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Abstract

CUPyDO, a fluid-structure interaction (FSI) tool that couples existing inde-

pendent fluid and solid solvers into a single synchronization and communication

framework based on the Python language is presented. Each coupled solver

has to be wrapped in a Python layer in order to embed their functionalities

(usually written in a compiled language) into a Python object, that is called

and used by the coupler. Thus a staggered strong coupling can be achieved

for time-dependent FSI problems such as aeroelastic flutter, vortex-induced vi-

brations (VIV) or conjugate heat transfer (CHT). The synchronization between

the solvers is performed with the predictive block-Gauss-Seidel algorithm with

dynamic under-relaxation. The tool is capable of treating non-matching meshes

between the fluid and structure domains and is optimized to work in paral-

lel using Message Passing Interface (MPI). The implementation of CUPyDO

is described and its capabilities are demonstrated on typical validation cases.

The open-source code SU2 is used to solve the fluid equations while the solid

equations are solved either by a simple rigid body integrator or by in-house
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linear/nonlinear Finite Element codes (GetDP/Metafor). First, the modularity

of the coupling as well as its ease of use is highlighted and then the accuracy of

the results is demonstrated.

Keywords: Coupling Environment, Python Wrapper, Fluid-Structure

Interaction, Partitioned Coupling, Computational Aeroelasticity, CUPyDO

1. INTRODUCTION

The study of fluid-structure interaction (FSI) problems is an important cen-

ter of interest for researchers and engineers in a significant range of applications

in different fields such as aerospace [1, 2, 3, 4], biomedical/biological [5, 6, 7]

and civil engineering [8], to cite a few. The drastic evolution of the available

computational power allows the use of advanced and complex models for each

type of physics involved. These models are usually based on high-fidelity three-

dimensional frameworks in order to quantify phenomena that low-order models

are not able to reproduce. Such high-fidelity computation of FSI problems is

usually based on one of two possible strategies: the monolithic or the parti-

tioned approach [9, 10]. In the monolithic approach, both the structural and

fluid problems are solved by a single solver and within the same mathemati-

cal framework, where the interfacial conditions are implicit to the procedure.

This requires significant coding efforts and the implementation is usually de-

signed to accommodate a particular case of interest, often leading to a lack of

generality. On the other hand, the partitioned approach couples two different

specialized existing codes that are used to solve separated sub-systems. This

requires an efficient communication and synchronization interface but allows the

intrinsic features of the individual solvers to be exploited. If the implementation

of the coupling interface is flexible enough and compatible with many different

solvers, a wide range of coupled physics and related numerical methods can

be considered for many different applications. In a partitioned approach, we

distinguish two coupling schemes [11]: weak and strong coupling. The weak

coupling scheme requires only one solution of the sub-systems per time step,
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which is the most efficient choice in terms of computational time but could lead

to a time-lagged solution. Also, numerical instabilities may appear for problems

that involve strong added-mass effects [11], i.e. when the fluid and solid densi-

ties are similar and/or the solid is very flexible. If not properly identified, those

numerical instabilities might be erroneously treated as physical instabilities such

as wing flutter. The strong coupling scheme requires solving several times the

sub-systems per time step in order to guarantee the convergence at the interface

and gives the same results as the monolithic approach but with a larger simu-

lation time compared to weak coupling. Strong added-mass effects are usually

better handled but can still lead to a non-convergent iterative process.

An integrated framework to strongly couple two heterogeneous existing fluid

and solid solvers is presented in this paper. It is called CUPyDO and consists

in a Python coupling environment designed to interact with the two solvers

through an API Python wrapped layer. Data exchange and synchronization are

thus implemented in a very intuitive and flexible way in Python, whereas the

computationally intensive routines within each solver are kept in their native

languages (C, C++, etc.). Because the coupled solvers are reduced to black-box

tools by their wrappers, minimal effort is required to achieve compatibility with

the coupler ensuring significant flexibility in solver choice. Other workers in the

field have developed coupling schemes between different solvers; Bungartz et

al. [12] give a list of some current implementations. One of the most standard

tool is the commercial software MpCCI [13], that proposes ready-to-use adapters

to many commercial solvers. The client-server architecture of MpCCI leads to

coupling frameworks of potentially high complexity but limits thus the parallel

scalability of large systems by serializing important coupling tasks. ADVEN-

TURE Coupler [14] is an open-source coupling tool for large-scale problems that

is also based on a client-server architecture. The coupling compatibility is per-

formed by intrusive coupler-specific routines that have to be added in the solver

core code. OpenPALM [15] is another open-source software for massively paral-

lel coupled applications. Functionalities from the coupler have to be explicitly

added in the coupled core codes and the communications between the coupled
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systems rely on the MPI protocole. The preCICE open-source coupling frame-

work [12] is designed to maintain an efficient parallel scalability by avoiding the

use of a server instance. The communication between the coupled codes are still

based on MPI or TCP/IP protocoles and intrusive specific routines need to be

introduced in the coupled core codes from the coupling library.

