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1  Introduction 

Among a wide range of existing land use change models 

which are employed to analyse and/or predict future land use 

patterns, cellular automata (CA) models have been used 

extensively. CA models address the transitions in space as 

state changes and simulate the state changes through 

immediately neighbouring cells (Wu, 2002). Key challenges 

in CA is calibrating the transition rules of land use change 

probability from one state to another as a function of (i) the 

neighbourhood effects and (ii) a series of controlling factors. 

Logistic regression (logit) has become one of the 

most popular techniques for calibration of CA models. The 

logit method can include geophysical as well as socio-

economic factors. The model’s ability to include as many 

socio-economic factors as necessary allows us to better 

understand human interactions with urban systems. The logit 

method requires less computation resources for calibration. 

Despite these strengths, these calibration methods suffer some 

limitations including autocorrelation. Land use patterns almost 

show potential spatial autocorrelation caused by a number of 

centripetal and centrifugal forces which would bias the results 

of the regression analysis  (Overmars et al., 2003). A common 

approach to minimize the spatial autocorrelation is calibrating 

the model based on a structured or random sample from the 

whole dataset, which will lose certain information (Cammerer 

et al., 2013; Puertas et al., 2014). 

With recent advancements in computer and software 

technologies, researchers have begun to calibrate CA models 

using a wide range of alternative methods including machine 

learning (e.g. Rienow and Goetzke, 2015) and optimization 

techniques such as  genetic algorithm (e.g. Al-Ahmadi et al., 

2009), particle swarm optimization (e.g. Feng et al., 2011), 

and Markov Chain Monte Carlo (e.g. Mustafa et al., 2017). 

The common optimization algorithms that are introduced in 

CA models are related to general three categories: (i) 

evolutionary algorithms, (ii) swarm intelligence algorithms 

and (iii) stochastic optimization algorithms. A widely used 

example of the first category is the genetic algorithm (GA) 

(e.g. Al-Ahmadi et al., 2009; García et al., 2013; Shan et al., 

2008; Yang and Li, 2007) whereas the most popular swarm 

optimization algorithm used in CA urban models is the 

particle swarm optimization (PSO) (e.g. Feng et al., 2011; 

Liao et al., 2014; Masoomi et al., 2013). Other optimization 

algorithms are parallel simulated annealing (PSA) (Al-

Ahmadi et al., 2009) which is classified as a stochastic 

algorithm, and ant colony optimization (Li et al., 2011) which 

is related to swarm algorithms. Despite the potential of 

optimization algorithms, only limited efforts have been made 

to evaluate the performance of such algorithms against each 

other and against typical CA-logit models. Feng et al. (2011) 

compared CA-PSO model with CA-logit and argued that the 

CA-PSO outperformed the CA-logit. Al-Ahmadi et al. (2009) 

implemented CA-GA and CA-PSA and found that the CA-GA 

model produced more accurate and consistent results. 

Previous studies did not analyse the effect of sampling on the 

performance of different optimization algorithms. 

Evaluation of the CA models is another challenge. A 

common method is based on pixel-by-pixel location 

agreement. A pixel-by-pixel agreement cannot discriminate 

between “near-miss” and “far-miss” errors, which limits its 

ability to detect spatial patterns (Mustafa et al., 2014).  

Another method is based on fuzzy set theory. Fuzzy map 

comparison provides a method of dealing and comparing 

maps containing a complex mixture of spatial information 

(Ahmed et al., 2013). It measures similarity of a cell in a value 

between 0 (fully-distinct) and 1 (fully-identical).  

This paper applies three optimization algorithms related to 

three main categories (i) genetic algorithm (GA) as an 
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Abstract 

Spatial cellular automata (CA) model is one of the most common approaches to simulate land use change. Generally, CA estimates the 
transition likelihood from one land use state to another according to local neighbourhood dynamics and global drivers. Logistic regression 

(logit) method is widely used to calibrate CA models. Recently, several optimization algorithms have been introduced to calibrate CA 
models. This study compares the performance of three optimization algorithms: (i) genetic algorithm (GA), (ii) particle swarm optimization 

(PSO), (iii) and Markov Chain Monte Carlo (MCMC). The three algorithms are incorporated into a CA model to simulate urban expansion 

in Wallonia (Belgium). In addition, we compare the three calibration algorithms with the logit method. The results show that all three 
algorithms outperformed the logit method. The results also reveal that the performance of GA is slightly better than PSO and MCMC.  

Keywords: land use change; cellular automata; calibration; genetic algorithm; particle swarm optimization; Markov Chain Monte Carlo. 



