Too much Nephrology? The CKD "epidemic" is overstated!

Pierre Delanaye, MD, PhD

Nephrology, Dialysis, Transplantation CHU Sart Tilman University of Liège BELGIUM

• I have no conflict of interest to declare

CKD prevalence is around $\approx 10\%$

11,1% (ở: 10,4% 9: 11,8%) in Mills KT, Kidney Int, 2015, p950 Stage 3-5 : 5,3% 13,4% (ở: 12,8% 9: 14,6%) in Hill NR, PlosOne, 2016, e0158765 Stage 3-5: 8,1%

Stage 3-5= based on eGFR alone ($<60 \text{ mL/min}/173\text{m}^2$)

International guidelines in Nephrology

VOLUME 3 | ISSUE 1 | JANUARY 2013 http://www.kidney-international.org

	GFR categories in CK	D Chronic Kidney Disease
GFR category	GFR (ml/min/1.73 m ²)	Terms
G1	≥90	Normal or high
G2	60-89	Mildly decreased*
G3a	(45-59)	Mildly to moderately decreased
G3b	30-44	Moderately to severely decreased
G4	15-29	Severely decreased
G5	<15	Kidney failure

Abbreviations: CKD, chronic kidney disease; GFR, glomerular filtration rate.

*Relative to young adult level

In the absence of evidence of kidney damage, neither GFR category G1 nor G2 fulfill the criteria for CKD.

In the absence of evidence of kidney damage, neither GFR category G1 nor G2 fulfill the criteria for CKD.

1.4.1: Evaluation of chronicity

- 1.4.1.1: In people with GFR <60 ml/min/1.73 m² (GFR categories G3a-G5) or markers of kidney damage, review past history and previous measurements to determine duration of kidney disease. (*Not Graded*)
 - If duration is >3 months, CKD is confirmed. Follow recommendations for CKD.
 - If duration is not >3 months or unclear, CKD is <u>not</u> confirmed. Patients may have CKD or acute kidney diseases (including AKI) or both and tests should be repeated accordingly.

60 mL/min/1.73 m²

Two topics • Age and CKD definition Chronicity

Justification of this unique cut-off

• Simplicity

- Half of measured GFR in young adults but arbitrary (and maybe not correct)
- Because GFR < 60 mL/min/1.73 m² is associated with a higher mortality risk

How to define a disease?

• as a statistical departure from normality and it must be agecalibrated because of the physiology of human senescence

• as a condition that is associated causally with an increased risk of a disease -defined event or death

How to define a disease?

• as a statistical departure from normality and it must be agecalibrated because of the physiology of human senescence

• as a condition that is associated causally with an increased risk of a disease -defined event or death

Blake GM et al, Int Urol Nephrol, 2013, p1445

Fig. 1. Box plot for mGFR versus age decades for female (filled circles) and male (filled triangles) potential kidney donors (n = 633). A horizontal reference line is drawn at GFR = 107.3 mL/min/1.73 m².

GFR in 633 living kidney donors (Belgium, France)

Pottel H, Clin Kidney J, 2017, p545

FIGURE 2: mGFR percentiles according to age. The solid grey circles are mGFR results and solid grey lines are 2.5th, 50th and 97.5th percentiles for mGFR in the current African population. The solid black circles with error bars are upper and lower reference limits obtained from the meta-analysis study including 633 Caucasian potential living kidney donors.

GFR by iohexol plasma clearance in 237 healthy blood donors (Ivory Coast)

Yayo E, Nephrol Dial Transplant, 2018, in press

- Measured GFR is declining with aging
- ...but few data over 65 years
- Still, there are reasons to think that some healthy subjects over 65 years have measured GFR below 60 mL/min/1.73m²

=>What about estimating GFR?

- Healthy population in the Netherlands
- CKD-EPI equation to estimate GFR
- No diabetes, no hypertension, no specific therapy
- 1663 men 2073 women

Nephrol Dial Transplant (2011) 26: 3176–3181 doi: 10.1093/ndt/gfr003 Advance Access publication 16 February 2011

Introduction of the CKD-EPI equation to estimate glomerular filtration rate in a Caucasian population

Jan A.J.G. van den Brand¹, Gerben A.J. van Boekel¹, Hans L. Willems², Lambertus A.L.M. Kiemeney³, Martin den Heijer^{3,4} and Jack F.M. Wetzels¹

¹Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands, ²Department of Laboratory Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands, ³Department of Epidemiology, Biostatistics and Health Technology Assessment, Radboud University Medical Centre, Nijmegen, The Netherlands and ⁴Department of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands and ⁴Department of Endocrinology, Radboud University Medical Centre, Nijmegen, The Netherlands

eGFR

- Concordant data worldwide
- eGFR is declining with aging
- A significant part of healthy subjects over 65 years have eGFR<60mL/min/1.73m²

How to define a disease?