In this paper, an open-source coupling environment, based on the Python

wrapping methodology, is proposed as an alternative integrated implementation

that does not rely on MPI or TCP/IP protocols for communications between

the coupled modules. In CUPyDO, emphasis is given to the parallel imple-

mentation and to the modularity of the coupling mechanism with no explicit

coupler-specific routines to be introduced into the coupled codes, thus mini-

mizing intrusive code modification. User-friendliness is also ensured by pro-

viding ready-to-use coupling functionalities, such as interpolation methods for

non-matching grids or iterative algorithms, but also by limiting the amount of

actions required by the user to set and launch a coupled simulation of low com-

plexity. Although the coupling mechanism of CUPyDO is demonstrated here on

fluid-structure interaction problems, such as flutter, vortex-induced vibrations

and steady conjugate heat transfer, the infrastructure is designed in a general

way to allow an easy extension to many other multi-physics problems.

The paper is organized as follows. Section 2 is dedicated to describing the

governing equations of the coupled problem. Fluid and solid equations as well

as the interface conditions are introduced. The different solvers used to solve

FSI problems are also presented. The implementation of CUPyDO is then

detailed in Section 3. Particular attention is paid on the solvers interfacing

mechanism, the way the communication with the solvers is performed and the

parallel implementation. In Section 4 several FSI test cases are reproduced

using different coupled solvers and results are presented in order to show the

accuracy and the flexibility of the coupling tool. Finally, Section 5 summarizes

the main concepts and results, and suggests further steps for future work.
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2. GOVERNING EQUATIONS OF THE COUPLED PROBLEM

This section describes the governing equations and the numerical implemen-

tations used in this paper for both the fluid and solid parts of the coupled

problem. The fluid equations, in an Arbitrary Lagrangian-Eulerian (ALE) for-

mulation, are solved in a moving and conforming fluid domain Ωf that shares

a common boundary Γ with the solid domain Ωs, in which the solid equations

are solved in a Lagrangian formulation. In addition to intrinsic boundary con-

ditions for each of the disciplines, coupling conditions on the displacements, the

loads, the temperatures and the heat fluxes across the common boundary Γ are

required to achieve a strong coupling scheme.

2.1. Fluid mechanics

The dynamic behavior of a compressible Newtonian fluid is predicted by

solving the Navier-Stokes or Euler equations. The conservation of mass, mo-

mentum and energy in Ωf can be expressed as [16]

∂U

∂t
+∇ · F c −∇ · F v = Q in Ωf × [0, t] , (1)

where the conservative variables are given by U = [ρ, ρv, ρE]
T

. The advective

and diffusive fluxes are given by

F c =


ρv

ρv ⊗ v + pI

ρEv + pv

 , F v =


·

τ

τ · v + µ∗totcp∇T

 , (2)

and Q is a source term. In these expressions ρ is the fluid density, v the velocity

field, E the total energy per unit mass, p the static pressure, cp the specific heat

capacity at constant pressure, and T the temperature. For a Newtonian fluid,

the viscous stress tensor is given by

τ = µtot

(
∇v +∇vT − 2

3
I(∇ · v)

)
, (3)

and the system is closed with state equations and boundary conditions. Note

that the Euler equations are recovered by discarding the viscous terms.
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Viscous turbulent flows are modelled using the Reynolds-Averaged Navier-

Stokes equations for which an additional eddy viscosity is calculated by suitable

turbulence models such as the Shear Stress Transport k-ω [17] or the Spalart-

Allmaras (SA) [18] model. The contribution of the turbulent viscosity to the

viscous terms is given by

µtot = µd + µt ,

µ∗tot =
µd

Prd
+

µt

Prt
,

(4)

where µ and Pr are the viscosity and Prandtl number, respectively. The subscript

“d” stands for dynamic and expresses intrinsic properties of the fluid, whereas

the subscript “t” expresses quantities coming from turbulence modelling. The

contribution of the turbulent quantities are removed for laminar flow computa-

tions.

