1367: COST-EFFECTIVENESS OF ECCO2R IN THE MANAGEMENT OF ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Ethgen, Olivier; Makhija, Dilip; Russell, Stephen; Harenski, Kai; Combes, Alain; Mekontso Dessap, Armand; MORIMONT, Philippe; Quintel, Michael

Critical Care Medicine: January 2018 - Volume 46 - Issue 1 - p 667
doi: 10.1097/01.ccm.0000529370.33243.08
Research Snapshot Theater: Renal

Author Information

1University of Liège, Liège, Belgium, 2Baxter Healthcare, Deerfield, IL, USA, 3Baxter Healthcare, Madrid, Spain, 4Baxter Healthcare, Munich, Germany, 5Hopital pitie-salpetriere, Paris, France, 6University of Paris, Paris, France, 7University of Liège, Liège, Belgium, 8Georg-August- Universitat Gottingen, Goettingen, Germany

Copyright © by 2018 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

1367

COST-EFFECTIVENESS OF ECCO2R IN THE MANAGEMENT OF ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS)

Olivier Ethgen, Dilip Makhija, Stephen Russell, Kai Harenski, Alain Combes, Armand Mekontso Dessap, Philippe Morimont, Michael Quintel

Learning Objectives: Mechanical ventilation (MV) is a cornerstone in the management of ARDS patients. Recent research suggests that lung protective ventilation (LPV) with lower tidal volume (VT) and driving pressure (AP) could improve survival (NHM 2015; 372:747-55). Extra-corpuscular CO2 removal (ECCO2R) enables LPV by allowing lower VT & AP while normalizing patients’ pH and PaCO2 within normal ranges (Critical Care (2016) 20:36). This study evaluates the potential cost-effectiveness of ECCO2R-enabled LPV in France.

Methods: A state-transition model was used to compare the outcomes of ARDS patients’ across 5 ventilation strategies: MV (no ECCO2R at all), LPV (VT 6ml/kg BW and PEEP 25-30cm H2O), ECCO2R for patients with PaCO2> 55 mm Hg and Ultra-LPV.
(Vt 3–4ml/kg PBW, Pplat 20–25cm H2O; ECCO2R for all patients). The model used partitioned survival times across 6 health states: alive & ventilated, alive & weaned from ventilation, deceased. Baseline characteristics, ventilation settings, ventilation duration, survival, ICU and hospital lengths of stay were derived from a large ARDS epidemiology study (JAMA 2016; 315:788-800). Survival benefits associated with lower AP were taken from the analysis of more than 1,000 patients enrolled in 9 randomized trials. Health outcomes were expressed in life years (LYs) and quality-adjusted life years (QALYs) gained. Costs were documented from published literature. For sensitivity analyses, all parameters were individually varied within their 95% CI bounds when available or within a ± 20% range, alternatively.

Results: Both LPV and ULPV dominated MV. MV yielded 7.05 LYs, 2.45 QALYs, and cost €48,127. In comparison, LPV and ECCO2R produced 2.62 (±0.16) and 2.81 (±0.36) QALYs, respectively. LPV and ULPV also cost less than MV, €43,917 (±€2,188) and €46,258 (±€1,869), respectively. Cost savings were mainly due to the shortening of ventilation duration allowed by ECCO2R, leading to shorter ICU and hospital stays. Results were robust to sensitivity analysis.

Conclusions: ECCO2R-enabled LPV strategies might be cost-saving, providing survival benefit and reducing ICU and hospital costs. Additional data from interventional, observational studies are needed to support this model-based analysis.

1. University of Liege, Liege, Belgium. 2. Baxter Healthcare, Deerfield, IL, USA.
3. Hospital Clinic de Barcelona, Spain. 4. Baxter Healthcare, Munich, Germany.
7. McGaw Medical Center of Northwestern University, Chicago, IL.
To help us improve your journal reading experience, this website uses cookies. Learn more about cookies and how to change your settings in our Cookie Policy. You can also read our Privacy Policy.

Got it, thanks!