cases (respectively controls) by chance alone?). The second
hypothesis tests whether the distribution of the variants in cases and controls is
characterized by too many variants that tend to be overrepresented either in cases
or in controls. Thus, this hypothesis allows some disruptive variants to increase
risk and others to be protective. This hypothesis does not use information from
singletons. Testing this hypothesis is implemented with SKAT. It can be seen in
simplified form as combining the p-values (from a test of independence) across
variants (without considering the sign of the effect) using for instance Fisher’s
method.
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400 12. Supplementary Figure 12
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404  Distribution of permutation-based -log(p) values obtained for 68 analyzed genes
405  with synonymous variants using CAST (A), and SKAT (B), indicating that CAST is
406  conservative (, while SKAT is too permissive (Ag;c = 1.73). The 68 genes
407  correspond to the 47 genes reported in this study, plus 21 genes sequenced in the
408 same cohort as part of another study.
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