Equations (1)-(2) are written for a purely Eulerian formulation and do not

account for any motion of the computational domain that may appear in the con-

text of fluid-structure interaction problems. The Arbitrary Lagrangian-Eulerian

formulation [19] takes into account the motion of Ωf by adding its contribution

to the advective fluxes in (2):

F c =


ρ(v − vΩ)

ρv ⊗ (v − vΩ) + pI

ρE(v − vΩ) + pv

 , (5)

where vΩ is the local velocity field of the moving computational domain. Purely

Eulerian or purely Lagrangian formulations can be recovered by setting vΩ = 0

or vΩ = v, respectively.

The open-source CFD code SU2 [16, 20, 21, 22, 23] is used to solve the

fluid part of the coupled problem in ALE. The governing equations are spatially

discretized using the Finite Volume Method on a dual-grid using a vertex-based

approach so that the nodes of the primal grid represent the centers of the control

volumes. Temporal discretization is achieved through a dual time-stepping [24]

strategy, where each physical time step is transformed into a steady problem

for which steady state acceleration techniques can be used. The grid motion
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is considered as a part of the fluid problem. It is usually computed by one

of three approaches: the spring analogy where the mesh edges are replaced by

springs [25, 26], the solution of a Laplace equation [27] or the solution of a

pseudo-elastic solid problem. In SU2, the grid deformation is computed at each

time step by a steady pseudo-elastic solid problem where the mesh is casted as

a deformable solid, and whose boundary conditions correspond to the motion

of the wetted solid surface. The governing equation for the displacement of the

mesh nodes dΩ is based on a finite element approach and given by:

KΩdΩ = fΩ , (6)

where KΩ is a fictitious stiffness matrix and fΩ a fictitious force to enforce the

boundary motion. A variable Young’s modulus is defined in order to control

the mesh quality in specific regions. Typically, high stiffness is required for

cells with a large aspect ratio in wall boundary layers in order to minimize

their deformation. Lower stiffness is used for larger cells in the farfield, where

they can withstand larger deformations. The grid velocities are then computed

using a consistent finite difference scheme from the positions of the mesh nodes

stored at previous time steps. The Geometric Conservation Law (GCL) [28],

that has to be satisfied for unsteady flows on moving meshes computed with

the ALE formulation, is numerically implemented in SU2 as part of the dual

time-stepping procedure [22, 29]. Although only the SU2 solver is used, another

fluid solver based on the PFEM formulation [30, 31] has recently been coupled

with CUPyDO but no application involving this coupling are treated in this

paper.

2.2. Solid mechanics

The dynamic behavior of a deformable solid results from the balance between

inertial, internal and external forces. The equilibrium equation in Ωs is given

by

ρ
∂2d

∂t2
−∇ · σ = f in Ωs × [0, t] , (7)

where ρ, d, σ and f are the solid density, the displacement vector, the Cauchy

stress tensor and the body forces, respectively. The temperature field within a
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solid is obtained by solving the linear heat equation in Ωs:

ρcp
∂T

∂t
−∇ · (λ∇T ) = Qv in Ωs × [0, t] , (8)

where λ and Qv are the thermal conductivity and a possible volume heat source,

respectively. Equations (7) and (8) are coupled by considering the decompo-

sition of the total deformation between a mechanical and a thermal part, the

latter being dependent on the thermal field. Plastic deformations and friction

forces during contacts may also produce heat sources in Equation (8).

The in-house nonlinear Finite Element code Metafor [32, 33, 34, 35, 36,

37] is one of the solvers used to compute the structural part of the coupled

problem. The solver is designed to simulate large structural deformations in a

Lagrangian formulation by expressing the principle of virtual work (PVW) on

the deformed configuration. A particular feature of Metafor is also the large

range of nonlinear material laws that can be used (elasticity, elasto-plasticity or

visco-elasto-plasticity, etc.). For each time increment, the equations of motion

are solved using a Newton-Raphson approach:

Md̈ + Kt(d
k)∆dk = fext − fint(d

k) , (9)

dk+1 = dk + ∆dk .

In this system M is the mass matrix, fext is the vector of external forces, fint

is the vector of internal forces accounting for internal stresses and Kt is the

tangent stiffness matrix being defined as the derivative of fint with respect to d.

Time discretization typically uses the Generalized-α method but a quasi-static

integration is also available when inertia terms are negligible. The thermo-

mechanical coupling is performed by an explicit staggered integration scheme

where the thermal part is solved after the mechanical part on each time step. Re-

evaluation of the internal stresses after the thermal step is possible for problems

that are highly driven by thermal effects.