AGILE 2018 – Lund, June  12-15, 2018 

 

2 

 

evolutionary algorithm to calibrate CA model, (ii) particle 

swarm optimization (PSO) as a swarm optimization and (iii) 

Markov Chain Monte Carlo (MCMC) which is related to 

stochastic optimization algorithms. The proposed CA model is 

applied to simulate the urban expansion in Wallonia (Southern 

Belgium) from 1990 to 2000 as an example application. The 

model is also calibrated using logit. The simulations of 

different calibrations under the same conditions are compared 

with each other to evaluate the performance of each method. 

The evaluation function is the maximization of accuracy rate 

for newly urban cells between 1990 and 2000. The evaluation 

function is defined as a fuzzy membership function of 

exponential decay with a halving distance of two cells and a 

neighbourhood window of four cells. 
The following sections describe the case study, 

methodology, results, and then provide conclusions as well as 

suggestions for future studies. 

 

2 Case Study: Wallonia, Belgium 

Wallonia is situated in the southern part of Belgium at 49°28' 

to 50°49' N latitudes and 2°50' to 6°28' E longitudes, Figure 1. 

Wallonia is the predominantly French-speaking region 

of Belgium. It accounts for 55% of the territory of 

Belgium with a total area of 16,844 km². It comprises five 

provinces: Hainaut, Liège, Luxembourg, Namur, and Walloon 

Brabant. Wallonia has a pronounced undulating topography. 

The topography goes from flat to hilly with altitude ranges 

from 0 to 693 m above see-level. This means cycling is almost 

non-existent in Wallonia (Dujardin et al., 2012). Major cities 

in Wallonia are characterized by a strong centre–periphery 

structure with well-off households located in the peripheries 

(Verhetsel et al., 2010). Urban sprawl has affected Wallonia 

for decades leading to fragmented and isolated landscapes that 

were developed in space and time (Antrop, 2004). 

The CORINE Land-Cover (CLC) datasets provide a 

detailed inventory of the biophysical land cover in Europe 

using 44 classes. In this case study, the original 44 land-use 

classes have been reclassified into seven aggregate land-use 

classes: Urban lands, Arable lands, Grasslands, Forests, 

Wetlands, Water bodies and Others. 

 

Figure 1: Study Area (Wallonia) 

 

 

3 CA Model  

The model’s space consists of a 2D array of cells of the same 

dimensions and each time-step represents one year. The 

quantity of change during model calibration was constrained 

to the actual quantity of the actual new urban cells between 

1990 and 2000 divided evenly by 10 (the number of years). 

The CA model allocates the required new urban areas based 

on a probability of a cell (i,j) changing its state from non-

urban to urban at time t as:  

 

               (1) 

where 

 

Purb: the urban transition probability of a non-urban cell in 

a certain time step 

 

Pd: the probability based on a number of urbanization 

controlling factors 

 

Pn: the neighbourhood effect calculated by using the CA 

 

con: the constraint conditions of land development. con=0 

if the original cell state in 1990 is water or urban, 

otherwise con=1. 

 

In this study, Pn function is calculated as (Feng et al., 2011; 

Wu, 2002): 

 

   
∑              
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where count(S=urban) is the number of urban cells amongst 

the Moore n×n neighbourhood. In this study, a 3×3 Moore 

neighbourhood is used to consider neighbourhood 

interactions.  

Pd represents an urbanization probability map of non-urban 

lands to convert into urban lands based on a set of 

urbanization controlling factors as 
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where X1… Xn represent the controlling factors behind urban 

expansion and α and β1… βn are the model parameters that 

need to be calibrated. These parameters are calibrated based 

on four methods: (i) logistic regression, (ii) genetic algorithm, 

(iii) particle swarm optimization and (iv) Markov 

Chain Monte Carlo. As stated above, logit suffers from spatial 

autocorrelation that exists in the model input data. We 

calibrate the model using random sampling approach. The 

selection of the appropriate sample is done based on the CA-

logit performance with 100 different random samples. The 

sampling set that produces the best result will be introduced in 

the final calibration phase of all methods. We also run all 

calibration methods using all data without considering 

sampling approach. 

Figure 2 illustrates the urbanization controlling factors 

introduced in this study. All maps were created as raster grids 

with a resolution of 100×100 meters. 
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Figure 2: The urbanization controlling factors 
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3.1 Logistic Regression 

Logit is a popular method for discovering the empirical 

relationships between a discrete dependent variable and a 

number of indented variables (controlling factors). In this 

study, the dependent variable is a binary showing the 

observed changes from non-urban to urban (coded as 1) and 

cells whose status remains non-urban (coded as 0).  

