Productivity and temperature as drivers of seasonal, spatial and long-term variations of dissolved methane in the Southern Bight of the North Sea

Alberto V. Borges1,*, Willy Champenois1, Mary I. Scranton2, Francis Strobbe3, Thomas Vandenberghe3, Ruth Lagring3, Nathalie Gypens4,

1Université de Liège
2Stony Brook University
3Belgian Marine Data Centre, Royal Belgian Institute of Natural Sciences
4Université Libre de Bruxelles

Abstract

Dissolved CH\textsubscript{4} concentrations in the Belgian coastal zone (North Sea) ranged between 670 nmol L-1 near-shore and 4 nmol L-1 off-shore. Spatial variations of CH\textsubscript{4} were related to sediment organic matter (OM) content and gassy sediments. In near-shore stations with fine sand or muddy sediments, the CH\textsubscript{4} seasonal cycle followed water temperature, suggesting methanogenesis control by temperature in these OM rich sediments. In off-shore stations with permeable sediments, the CH\textsubscript{4} seasonal cycle showed a yearly peak following the Chlorophyll-a spring peak, suggesting that in these OM poor sediments, methanogenesis depended on freshly produced OM delivery. This does not exclude the possibility that some CH\textsubscript{4} might originate from dimethylsulfide (DMS) or dimethylsulfoniopropionate (DMSP) or methylphosphonate transformations in the most off-shore stations. Yet, the average seasonal CH\textsubscript{4} cycle was unrelated to those of DMS(P), very abundant during the Phaeocystis bloom. The annual average CH\textsubscript{4} emission was 126 mmol m-2 yr-1 in the most near-shore stations (~4 km from the coast) and 28 mmol m-2 yr-1 in the most off-shore stations (~23 km from the coast), 1,260 to 280 times higher than the open ocean average value (0.1 mmol m-2 yr-1).

The strong control of CH\textsubscript{4} by sediment OM content and by temperature suggests that marine coastal CH\textsubscript{4} emissions, in particular in shallow areas, should respond to future eutrophication and warming of climate. This is supported by the comparison of CH\textsubscript{4} concentrations at five stations obtained in March 1990 and 2016, showing a decreasing trend consistent with alleviation of eutrophication in the area.