The structural part of the problem is also solved using the open-source code

GetDP [38, 39] that is a free linear Finite Element software and a general en-

vironment for the treatment of discrete problems. In GetDP, Equation (7) can
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only be treated as a linear problem involving small deformations/displacements

and linear elastic materials. Thus the discretized equations for the structural

motion take the standard linear form:

Md̈ + Kd = fext , (10)

where K is the constant stiffness matrix of the system. Time integration is

performed using the Newmark method.

Finally, simpler coupled fluid-structure problems involve the motion of non-

deformable solids for which the dynamics is constrained using linear stiffness and

damping. Such a model is implemented in an in-house rigid body integrator code

also based on the Generalized-α method for time integration.

2.3. Coupling conditions

The following coupling formulation expresses how the fluid (subscript “f”)

and solid (subscript “s”) domains are coupled at their common interface Γ

through continuity boundary conditions on the displacement dΓ and the load

tΓ,

dΓ
f = dΓ

s ,

tΓ
f = −tΓ

s ,
(11)

where the load on the fluid side is given by tf = −pnf +τnf , with p the pressure

and τ the viscous stress, and the load on the solid side by ts = σns. The

normal unit vectors nf and ns are both pointing outwards from their respective

domains. When thermal coupling is taken into account, additional continuity

relations on the temperatures and heat fluxes are considered:

TΓ
f = TΓ

s ,

(λf∇Tf)
Γ

= (λs∇Ts)
Γ
,

(12)

where λ is the thermal conductivity.

The coupled problem can be solved using a Dirichlet-Neumann approach [40],

as illustrated below for mechanical coupling; the technique can be easily exten-

ded to thermal coupling. Introducing a Dirichlet nonlinear operator F that
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computes the fluid loads from a given fluid interface displacement,

tΓ
f = F(dΓ

f ) , (13)

and a Neumann nonlinear operator S that computes the solid interface displa-

cement as a function of the solid loads,

dΓ
s = S(tΓ

s ) , (14)

Equation (11) can be formulated as a fixed-point problem [41]:

dΓ = S
(
−F(dΓ)

)
, (15)

where dΓ is the displacement common to both the solid and fluid interfaces.

Section 3 presents the flexible implementation of CUPyDO that solves this

fixed-point problem by considering F and S as black-box tools representing

generic fluid and solid solvers. The state variables of each solver depend on

its intrinsic boundary conditions in addition to the conditions imposed at the

coupling interface.

Finally, the mesh within the fluid domain must be adapted to accommodate

the deformation/displacement of the solid. The mesh morphing used with the

ALE formulation can be expressed as

(xΩ
f ,v

Ω
f ) =M(dΓ

f ) , (16)

where xΩ
f and vΩ

f are the position and velocity of the mesh points, respectively,

and M a mesh deformation operator. The combination of the F , S and M

operators may be referred to as a three-field problem [42]. In this paper, the

mesh morphing step is considered as a fluid solver task so that this procedure

is implicitly included in Equation (15).

3. IMPLEMENTATION OF THE COUPLING ENVIRONMENT

The implementation of the computational tool CUPyDO designed to solve

the fixed-point equation (15) using a partitioned approach is described hereafter.

CUPyDO uses the Python language in order to interface independent solvers,
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usually written in a compiled language, in one single and integrated framework

such that the solvers can be intuitively synchronized and data can be exchanged

between each other. The coupler provides a ready-to-use coupling algorithm

as well as interpolation capabilities for non-matching fluid-structure interface

meshes. Parallel functionalities are also available, based on communication

(collective or point-to-point) between the processes of each solver involved in

the computation. Python bindings for the Message Passing Interface (MPI)

protocol as well as Python bindings for the PETSc library, used for all parallel

linear algebra operations mainly required for the mesh interpolation step, are

available. Point searches and filtering are performed using binary trees for

efficient computation of nearest neighbors during the mesh mapping.

3.1. Coupling methodology and Python wrapping

In order to ensure the highest level of flexibility, the coupling of the solvers is

based on an abstracted black-box approach that is achieved through a modular

and high-level implementation of the coupling environment using the Python

programming language. Modules and functionalities of the coupled solvers are

wrapped in a Python layer that behaves as a driving and communicating channel

for CUPyDO. The wrapping procedure is easily performed using the Simplified

Wrapper and Interface Generator (SWIG) tool [43]. SWIG is able to interface

any function or object defined in the core code of the solvers with Python by

performing an additional but not intrusive compilation step. The generated

Python wrapper plays the role of a scripting API without using brute code

translation nor interfering with the libraries and executables created during the

basic compilation. A schematic example is proposed below based on C++,

which is the language used by the fluid and solid solvers involved in this paper.

However, the procedure can be extended to any compiled language, including

the widely used Fortran language. