Nephrology Dialysis Transplantation

Abstracts

FP292

MEASUREMENT OF GLOMERULAR FILTRATION RATE BY PLASMA IOHEXOL CLEARANCE WITH DIFFERENT SINGLE-SAMPLE METHODS

Pierre Delanaye 6 , Hans Pottel 5 , Martin Flamant 3 , Emmanuelle Vidal-Petiot 4 , Sandrine Lemoine 2 , Etienne Cavalier 7 , Elke Schaeffner 1 , Natalie Ebert 1 , Laurence Dubourg 2

¹Institute of Public Heath, Charité University Hospital, Berlin, Germany, ²Néphrologie, Dialyse, Hypertension artérielle et Exploration fonctionnelle rénale, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France, ³Department of Renal Physiology, DHU-FIRE, Hôpital Bichat, AP-HP, Inserm U1149, and Paris Diderot University, Paris, France, ⁴Renal Physiology, DHU-FIRE, Hôpital Bichat, AP-HP, Inserm U1149, and Paris Diderot University, Paris, France, ⁵Primary Care and Public Health, KULAK, KU Leuven, Kortrijk, Belgium, ⁶Nephrology Dialysis Transplantation, University of Liège, Belgium and ⁷Clinical Chemistry, University of Liège, CHU sart Tilman, Liège, Belgium

INTRODUCTION AND AIMS: Iohexol plasma clearance is considered as a reference method to measure glomerular filtration rate (GFR). Single-sample (SS) plasma clearance is easy to perform and results are concordant with multiple-sample techniques. However, different mathematical models exist for the determination of SS method. In the current study, we evaluated the concordance between the different models of the SS method

METHODS: We collected data from 5106 plasma clearances (iohexol or ⁵¹Cr-EDTA) applying the SS methods at 240 minutes after iohexol injection. Seven different mathematical models for calculating GFR from SS were compared: Jacobsson, Jacobsson iterative, Groth, Fleming, Russel, Christensen and Tauxe. Concordance between results were considered acceptable if a concordance within 10% of at least 90% was observed. Sub-analyses according to GFR levels, body mass index (BMI) and age were also performed between methods with acceptable concordance (90% within 10%) in the whole cohort

RESULTS: Among the 5106 study participants, mean age was 54 ± 17 years and 42.6% were women. Mean BMI was 26 ± 6 kg/m². Mean GFR obtained by SS using the iterative Jacobsson method was 62 ± 24 mL/min/1.73m². Concordance between SS results were considered as unacceptable only between both Tauxe and Russel and all the others, and between Groth and Fleming (See Table 1). In sub-analyses, some unacceptable concordances between SS were observed, especially in extreme conditions (Table 1).

 $\label{lem:conclusions: We showed good concordance between iohexol plasma clearance obtained with different SS methods. Further studies are still needed to know the best SS method in low GFR ranges.$

	Jacobsson iterative	Jacobsson		Fleming	Russell	Christensen
Jacobsson iterative			[35-40kg/m²] <30mL/min	[30-35kg/m²] [35-40kg/m²] >40kg/m² <30mL/min [30-40mL/min]		[35-40kg/m²] >40kg/m² <30mL/min
Jacobsson	99.7		[80-90y[<18.5 kg/m²]35-40kg/m²] >40kg/m² <30mL/min]30-40mL/min]]35-40kg/m²] >40kg/m² <30mL/min		<18y [18-30, y[[30-40y] [40-50y] <18.5 kg/m ²]35-40kg/m ²] >40kg/m ² <30mL/min]90-130mL/min] >130mL/min
Groth	95	92.5]90-130mL/min] >130mL/min
Fleming	92.8	97.2	84			[80-90y] <18.5 kg/m ² <30mL/min >130mL/min
Russell	32.9	26.7	15.4	62		
	95.9	91	97.6	92.8	55.1	
Tauxe	80.7	74	62.8	83.3	86.9	89.2