• as a statistical departure from normality and it must be agecalibrated because of the physiology of human senescence.

• as a condition that is associated causally with an increased risk of a disease -defined event or death

Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis

Caroline S Fox, Kunihiro Matsushita, Mark Woodward, Henk J G Bilo, John Chalmers, Hiddo J Lambers Heerspink, Brian J Lee, Robert M Perkins, Peter Rossing, Toshimi Sairenchi, Marcello Tonelli, Joseph A Vassalotti, Kazumasa Yamagishi, Josef Coresh, Paul E de Jong, Chi-Pang Wen, Robert G Nelson, for the Chronic Kidney Disease Prognosis Consortium

Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without hypertension: a meta-analysis

Bakhtawar K Mahmoodi, Kunihiro Matsushita, Mark Woodward, Peter J Blankestijn, Massimo Cirillo, Takayoshi Ohkubo, Peter Rossing, Mark J Sarnak, Bénédicte Stengel, Kazumasa Yamagishi, Kentaro Yamashita, Luxia Zhang, Josef Coresh, Paul E de Jong, Brad C Astor, for the Chronic Kidney Disease Prognosis Consortium

ONLINE FIRST

Age and Association of Kidney Measures With Mortality and End-stage Renal Disease

BMJ 2013;346:f324 doi: 10.1136/bmj.f324 (Published 29 January 2013)

Page 1 of 14

RESEARCH

Associations of estimated glomerular filtration rate and albuminuria with mortality and renal failure by sex: a meta-analysis

COPEN ACCESS

Measures of chronic kidney disease and risk of incident peripheral artery disease: a collaborative meta-analysis of individual participant data

Kunihiro Matsushita, Shoshana H Ballew, Josef Coresh, Hisatomi Arima, Johan Ärnlöv, Massimo Cirillo, Natalie Ebert, Jade S Hiramoto, Heejin Kimm, Michael G Shlipak, Frank LJ Visseren, Ron T Gansevoort, Csaba P Kovesdy, Varda Shalev, Mark Woodward, Florian Kronenberg, for the Chronic Kidney Disease Prognosis Consortium*

Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data

Kunihiro Matsushita, Josef Coresh, Yingying Sang, John Chalmers, Caroline Fox, Eliseo Guallar, Tazeen Jafar, Simerjot K Jassal, Gijs W D Landman, Paul Muntner, Paul Roderick, Toshimi Sairenchi, Ben Schöttker, Anoop Shankar, Michael Shlipak, Marcello Tonelli, Jonathan Townend, Arjan van Zuilen, Kazumasa Yamagishi, Kentaro Yamashita, Ron Gansevoort, Mark Sarnak, David G Warnock, Mark Woodward, Johan Ärnlöv,

http://www.kidney-international.org

clinical investigation

© 2014 International Society of Nephrology

Relative risks of chronic kidney disease for mortality and end-stage renal disease across races are similar

Chi Pang Wen^{1,2}, Kunihiro Matsushita³, Josef Coresh³, Kunitoshi Iseki⁴, Muhammad Islam⁵, Ronit Katz⁶, William McClellan⁷, Carmen A. Peralta⁸, HaiYan Wang⁹, Dick de Zeeuw¹⁰, Brad C. Astor^{11,12}, Ron T. Gansevoort¹³, Andrew S. Levey¹⁴, Adeera Levin¹⁵ and for the Chronic Kidney Disease Prognosis Consortium

Lower estimated glomerular filtration rate and higher albuminuria are associated with all-cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts

Marije van der Velde¹, Kunihiro Matsushita², Josef Coresh², Brad C. Astor², Mark Woodward³, Andrew S. Levey⁴, Paul E. de Jong¹, Ron T. Gansevoort¹ and the Chronic Kidney Disease Prognosis Consortium

Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts

Ron T. Gansevoort¹, Kunihiro Matsushita², Marije van der Velde¹, Brad C. Astor², Mark Woodward³, Andrew S. Levey⁴, Paul E. de Jong¹, Josef Coresh² and the Chronic Kidney Disease Prognosis Consortium

Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts

Brad C. Astor¹, Kunihiro Matsushita¹, Ron T. Gansevoort², Marije van der Velde², Mark Woodward³, Andrew S. Levey⁴, Paul E. de Jong², Josef Coresh¹ and the Chronic Kidney Disease Prognosis Consortium

Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis

Chronic Kidney Disease Prognosis Consortium*

Lancet 2010; 375: 2073–81

Figure 2: Hazard ratios and 95% CIs for all-cause and cardiovascular mortality according to spline estimated glomerular filtration rate (eGFR) and albumin-to-creatinine ratio (ACR)

Hazard ratios and 95% CIs (shaded areas) according to eGFR (A, C) and ACR (B, D) adjusted for each other, age, sex, ethnic origin, history of cardiovascular disease, systolic blood pressure, diabetes, smoking, and total cholesterol. The reference (diamond) was eGFR 95 mL/min/1-73 m² and ACR 5 mg/g (0-6 mg/mmol), respectively. Circles represent statistically significant and triangles represent not significant. ACR plotted in mg/g. To convert ACR in mg/g to mg/mmol multiply by 0-113. Approximate conversions to mg/mmol are shown in parentheses.

- 105,872 subjects from 14 studies with ACR
- 1,128,310 subjects from 7 studies with dipstick

			Persistent albuminuria categories Description and range				
D	rogno	sis of CKD by GFB	A1	A2	A3		
and Albuminuria Categories: KDIGO 2012				Normal to mildly increased	Moderately increased	Severely increased	
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol	
²)	G1	Normal or high	≥90				
V 1.73m inge	G2	Mildly decreased	60-89				
(ml/mir n and ra	G3a Mildly to moderately decreased		45-59				
egories scriptio	G3b	Moderately to severely decreased	30-44				
GFR cat De:	G4	Severely decreased	15-29				
	G5	Kidney failure	<15				

Figure 9 Prognosis of CKD by GFR and albuminuria category. Green, low risk (if no other markers of kidney disease, no CKD); Yellow, moderately increased risk; Orange, high risk; Red, very high risk. CKD, chronic kidney disease; GFR, glomerular filtration rate; KDIGO, Kidney Disease: Improving Global Outcomes. Modified with permission from Macmillan Publishers Ltd: *Kidney International*. Levey AS, de Jong PE, Coresh J, et al.³⁰ The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int 2011; 80: 17-28; accessed http://www.nature.com/ki/journal/v80/n1/full/ki2010483a.html

There is a discrepancy between

descriptive data that demonstrate a decline in
« normal GFR values » with aging
=> argument for an age-calibrated threshold

predictive data that confirm the choice of the fixed threshold for CKD definition

=> argument for a fixed threshold (60 mL/min)

• A single absolute threshold of eGFR overestimates CK<u>D</u> in the healthy elderly

But...

- What about the prognostic argument?
- Do we have an alternative?
- Is it relevant from an epidemiological point of view?

So...

• A single absolute threshold of eGFR overestimates CK<u>D</u> in the healthy elderly

But...

- What about the prognostic argument?
- Do we have an alternative?
- Is it relevant from an epidemiological point of view?

Back to the « prognostic » argument

ORIGINAL CONTRIBUTION

ONLINE FIRST

Age and Association of Kidney Measures With Mortality and End-stage Renal Disease

Stein I. Hallan, MD, PhD
Kunihiro Matsushita, MD, PhD
Yingying Sang, MS
Bakhtawar K. Mahmoodi, MD, PhD
Corri Black, MBChB, MSc, FFPH
Areef Ishani, MD, MS
Nanne Kleefstra, MD, PhD
David Naimark, MD, MSc, FRCP(C)
Paul Roderick, MD, FRCP
Marcello Tonelli, MD, SM
Jack F. M. Wetzels, MD, PhD
Brad C. Astor, PhD, MPH
Ron T. Gansevoort, MD, PhD
Adeera Levin, MD
Chi-Pang Wen, MD, MPH, DrPH
Josef Coresh, MD, PhD
for the Chronic Kidney Disease
Prognosis Consortium

JAMA. 2012;308(22):2349-2360

N=2,051,044

33 general or high risk cohorts

13 CKD cohorts

Mean follow-up: 5.3 years

- The same GFR reference group is considered for all age
- Reference can however change
- In each age category, we propose to choose as the reference group, the eGFR group was the lowest mortality

Figure 2: Life expectancy, according to chronic kidney disease stages (Canadian data) (A) eGFR stages and (B) albuminuria stages. Data are adjusted per eGFR and albuminuria stage for sex to the WHO world average in 2000–05. eGFR=estimated glomerular filtration rate. RRT=renal replacement therapy. Based on data in references 24 and 25 (appendix pp 1–2).

Gansevoort R et al, Lancet, 2013, p339

RESEARCH ARTICLE

Chronic Kidney Disease in Primary Care: Outcomes after Five Years in a Prospective Cohort Study

Adam Shardlow^{1,2}*, Natasha J. McIntyre¹, Richard J. Fluck¹, Christopher W. McIntyre³, Maarten W. Taal^{1,2}

1 Renal Unit, Royal Derby Hospital, Derby, United Kingdom, 2 Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, The University of Nottingham, Royal Derby Hospital, Derby, United Kingdom, 3 Division of Nephrology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

* adam.shardlow@nhs.net

2016 PLOS Medicine | DOI:10.1371,

- Renal Risk in Derby study: a longitudinal cohort study
- Follow-up (5 years) of patients with confirmed stage 3 CKD (primary care)
- N=1741
- Regression: eGFR>60 mL/min/1.73m² AND no albuminuria
- Progression: 25% decline in GFR, coupled with a worsening of GFR category, or an increase in albuminuria category.

Variable (n)	Total (1,741)
Female Sex (%)	1,052 (60.4)
Age (years)	72.9 ± 9.0
eGFR-CKD-EPI (ml/min/1.73 m ²)	53.5 ± 11.8
eGFR-MDRD (ml/min/1.73 m ²)	52.5 ± 10.4
uACR (mg/mmol)	0.3 (0.0–1.5)

Diabetes (%)	294 (16.9)
CVD (%)	387 (22.2)
Current or Previous Smoker (%)	947 (54.4)
ACE/ARB use (%)	1,123 (64.5)
Weight (kg)	78.2 ± 15.5
BMI (kg/m²)	29.0 ± 5.1
Waist:Hip Ratio	0.91 ± 0.09
SBP (mmHg)	134.0 ± 18.3
DBP (mmHg)	72.8 ± 11.0

□ Lost to Follow-up n = 257 (14·7%) Total Cohort n = 1,741

	I I						
Variable (n)	Total (1,741)	Diabetes (%)	294 (16.9)				
		CVD (%)	387 (22.2)				
Female Sex (%)	1,052 (60.4)	Current or Previous Smo	oker (%) 947 (54.4)				
Age (years)	72.9 ± 9.0	ACE/ARB use (%) 1,123					
eGFR-CKD-EPI (ml/min/1.73 m ²)	53.5 ± 11.8	Weight (kg) 78.2 ±					
eGEB-MDBD (ml/min/1 73 m ²)	525+104	BMI (kg/m ²) 29.0 ±					
	02(00 15)	Waist:Hip Ratio					
uACH (mg/mmol)	0.3 (0.0–1.5)	SBP (mmHg)	134.0 ± 18.				
		DBP (mmHg)	72.8 ± 11.0				
	n=	257 (14·7%)	n = 1,741 Stable CKD n = 593 (34·1%)				

Variable (n)	Total (1,741)	Diabetes (%)	294 (16.9)				
		CVD (%)	387 (22.2)				
Female Sex (%)	1,052 (60.4)	Current or Previous Smoker (%) 947					
Age (years)	72.9 ± 9.0	ACE/ARB use (%) 1,123					
eGFR-CKD-EPI (ml/min/1.73 m ²)	53.5 ± 11.8	Weight (kg)	78.2 ± 15.5				
eGEB_MDBD (ml/min/1 73 m ²)	525+104	BMI (kg/m²)	29.0 ± 5.1				
		Waist:Hip Ratio	0.91 ± 0.09				
uack (mg/mmol)	0.3 (0.0–1.5)	SBP (mmHg)	134.0 ± 18.3				
		DBP (mmHg)	72.8±11.0				
	n	= 257 (14·7%)	n = 1,741				
			Stable CKD n = 593 (34·1%)				
			CKD Remission n = 336 (19·3%)				
		Ind	lependent Predictors:				
		Hig Lov Lov Gra	her eGFR wer Age wer uACR eater Increase of eGFR er 1 year				

«overall age- and sex-standardized mortality rates were similar to general population rates, mortality was higher among participants with stage 3b or stage 4 CKD at baseline."

So...

• A single absolute threshold of eGFR overestimates CK<u>D</u> in the healthy elderly

But...

