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The emerging role of lysine acetylation of non-nuclear proteins
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Abstract Lysine acetylation is a post-translational mod-

ification that critically regulates gene transcription by

targeting histones as well as a variety of transcription

factors in the nucleus. More recent reports have also

demonstrated that numerous proteins located outside the

nucleus are also acetylated and that this modification has

profound consequences on their functions. This review

describes the latest findings on the substrates acetylated

outside the nucleus and on the acetylases and deacetylates

that catalyse these modifications. Protein acetylation is

emerging as a major mechanism by which key proteins are

regulated in many physiological processes such as migra-

tion, metabolism and aging as well as in pathological

circumstances such as cancer and neurodegenerative

disorders.
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Introduction

Post-translational modifications of many if not all proteins

critically regulate their biological functions. It is now well

accepted that these modifications are required to face

challenges and stress from the environment, to trigger a

variety of processes ranging from cell proliferation, dif-

ferentiation, autophagy to apoptosis. These modifications,

when not properly regulated, also contribute to multiple

pathologies such as cancer and auto-immune diseases.

Therefore, several disease-related research programs are

currently ongoing in order to better understand the path-

ways that involve these post-translational modifications

and to subsequently define new therapeutic targets.

Protein phosphorylation is the most widely studied

modification but early evidence suggested that many other

protein modifications such as methylation, ubiquitination,

sumoylation, O-GlcNacylation and lysine acetylation also

occur in vivo. Lysine acetylation, defined as the addition of

an acetyl moiety to the e-amino group of a lysine residue,

has been linked for many years to gene transcription.

Indeed, nuclear core histones were initially identified as

substrates of lysine acetyltransferases (KAT)/lysine deac-

etyltransferases (KDAC) which catalyses the adding or

removal of an acetyl moiety to/from protein substrates in

order to promote or repress gene transcription, respectively

[1, 2]. The nomenclature for these modifying enzymes was

recently updated [3]. Other proteins such as transcription

factors, cytoskeletal proteins and metabolic enzymes were

subsequently identified as substrates of (de)acetylases, and

recent studies dedicated to identifying the so-called

‘‘acetylome’’ demonstrated that hundreds of proteins are

indeed acetylated in vivo [4, 5]. Remarkably, a number of

non-nuclear proteins were found to be acetylated and many

of them are surprisingly located in the mitochondria [4].
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Therefore, these recent studies strongly suggest that the

biological contexts that involve protein acetylation and

their physiological relevance are most likely severely

underestimated today.

This review focuses on the physiological and patho-

logical processes that rely on lysine acetylation, with a

special emphasis on the substrates located outside the

nucleus. We discuss the significant advances that have

recently been made on the identity of the substrates and

highlight the poverty of information available regarding the

identity of the enzymes that catalyse these post-transla-

tional modifications.

Acetylation and deacetylation outside of the nucleus:

who are the actors?

Since histones were identified as first substrates of proteins

that catalyse the removal of an acetyl moiety, these

enzymes were termed histone deacetylases (HDAC) even

though some of them do not actually target histones.

HDACs can be classified into two distinct families. The

‘‘classical’’ family includes 11 members that are structur-

ally related to the yeast Hda1/Rpd3 proteins and require

Zn2? to efficiently promote protein deacetylation [6]. The

second family includes the NAD?-dependent yeast sir2

homologues [7]. Histone deacetylases can be further divi-

ded into four classes based on their phylogenetic

conservation. In this classification, classes I, II (a and b)

and IV are the classical HDAC proteins that include 11

members (HDAC1–11), whereas homologues of yeast sir2,

referred to as ‘‘sirtuins’’ (SIRTs), represent the class III

deacetylases and include 7 members (SIRT1–7).

