Title: Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating

Affiliation: AA(Akita University, Akita, Japan obrochta@gipc.akita-u.ac.jp), AB(AORI, The University of Tokyo, Kashiwa-Shi, Chiba, Japan yokoyama@aori.u-tokyo.ac.jp), AC(Mount Fuji Research Institute, Fujiyoshida, Japan myoshi@mfri.pref.yamanashi.jp), AD(Mount Fuji Research Institute, Fujiyoshida, Japan s.yamamoto@mfri.pref.yamanashi.jp), AE(AORI, The University of Tokyo, Kashiwa-Shi, Chiba, Japan miyairi@aori.u-tokyo.ac.jp), AF(Atmosphere and Ocean Research Institute University of Tokyo, Tokyo, Japan g.nagano@aori.u-tokyo.ac.jp), AG(Geological Survey of Japan, AIST, Tsukuba, Japan nakamura-a@aist.go.jp), AH(Mount Fuji Research Institute, Fuji Yoshida, Japan kae.tsunematsu@mfri.pref.yamanashi.jp), AI(Unit of Physical and Quaternary Geography, University of Liège, Liège, Belgium laura.lamair@ulg.ac.be), AJ(Unit of Physical and Quaternary Geography, University of Liège, Liège, Belgium aurelia.ferrari@ulg.ac.be), AK(Geological Survey of Belgium, Royal Belgian Institute of Natural Sciences, Brussels, Belgium vheyvaert@naturalsciences.be), AL(Renard Centre of Marine Geology, Ghent University, Ghent, Belgium marc.debatist@ugent.be), AM(GSJ, AIST, Tsukuba, Japan o.fujiwara@aist.go.jp)

Publication: American Geophysical Union, Fall Meeting 2017, abstract #PP53A-1116

Publication Date: 12/2017

Origin: AGU

Keywords: 1115 Radioisotope geochronology, GEOCHRONOLOGY, 1527 Paleomagnetism applied to geologic processes, GEOMAGNETISM AND PALEOMAGNETISM, 1535 Reversals: process, timescale, magnetostratigraphy, GEOMAGNETISM AND PALEOMAGNETISM, 4994 Instruments and techniques, PALEOCEANOGRAPHY

Bibliographic Code: 2017AGUFMPP53A1116O

Abstract

Understanding the eruption history of volcanos located near large population centers is of direct societal relevance. Here we present a 8,000-year lacustrine record that includes previously unreported eruptions of the active Mt. Fuji volcano, which receives approximately 47 million annual visitors with another 40 million living in the adjacent Kanto Plain. A high-fidelity age model is constructed from a number of terrestrial macrofossil and bulk organic radiocarbon measurements and is extremely consistent with the independently determined age of diagnostic tephra layers. In addition to reporting new eruptions, we also present more accurate ages for known eruptions and detect a wider distribution of ejecta for the most
recent summit eruption, that latter of which will alter modeled prevailing wind vector during eruption. Furthermore, closely spaced fall-scoria layers, unlikely to be differentiated as separate events in land-based surveys, will lower the estimated mass of ejecta erupted and in turn reduce calculated magnitude. These results, the first of their kind from a highly populated region, demonstrate the utility of lacustrine sediments as powerful tools for understanding characteristics of volcanic eruptions and will improve disaster mitigation plans for the region.

Bibtex entry for this abstract Preferred format for this abstract (see Preferences)

Add this article to private library Remove from private library

Submit corrections to this record View record in the new ADS

Find Similar Abstracts:

Use: □ Authors
☑ Title
☑ Keywords (in text query field)
☑ Abstract Text

Return: ☑ Query Results
Return 100 items starting with number 1

Database: □ Astronomy
☑ Physics
□ arXiv e-prints

Send Query Reset