 

3.2 Genetic Algorithm 

GA is an effective optimization algorithm. It has been inspired 

by the mechanisms of evolution and genetics. The algorithm 

generates the initial population (generation) at random. Each 

individual in this population represents a combination of CA 

parameters. For each new generation, it randomly selects 

individuals from the current population to be parents and uses 

them to produce the children for the next generation using 

crossover and mutation operators. Both operators drive the 

population toward an optimal solution over successive 

generations. 

 

3.3 Particle Swarm Optimization 

In a typical particle swarm optimization scenario (PSO), we 

work with a population (swarm) of candidate solutions 

(particles). PSO has been inspired by different patterns in 

artificial life, such as bird flocking and fish schooling. The 

algorithm iteratively moves the particles around, optimizing 

their corresponding quality score.  Such movements are 

guided by each individual particle’s local best position, as 

well as the global best positions so far in the search space. It 

aims at moving the whole swarm eventually towards an 

optimal solution. 
 

The local and global positions are updated according to the 

following equations (Shi and Eberhart, 1998): 

 
1

1 2. . ().( ) . ().( )t t t t t t
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(5) 

 

where  

 

   
 : particle velocity in iteration t 

 

   
 : particle position in iteration t 

 

c1 and c2: constant coefficients to adjust the maximum step 

length of the local best particle and the global (social) 

best particle, respectively. 

 

pid: best position achieved by particle i 

 

pgd: best position achieved by the neighbours of particle i 

 

rand(): random factors in the [0,1] interval 

 

w: inertia weight 

 

 

3.4 Markov Chain Monte Carlo  

MCMC method uses a sampling technique for global 

optimization. At each iteration, the proposed state is accepted 

or rejected based on the ratio of its score to the current score. 

It is mathematically proved that the distribution of the scores 

of a sufficiently large number of samples eventually 

converges to the cost function. We use Metropolis-Hastings 

algorithm (Hastings, 1970; Metropolis et al., 1953), which is 

the most popular algorithm for MCMC. First, the initial state 

  is randomly selected. Then, at each iteration, the next state 

   is randomly selected from the proposal distribution 

       . After that, the proposed state is accepted with 

probability: 

 

           (  
     

    

       

       
) (6) 

 

where      denotes the score of state  . We propose the next 

state    from a uniform distribution, so the acceptance rate is 

simplified as follows: 

 

           (  
     

    
) (7) 

 

If the proposed state is accepted, the current state   is 

replaced by the proposed state   . Starting from 60 different 

initial states, we perform the multiple runs of MCMC 

algorithm, and select the best state    that achieves the best 

score. 

 

For GA and PSO, we set the number of generations at 60 

and the number of individuals in each generation at 100. For 

MCMC, the algorithm starts from 60 different states and each 

state has 100 iterations.  

 

4 Results and Discussion  

Table 1 lists the fuzziness accuracy rate (0 to 1) for each 

calibration method. The results reveal that GA, PSO and 

MCMC outperformed logit method. Interestingly, the 

performance of all optimization algorithms when considering 

all available data (non-sampling approach) is slightly better 

than the performance with sampling. In contrast, logit method 

is worse with non-sampling implying that logit suffers from 

spatial autocorrelation. 

GA produced the highest accurate results. However, the 

performance differences between GA, PSO, and MCMC are 

marginal. Although MCMC is simpler than GA and PSO, it is 

rarely used in the calibration of land use change models. 

Furthermore, since MCMC employs only two procedures, 

randomly proposing new state and setting the acceptance rate, 

it is faster than GA and PSO algorithms.  

 

Table 1: Average Fuzzy Accuracy Rates 

Method Samples Non-samples 

GA 0.3144 0.3167 

PSO 0.3142 0.3147 

MCMC 0.3108 0.3126 

Logit 0.2850 0.2748 
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5 Conclusions  

This paper presented a comparison of four calibration 

methods for cellular automata land use change models. Beside 

logistic regression method, we calibrate the CA model using 

genetic algorithm, particle swarm optimization, and Markov 

Chain Monte Carlo.  

Optimization algorithms allow for automating the 

calibration of the model without losing flexibility and analysis 

capability. As a next step, a more comprehensive comparison 

of different methods should be pushed beyond considering 

only accuracy rate. In addition to the accuracy rate, the 

comparison would include the complexity degree, the 

computation time, and consistency over many runs. 
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