• What about the prognostic argument?

It can be challenged...

Stage 3A (without other kidney damage) is not CKD in the elderly

- Do we have an alternative?
- Is it relevant from an epidemiological point of view?

So...

• A single absolute threshold of eGFR overestimates CK<u>D</u> in the healthy elderly

But...

- What about the prognostic argument?
- Do we have an alternative?
- Is it relevant from an epidemiological point of view?

Alternative 1

Percentiles (like pediatrics)

- Too complex...(so we assume that adult nephrologists are more stupid than pediatricians)
- ...maybe not with good files and help from labs...

https://www.kuleuven-kulak.be/egfr_calculator/ by Pr Hans Pottel

Patient characteristics

Alternative 2

Stage 3A (without any kidney damage) is not CKD anymore if age > 65 years
Stage 3B and 45 mL/min become the pathological level if age > 65 years

Glassock RJ, Delanaye P, El-Nahas M, JAMA, 2012, p 559

			Persisten Des	t albuminuria cat cription and ran	tegories ge	
P	rogno	eis of CKD by GEP	A1	A2	A3	
and Albuminuria Categories: KDIGO 2012				Normal to mildly increased	Moderately increased	Severely increased
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30 mg/mmol
categories (ml/min/ 1.73 m ²) Description and range	G1	Normal or high	≥90			
	G2	Mildly decreased	60-89			
	G3a	Mildly to moderately decreased	45-59	>65 y ≤65 y		
	G3b	Moderately to severely decreased	30-44			
	G4	Severely decreased	15-29			
GFR	G5	Kidney failure	<15			

Prognosis of CKD by GFR and albuminuria category

Green: low risk (if no other markers of kidney disease, no CKD); Yellow: moderately increased risk; Orange: high risk; Red, very high risk.

Glassock RJ, Delanaye P, El-Nahas M, JAMA, 2012, p 559

So...

• A single absolute threshold of eGFR overestimates CK<u>D</u> in the healthy elderly

But...

- What about the prognostic argument?
- Do we have an alternative?
- Is it relevant from an epidemiological point of view?

Is it relevant or purely semantic?

CKD prevalence: 11.5% CKD prevalence based on eGFR only: 4.8%

				Persiste De	nt albuminuria ca scription and rar	ategories ige	
I	Percent eGI	age of US Population by FR and Albuminuria		A1	A2	A3	
Category: KDIGO 2012 and NHANES 1999-2006			Normal to mildly increased	Moderately increased	Severely increased		
				<30 mg/g <3 mg/mmol	30-300 mg/g 3-30 mg/mmol	>300 mg/g >30mg/mmol	
5	G1	Normal or high	≥90	55.6	1.9	0.4	57.9
dge G2	G2	Mildly decreased			2	0.3	35.4
and ra C3a		Mildly to moderately decreased	45-59	3.6	(.8	0.2	4.6
jories (ription	G3b	Moderately to severely decreased	00-44	1.0	4	0.2	1.6
R categ Desc	G4	Severely decreased	15-29	0.2	0.1	0.1	0.4
GFI	G5 Kidney failure <15		0.0	0.0	0.1	0.1	
				93.2	5.4	1.3	100.0

Prevalence of stage 3 according to age in NHANES study

(and all other studies)

Characteristics of CKD populations

Courtesy by RJ Glassock, Adapted from James MT, et al Lancet 375:1296, 2010

- Stage 3a/A1 is not disease in the elderly
- Stage 3a is the majority of CKD
- Most subjects in stage 3a are older than 65 years
- Most subjects in stage 3a are A1
- Among the 3,6% of « CKD3a », an important proportion is old people without kidney damage

Chronic kidney disease, hypertension, diabetes, and obesity in the adult population of Morocco: how to avoid "over"- and "under"-diagnosis of CKD

Mohammed Benghanem Gharbi^{1,6}, Monique Elseviers^{2,6}, Mohamed Zamd¹, Abdelali Belghiti Alaoui³, Naïma Benahadi³, El Hassane Trabelssi³, Rabia Bayahia⁴, Benyounès Ramdani¹ and Marc E. De Broe^{5,6}

¹Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco; ²Department of Biostatistics, Center for Research and Innovation in Care, University of Antwerp, Antwerp, Belgium; ³Ministry of Health, Rabat, Morocco; ⁴Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco; and ⁵University of Antwerp, Antwerp, Belgium

Kidney Int, 2016, 89, 1363-1371

- Two Moroccan towns
- 26-70y, n=10,524
- Creatinine and dipstick
- Chronicity confirmed at 3 months

Alternative 1

Alternative 2 Examples from Belgium and Italy

Delanaye et al. BMC Nephrology 2013, 14:57 http://www.biomedcentral.com/1471-2369/14/57

RESEARCH ARTICLE

Open Access

Creatinine-or cystatin C-based equations to estimate glomerular filtration in the general population: impact on the epidemiology of chronic kidney disease

Pierre Delanaye^{1*}, Etienne Cavalier², Olivier Moranne³, Laurence Lutteri², Jean-Marie Krzesinski¹ and Olivier Bruyère⁴

Prevalence of CKD in Northeastern Italy: Results of the INCIPE Study and Comparison with NHANES

Giovanni Gambaro,*[†] Tewoldemedhn Yabarek,* Maria Stella Graziani,[‡] Alessandro Gemelli,[§] Cataldo Abaterusso,* Anna Chiara Frigo,^{||} Nicola Marchionna,* Lorenzo Citron,[§] Luciana Bonfante,[§] Francesco Grigoletto,^{||} Salvatore Tata,[§] Pietro Manuel Ferraro,[†] Angelo Legnaro,[§] Gina Meneghel,[¶] Piero Conz,** Paolo Rizzotti,^{‡a} Angela D'Angelo,[§] and Antonio Lupo,* for the INCIPE Study Group

Clin J Am Soc Nephrol 5: 1946-1953, 2010.

CKD screening (bus) on a voluntary basis >50 y n=4189 Mean age:63±7 y Random Selection >40 y n=3870 Mean age:60y

Unpublished data

- If CKD is defined as <u>eGFR<60</u> mL/min/1.73 m², CKD prevalence is <u>9.8%/4,6%</u>
- If CKD is defined as <u>eGFR<60</u> mL/min/1.73 m² for <u>younger than 65 y</u> AND <u>eGFR<45</u> mL/min/1.73 m² for <u>older than 65 y</u>, CKD prevalence is <u>4.4%/1,5%</u>

To Pr Gambaro, Verona, Italy: Grazie Mille !!

So...

• A single absolute threshold of eGFR overestimates CK<u>D</u> in the healthy elderly

But...

- What about the prognostic argument?
- Do we have an alternative?
- Is it relevant from an epidemiological point of view?

The impact on the epidemiology of CKD is high!

Two topics • Age and CKD definition Chronicity

Nephrol Dial Transplant (2015) 30: iv6-iv16 doi: 10.1093/ndt/gfv131

Original Article

Methodology used in studies reporting chronic kidney disease prevalence: a systematic literature review

Katharina Brück¹, Kitty J. Jager¹, Evangelia Dounousi², Alexander Kainz³, Dorothea Nitsch⁴, Johan Ärnlöv⁵, Dietrich Rothenbacher⁶, Gemma Browne⁷, Vincenzo Capuano⁸, Pietro Manuel Ferraro⁹, Jean Ferrieres¹⁰, Giovanni Gambaro⁹, Idris Guessous¹¹, Stein Hallan¹², Mika Kastarinen¹³, Gerjan Navis¹⁴, Alfonso Otero Gonzalez¹⁵, Luigi Palmieri¹⁶, Solfrid Romundstad¹⁷, Belinda Spoto¹⁸, Benedicte Stengel¹⁹, Charles Tomson²⁰, Giovanni Tripepi¹⁸, Henry Völzke²¹, Andrzej Więcek²², Ron Gansevoort²³, Ben Schöttker²⁴, Christoph Wanner²⁵, Jose Vinhas²⁶, Carmine Zoccali¹⁸, Wim Van Biesen²⁷ and Vianda S. Stel¹ on behalf of the European CKD Burden Consortium

Author (Ref.)	Study name	Country	Time period	Number of subjects, N	Age range	Sampling frame	Sample design	Response, %
Aumann et al. [10]	SHIP	Germany	2001-6	2830	25-88	Not specified ^a	Multistage sampling	69
Bongard et al. [11]	MONA LISA	France	2006-7	4727	35-75	Electoral rolls	Age and sex stratified	Not given
Browne et al. [12]	SLAN	Ireland	2007	1098	45+	Other (Geo directory)	Multistage random sampling: by area and region	66
Capuano et al. [13]	VIP	Italy	1998–99 and 2008–9	2400	25-74	Electoral rolls	Age and sex stratified	Not given
Christensson et al. [14]	GAS	Sweden	2001-4	2815	60-93	Census	Stratified, age, sex and urban/rural location	60
Chudek et al. [15]	PolSenior	Poland	2007-11	3793	65+	Not specified ^a	Not specified ^a	32
Cirillo et al. [16]	Gubbio Population Study	Italy	Not specified	4574	18-95	Not specified ^a	Not specified ^a	Not given ^a
Codreanu et al. [17]	Early Detection and Intervention Program for Chronic Renal and Cardiovascular Disease in the Rep Moldova	Moldova	2006–7	973	18-77	Not specified	Not specified	Not given
De Nicola et al. [18]	CARHES	Italy	2008	4077	35-79	Electoral rolls	Age and sex stratified	45
Delanaye et al. [19]		Belgium	2008-9	1992	45-75	Not specified	Voluntary nature	Not given
Donfrancesco et al. [20]	MATISS	Italy	1993-96	2924	20-79	Electoral rolls	Age- and sex-stratified random sample	60
Formiga et al. [21]	Octabaix	Spain	2009	328	85	Not specified ^a	Not specified ^a	Not given
Fraser et al. [22]	HSE	England	2009-10	5799	16+	Other (address list)	Random two-stage sample	Not given ^a
Gambaro et al. [23]	INCIPE	Italy	2006	3629	40+	General practitioner list	Random sample	62
Cianalli at al [24]	InChianti	Tealer	1009 2000	676	2E .	Not en esified	Multistage startified and an equal o	Not given

The chronicity criterion is not applied in all these studies !!

given

given 1 men

women

Otero et al. [35]	EPIRCE	Spain	2004-8	2746	20+	Census	Age-, sex- and region-stratified random sample	43
Pani et al. [36]	SardiNIA study	Italy	2001-	4471	14-102	Not specified ^a	Not specified ^a	56
Pattaro et al. [37]	MICROS	Italy	2002-3	1199	18+	Not specified ^a	Not specified ^a	Not given
Ponte et al. [38]	CoLaus	Switzerland	2003-6	5921	35-75	Population registry	Random sample	41
Redon et al. [39]	PREV-ICTUS	Spain	2005	6419	60+	General practitioner lists	Random sample	72
Robles et al. [40]	HERMEX	Spain	Not specified	2813	25-79	Other (health-care system database)	Age- and sex-stratified random sample	83
Roderick et al. [41]	MRC Older Age Study	UK	1994–99	13 179	75+	General practitioner list	Practices stratified by mortality score and deprivation score	73
Rothenbacher et al. [42]	ActiFE Ulm	Germany	2009-10	1471	65+	Census	Random sample	20
Rutkowski et al. [43]	PolNef	Poland	2004-5	2476	n/a	Other (address list)	Random sample	26
Sahin et al. [44]		Turkey	2005	1079	18-95	Not specified	Age, sex and region stratified	Not given
Schaeffner et al. [45]	BIS	Germany	2011	570	70+	Not specified ^a	Not specified ^a	Not given
Stengel et al. [48]	3C	France	1991-2001	8705	65+	Electoral rolls	Random sample	37
Suleymanlar et al. [49]	CREDIT	Turkey	Not specified	10 056	18+	Not specified	Age, sex and region stratified	Not given
Tavira <i>et al.</i> [50]	RENASTUR	Spain	2010-12	592	55-85	Not specified	Random sample	Not given
Van Pottelbergh et al. [51]	Crystal	Russia	2009	611	65-91	General practitioner list	All registered on list	66
Viktorsdottir et al. [52]	RHS	Iceland	1967-96	19 256	33-85	Not specified	All in birth cohort	Not given
Vinhas et al. [53]	PREVADIAB	Portugal	2008-9	5167	20-79	Other (universal health card)	Age, sex and region stratified	84
Wasen et al. [54]		Finland	1998-99	1246	64-100	Not specified	All residents born ≤1933	83
Wetmore et al. [55]		Iceland	2001-3	1630	18+	Not specified	Random sample	71
Zambon <i>et al.</i> [56]	ProV.A.	Italy	1995–97	3063	65+	Other (health district registries)	Age- and sex-stratified random sample	77 in men 64 in wom
Zhang et al. [57]	ESTHER	Germany	2000-2	9806	50-74	General practitioners	All participants who underwent a genera health check-up	l Not given

North and the state of the stat

ARTICLE IN PRESS

Chronic kidney disease, hypertension, diabetes, and obesity in the adult population of Morocco: how to avoid "over"- and "under"-diagnosis of CKD