The subcellular localization of these enzymes supported

the notion that protein deacetylation does not exclusively

occur in the nucleus. Indeed, whereas human SIRT6 and

SIRT7 are nuclear proteins, SIRT3, SIRT4 and SIRT5 are

located in the mitochondria while SIRT1 and SIRT2 can be

found both in the nucleus and in the cytoplasm, in a cell-

and tissue-dependent manner [7]. Similarly, class IIa

members (HDAC4, 5, 7 and 9) shuttle between the nucleus

and the cytoplasm through the association with partners

such as MEF2 and 14-3-3 proteins which promote their

nuclear translocation or their cytoplasmic retention,

respectively [8]. Although HDAC6 has been shown to be

enriched in active but not silent genes [9], this acetylase is

mainly cytoplasmic and promotes the deacetylation of

multiple substrates such as a-tubulin, Hsp90, cortactin and

peroxiredoxins in this cell compartment [10–15]. Surpris-

ingly, very little information is available regarding the

acetylases that promote the post-translational modifications

of these cytoplasmic proteins. Yet, recent reports that we

will now describe strongly indicate that protein acetylation

outside the nucleus play critical roles in multiple processes

ranging from cytoskeleton remodelling and cell migration

to metabolism and aging, and consequently in diseases

such as cancer and neurological disorders.

(De)acetylation in aging and age-related diseases

Caloric restriction has been known for decades to extend

life span, but the molecular mechanisms underlying these

effects were only recently identified and involve protein

deacetylation by sirtuins. This post-translational modifica-

tion is now seen as a major mechanism by which the

activity of multiple substrates is regulated, with key con-

sequences on aging and diseases associated with aging

[16]. Indeed, sirtuins have been defined as major players

linked to longevity and stress tolerance in budding yeast

and other lower eukaryotic organisms [17, 18]. Yeast Sir2

(silent information regulator 2) and orthologs act as anti-

aging genes, and increasing their activity extends life span

in Saccharomyces cerevisiae (yeast), Caenorhabditis ele-

gans (worms) and Drosophila melanogaster (flies) [19–

21]. This key property of sirtuins results from their capacity

to act as NAD?-dependent protein deacetylases, and the

use of the energic intermediate NAD? as co-factor appears

to be crucial for their role in preventing diseases associated

with aging [22, 23]. As a proof for sirtuins acting as key

mediators of the beneficial effects of caloric restriction, the

increased yeast replicative life span seen upon reduction of

glucose is abrogated upon invalidation of the SIR2 gene

[24]. Although this life-extending effect of sirtuins partially

relies on their ability to deacetylate nuclear histones at

various loci including ribosomal DNA, a pathway that

reduces the rate of formation of toxic ribosomal circles

[25], these deacetylases also target a variety of substrates in

the mitochondria which have been strongly linked with

aging and age-related diseases. Aging is at least the result

of oxidation of macromolecules in cells because of the

generation of reactive oxygen species (ROS) by mito-

chondria. SIRT3, a member synthesized by brown adipose

tissue in response to cold, allows reduction of ROS when

overexpressed [26].

The age-dependent atherosclerosis and more specifically

the regulation of lipid and cholesterol metabolism involve

SIRT1. Indeed, whereas this sirtuin regulates the activity of

the nuclear receptor LXR by targeting its deacetylation, a

pathway that promotes the reverse cholesterol transport

[27], a conditional deletion of SIRT1 in mouse endothelial

cells impairs sprouting angiogenesis as well as branch-

ing morphogenesis. Genes involved in blood vessel

development and vascular remodelling are consequently

downregulated (Fig. 1). Moreover, SIRT1 deficiency in

endothelial cells impairs the angiogenic response following
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an ischemic insult, at least in part because of defective

forkhead transcription factor Foxo1 deacetylation [28].

Likewise, endothelial nitric oxide synthase (eNOS) has

also been described as a substrate of SIRT1 (Fig. 1). In this

case, SIRT1 actually promotes endothelium-dependent

vasodilatation by deacetylating eNOS [29].

Whereas the ability of sirtuins to regulate cellular

senescence remains unclear as conflicting reports have

been published on this issue [30–32], recent reports illus-

trated a role for these deacetylases as modulators of

autophagy. When over-expressed, SIRT1 induces basal

levels of autophagy by forming a complex with autophagy

components (Atg5, -7 and -8) whose deacetylations acti-

vate the catabolic process [33]. The relevance of this

mechanism is supported by overlapping phenotypes of

Sirt1- and Atg5-deficient mice as both of them show an

accumulation of damages organelles, disruption of energy

homeostasis and early perinatal mortality [33].