Mohammed Benghanem Gharbi^{1,6}, Monique Elseviers^{2,6}, Mohamed Zamd¹, Abdelali Belghiti Alaoui³, Naïma Benahadi³, El Hassane Trabelssi³, Rabia Bayahia⁴, Benyounès Ramdani¹ and Marc E. De Broe^{5,6}

¹Faculty of Medicine and Pharmacy, University Hassan II, Casablanca, Morocco; ²Department of Biostatistics, Center for Research and Innovation in Care, University of Antwerp, Antwerp, Belgium; ³Ministry of Health, Rabat, Morocco; ⁴Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco; and ⁵University of Antwerp, Antwerp, Belgium

Kidney Int, 2016, 89, 1363-1371

- Chronicity confirmed at 3 months in 78.9% of CKD (n=285)
- Stage 3A: 32% were found with eGFR>60 ml/min/1.73m²
- Stage 3B: 7,4% were found with eGFR>60 ml/min/1,73m²

RESEARCH ARTICLE

Chronic Kidney Disease in Primary Care: Outcomes after Five Years in a Prospective Cohort Study

Adam Shardlow^{1,2*}, Natasha J. McIntyre¹, Richard J. Fluck¹, Christopher W. McIntyre³, Maarten W. Taal^{1,2}

1 Renal Unit, Royal Derby Hospital, Derby, United Kingdom, 2 Centre for Kidney Research and Innovation, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, The University of Nottingham, Royal Derby Hospital, Derby, United Kingdom, 3 Division of Nephrology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

* adam.shardlow@nhs.net

Shardlow A et al, Plos Med, 2016

- "Confirmed" was at least 2 previous eGFR results of 30 to 59 ml/min per 1.73 m2 in the course of clinical care
- Then serum creatinine is re-measured at baseline for the study
- => 29% had eGFR>60 mL/min/1.73m²

Other (few) data in brief...

- NHANES III: random sample of 98 patients with an eGFR<60 mL/min/1.73 m² (stage 3A), a second examination (in a median period of only 2 weeks)
- \Rightarrow 23% moved to eGFR>60mL/min/1.73m²
- Tasmania: n=369,098 (retrospective lab's data in 2007): eGFR<60 mL/min/1.73m²: description: 12,1% column 12,1%
 => 60,4% had second test: description: 5,8% column 2,8%
- VA: n=26,080 with two serum creatinine in 2005 available 3-6 months apart first eGFR>60 mL/min/1.73m² => 93% were confirmed first eGFR stage 3 => 20% eGFR>60 mL/min/1.73m²
- Tromsø study: One lab in the city, n=38,241 measurement, n=6,863 in Stage 3A, among them, 5,337 with second creatinine 3 months apart or more

=>40.8% had eGFR>60 mL/min/1.73m²

Coresh J, Am J Kdiney Dis, 2003, p1 Jose MD, Nephrology, 2009, p743 Shahinian VD, AJKD, 2013, p930 Eriksen BO, Kidney Int, 2006, p375

Clin Kidney J, 2017, 10, 370-374

EDITORIAL COMMENT

Epidemiology of chronic kidney disease: think (at least) twice!

Pierre Delanaye¹, Richard J. Glassock² and Marc E. De Broe³

¹Department of Nephrology Dialysis Transplantation, CHU Sart Tilman, University of Liège, Liège, Belgium, ²Department of Medicine, David Geffen School of Medicine at UCLA, Laguna Niguel, CA, USA and ³Laboratory of Pathophysiology, University of Antwerp, Antwerp, Belgium

Correspondence and offprint requests to: Pierre Delanaye; E-mail: pierre_delanaye@yahoo.fr

20 to 40% of stage 3a are not confirmed CKD !!

...also true for albuminuria

Conclusions

- The current prevalence of CKD is overstated by most epidemiological studies
- Methodological reasons
- Absence of CHRONICITY confirmation
- Absence of an age-calibrated definition

=> CKD prevalence is lower (by HALF) than currently stated

As a conclusion...

Too much Nephrology? **The CKD epidemics is overstated**

- The title is a bit misleading
- Even if I consider that CKD epidemics is overstated, I don't say that CKD prevalence is negligible

Epidemiology must help for « Better » nephrology (not always « More ») Focus on hypertension Focus on diabetes Focus on albuminuria Focus on specific patients etc (low birth weight, familial CKD, AKI etc)

Thank you for your attention