The positive effects of sirtuins on aging define them as

strong targets for therapeutic purposes in neurodegenera-

tive disorders. This was indeed supported by the beneficial

effects of caloric restriction and sirtuin activators such as
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resveratrol in rodent models of neurodegenerative disorders

[21, 34–36]. More specifically, one of the first studies that

identified sirtuin activation as a protective mechanism in

neurodegenerative disorders took advantage of the Walle-

rian degeneration slow (wilds) mouse strain. A transacted

axon is subjected to a self-destructive degeneration process

at its distal portion referred to as ‘‘Wallerian degen-

eration’’. The wilds mouse line shows delayed axonal

degeneration in response to axonal injury due to SIRT1

activation [37]. SIRT1 levels are actually increased as a

protective response to neurodegenerative circumstances

seen in rodent models of Alzheimer disease or amyotrophic

lateral sclerosis [38]. Increased SIRT1 levels are correlated

with a decrease in the acetylation state of p53 and PGC-1a,

two substrates of SIRT1. Additional substrates such as

Ku70, a protein that sequesters the pro-apoptotic Bax

protein away from mitochondria, may also contribute to the

neuroprotective effect of SIRT1 (Fig. 1) [38]. In conclu-

sion, protein acetylation is emerging as a key mechanism

that regulates aging and aging-related diseases, but there

also, a lot of work still has to be done in order to identify

the acetylases specifically involved in these processes.

(De)acetylation and metabolism

The fact that sirtuins require NAD? to promote protein

deacetylation logically suggested a functional link between

sirtuin activity and intracellular energetics. Indeed, acetyl-

CoA and NAD?, two co-substrates for (de)acetylations, are

key indicators of the cellular energy state. Moreover, the

initial link between caloric restriction and sirtuin activation

implied that these deacetylases had to play critical roles in

metabolism. Caloric restriction may have multiple effects

on metabolism, and primary targeted sites are the liver,

pancreas, muscle and adipose tissue. Blood glucose levels

are maintained during starvation at least in part through

hepatic gluconeogenesis, and the sirtuins appear to play

critical roles in this physiological adaptation. In this con-

text, a strong link between sirtuin biology and metabolism

was established by demonstrating that the peroxisome

proliferator-activated receptor gamma coactivator-1a
(PGC-1 a) was deacetylated by SIRT1 [39–41]. This

pathway triggers gluconeogenic gene induction and

increases hepatic glucose output [41]. Moreover, PGC-1 a
deacetylation by SIRT1 stimulates mitochondrial biogen-

esis and induces oxidative phosphorylation gene in muscles

[42]. As a result, this pathway increases exercise tolerance

and thermogenesis, which protects against obesity and

associated metabolic dysfunction such as insulin resistance

[42]. These conclusions were further supported by the

ability of small molecule activators of SIRT1 to improve

symptomatic conditions in diet and genetically induced

obese mice and in a rat model of diabetes [43].

SIRT3 activity has also been linked to metabolism as

this enzyme deacetylates and activates the mitochondria

form of AceCS2, an enzyme that catalyses the formation of

acetyl CoA, an intermediate of the tricarboxylic acid

(TCA) cycle, from acetate [44, 45] (Fig. 2). Therefore,

SIRT3 improves the metabolic use of acetate, a pathway
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that ensures energy production under conditions when ATP

is scarce [44, 45]. Of note, SIRT1 deacetylates and acti-

vates the cytoplasmic AceCS1 to provide acetyl CoA. This

latter molecule will then acts as a source for fatty acid and

cholesterol synthesis [44] (Fig. 2).

The functional link between metabolic pathways and the

sirtuin-dependent deacetylations in the mitochondria

recently got stronger by the demonstration that SIRT5,

which is located in the mitochondrial matrix, deacetylates

and activates carbamoyl phosphate synthetase 1 (CPS1),

the enzyme required for the first step in the urea cycle [46]

(Fig. 2). NAD levels increase in liver mitochondria upon

fasting and this pathway triggers SIRT5-mediated CPS1

deacetylation and subsequent redirection to amino acid

catabolism. Therefore, SIRT5 has been defined as a key

actor for ammonia detoxification and disposal [46].

Sirtuins also regulates some metabolic pathways

through deacetylase-independent functions. Indeed, pan-

creatic insulin secretion and thus serum glucose levels are

also modulated by SIRT4. This mitochondrial enzyme

represses the activity of glutamate dehydrogenase (GDH)

through mono-ADP-ribosylation in pancreatic b cells. As a

result, both ATP production and insulin secretion by b cells

are downregulated in response to amino acids [47]. ADP-

ribosylation is a post-translational modification that

involves a N- or S-glycolidic linkage between a specific

amino acid on the acceptor protein and the ADP-ribose

residue of NAD?. GDH catalyses the conversion of glu-

tamate to the TCA-intermediate a-ketoglutarate and this

reaction ultimately allows the generation of ATP and

stimulates insulin secretion.

These numerous studies strongly indicate that sirtuins,

as actors for the regulation of glucose homeostasis and

adipogenesis, may be elegant targets for treatments of

diabetes and obesity.

(De)acetylation and cell migration

The first experimental link between protein deacetylation

and cell migration came from the identification of HDAC6

as an a tubulin deacetylase [12–14]. These studies dem-

onstrated that HDAC6-overexpressing NIH3T3 cells

moved faster than control NIH3T3 cells in response to

serum and that such process required the deacetylase

activity of HDAC6 [13]. These data suggested that

HDAC6-mediated a tubulin deacetylation regulates

microtubule-dependent cell motility (Fig. 1). However, a

subsequent study suggested that HDAC6-mediated micro-

tubule deacetylation was not sufficient to promote cell

migration [48]. HDAC6 actually translocates to actin-

enriched membrane ruffles in response to growth factor

stimulation and becomes associated with macropinosomes

where this deacetylase targets Hsp90 [11, 48]. This path-

way is required for Rac1 activation, ruffle formation,

macropinocytosis and cell motility, suggesting that the

actin cytoskeleton was the main target of HDAC6 for the

regulation of cell migration, at least in fibroblasts. As far as

cell motility is concerned, Hsp90 is not the only substrate

whose deacetylation is regulated by HDAC6. Indeed, the

F-actin binding protein cortactin was also defined as a

substrate of this cytoplasmic deacetylase (Fig. 1) [12].

Cortactin, a protein that is found at the leading edge of

migrating cells, is deacetylated by HDAC6, a post-trans-

lational modification that triggers its translocation to the

cell periphery and enhances its binding to F-actin [12].

Cortactin is also deacetylated by SIRT1 and an inverse

correlation was found between SIRT1 levels and acetylated

cortactin in breast tissues [49]. All these studies confirmed

the critical role of the actin cytoskeleton in the link

between protein acetylation and cell migration.

Lysine acetylation in the cytoplasm:

which are the enzymes?

Whereas multiple studies identified the enzymes required

for the deacetylation of several cytoplasmic substrates, the

acetylases that target these proteins remained uncharacter-

ized for many years. It is currently unclear why these

acetylases remain unidentified in most cases today. Con-

sidering the large number of acetylated proteins in the

mitochondria for example, it is worth saying that high levels

of acetyl-CoA found in this cell compartment may actually

result in lysine acetylation without the need of any enzyme

to catalyse this modification. Alternatively, several cyto-

plasmic proteins are acetylated by KAT which are also

located in the nucleus. For example, b-catenin is acetylated

by PCAF, a KAT also known to mediate histone acetylation

in the nucleus [50]. This latter study thus demonstrates that

acetylation of non-nuclear proteins does not necessarily

mean that the enzymes involved in these modifications have

to be exclusively located in the cytoplasm. It is also worth

mentioning that cytoplasmic acetylated proteins are not first

modified in the nucleus, as demonstrated for acetylated

a-tubulin which is exclusively cytoplasmic.

Elongator, a mainly cytoplasmic KAT

A recent study dedicated to the elucidation of the roles

played by a KAT, named Elongator, brought new insights on

the mechanisms by which an acetyltransferase is involved in

lysine acetylation in the cytoplasm. Elongator is composed

of six subunits that include ELP1, the scaffold protein, and

ELP3 (also named KAT9 [3]), the catalytic subunit and

Acetylation in the cytoplasm 1259



regulates cell motility, at least by promoting the transcrip-

tional elongation of selected genes coding for proteins

involved in cell migration [51–54]. Histone H3 was the first

substrate of elp3 to be identified in yeast, yet the mainly

cytoplasmic localization of Elongator indicated that

other proteins may be targeted by this complex in this cell

compartment. This hypothesis was validated by the dem-

onstration that ELP1 or ELP3-depleted colon cancer-derived

cells showed decreased levels of acetylated a tubulin [55].

Interestingly, elp1 or elp3-depleted projection neurons also

showed defects in cell migration and branching in the

developing cortex and those defects were also observed upon

expression of a non-acetylable a tubulin mutant in the

developing cortex (Fig. 1) [55]. The acetylation of a tubulin

serves as a recognition signal for molecular motor anchoring

and underlies microtubule-dependent transport of various

proteins and organelles [56, 57]. It is thus tempting to suggest

that part of the microtubule-dependent intracellular transport

may be defective upon Elongator invalidation. Interestingly,

this acetylase complex also regulates cell migration via a

direct interaction with filamin A [58]. The localization of

filamin A in membrane ruffles and the organization of the

actin cytoskeleton were defective in Elongator-deficient

cells [58]. Therefore, these data indicated that Elongator

regulates cell migration by targeting multiple substrates in

distinct cell compartments. Although these studies

undoubtedly brought some insights into the role played by

Elongator, some key questions remained unanswered.

Among them, cell migration is equally defective upon

HDAC6 or Elongator invalidation, yet those complexes have

opposite functions on the levels of acetylated a tubulin.

Those data imply that these complexes may not exclusively

target the same substrates. In other words, the (de)acetylation

of HDAC6 or Elongator-specific substrates may actually

critically regulate cell motility.

(De)acetylation and cancer

Numerous clinical trials that involve HDAC inhibitors

(SAHA, MS-275, CI-994) have been successfully con-

ducted for the treatment of both haematological and solid

tumours [59]. Although initially unexpected because of the

wide role of HDAC proteins in gene regulation, the posi-

tive effects of HDAC inhibitors appears to be specific for

cancerous cells. Indeed, HDAC inhibitors trigger cell cycle

arrest, apoptosis, autophagy, differentiation and also inhibit

metastasis and angiogenesis of cancerous cells through

multiple mechanisms [60]. HDAC inhibitors alter the lev-

els of cell cycle regulatory proteins such as p21WAF1/CIP1

and p27KIP1 and cause Rb hyperphosphorylation [61–67].

They actually trigger cell apoptosis by inducing pro-

apoptotic members such as Bax, Bak, Nova, Bim and Puma

and also by decreasing the expression of anti-apoptotic

proteins such as Bcl-2, Bcl-XL and Mcl-1 [68–72]. As

HDAC inhibitors can also induce TRAIL expression, it is

now accepted that these drugs trigger apoptosis by linking

both death receptor and mitochondrial pathways [70]. In

agreement with a pro-apoptotic role of HDAC inhibitors,

these drugs also activate p53 by promoting its acetylation

on key residues [73]. Importantly, HDAC inhibitors also

downregulate positive regulators of cell proliferation such

as cyclins D1 and D2, c-Myc and c-Src [74–79]. HDAC

inhibitors prevent tumour progression by downregulating

angiogenesis-related gene expression [80–88].

Surprisingly, a small percentage of genes are actually

influenced by HDAC inhibitors [89–91]. This observation

indicates that the mechanisms by which HDAC inhibitors

trigger cell death in cancerous cells most likely do not

exclusively rely on altered gene transcription. This notion

is supported by the ability of HDAC members to target

many additional proteins beside histones and transcription

factors in the nucleus. Numerous cytoplasmic substrates

are indeed targeted by HDAC proteins and the acetylation

level of some of them appears to underlie the beneficial

effects of HDAC inhibitors for the therapy of solid and

haematological cancers.

HDAC6 is probably the best characterized HDAC that

targets a variety of cytoplasmic substrates. a-tubulin,

Hsp90 and cortactin have indeed all been defined as

HDAC6 substrates, and these modifications are relevant in

cancer as they critically regulate actin remodelling,

dynamics of cell adhesion and motility [11–13, 48, 92, 93].

b-catenin is also deacetylated by HDAC6 and this is

required for its nuclear translocation of this substrate

through the EGF-dependent pathway [94]. Interestingly,

HDAC6 expression is induced upon oncogenic Ras trans-

formation, and fibroblasts deficient for this HDAC member

are more resistant to both oncogenic Ras and ErbB2-

mediated cell transformations. Several HDAC6-deficient

cancer cell lines show a reduced anchorage-independent

growth and a decreased ability to form tumours in mice.

HDAC6-deficient mice are more resistant to chemical

carcinogen-induced skin tumours [95]. Therefore, those

data strongly indicate that HDAC6 is a key target that

underlies the anti-tumour effects of HDAC inhibitors

through deacetylation of non-nuclear proteins. Loss or

inhibition of HDAC6 may also interfere with tumour

growth by causing accumulation of toxic and misfolded

proteins. Indeed, as HDAC6 is involved in the clearance of

toxic misfolded protein aggregates through the aggresome-

autophagy pathway, tumour cells that produce excessive

amounts of misfolded proteins may be efficiently treated

with HDAC6 inhibitors [96, 97].

SIRT1 is another deacetylase that critically regulates

tumour development. Indeed, SIRT1 deacetylates b-catenin
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and, in contrast to the modification triggered by HDAC6,

this deacetylation appears to promote cytoplasmic locali-

zation of b-catenin (Fig. 1). As a result, induction of SIRT1

in a b-catenin-driven mouse model of colon cancer reduces

tumour formation [98]. A tumour suppressor function of

SIRT1 is also supported by its high levels of expression in

normal colon mucosa and benign adenomas compared to

lower levels in advanced tumours [99]. Thus, drugs that

activate SIRT1 may be of interest, at least for the treatment

of b-catenin-driven malignancies. Of note, this conclusion

may not apply to all kinds of cancers as another report

concluded that Sirt1 deficiency in mice had no effect on the

incidence of skin papillomas induced by the classical two-

stage carcinogenesis protocol [100].

Conclusions and perspectives

An understanding of the biological relevance of protein

acetylation in health and diseases is emerging, yet we are

only at the beginning of the story. Despite significant

progress, especially in the identity of the acetylated pro-

teins in vivo, key issues remain unanswered. First, we still

have to learn more about the enzymes required for this

post-translational modification. Significant progress has

been recently made on protein deacetylation in the cyto-

plasm by HDACs or sirtuins, but much less is known on the

acetylases involved. Indeed, while it is generally accepted

that acetylases such as p300 or CBP target multiple sub-

strates in the nucleus (histones, transcription factors), the

hundreds of non-nuclear proteins acetylated are targeted by

acetylases whose identity remains unknown in most cases.

Very few acetylases besides ELP3 are actually mainly

localized in the cytoplasm and in the mitochondria, yet it is

assumed that acetylation in those cell compartments

requires these enzymes. Given the unexpectedly high

number of substrates, it is likely that protein acetylation is

as crucial as protein phosphorylation in life. New mice

models where these enzymes are specifically deleted are

clearly required to exhaustively study their roles in biology.

Progress in mice genetics as well as in mass spectrometry-

based proteomic analysis will undoubtedly shed more light

on these important issues. The activity of these acetylases

or deacetylases is also regulated through some post-trans-

lational modifications (‘‘regulation of the regulators’’)

[101]. Here also, key processes were revealed which

demonstrated how complex the network might be for the

regulation of protein acetylation in distinct cell

compartments.

Given the key roles of protein acetylation and deacety-

lation in biology, it is not surprising to see that multiple

clinical trials are currently ongoing in order to develop

therapeutic drugs that specifically target the enzymes

involved in these reactions. The pharmacological modula-

tion of sirtuin activity that was initiated through the use of

resveratrol represents a very promising approach for the

treatment of diverse human diseases such as diet-induced

metabolic and neurodegenerative disorders or tumouri-

genesis. Extending our life span by targeting these enzymes

may also be conceivable today. Future studies dedicated to

the elucidation of sirtuins and HDAC-dependent pathways

and to the extensive identification of their substrates should

undoubtedly help to design very specific drugs for the

treatment of unexpectedly numerous and diverse human

pathologies.
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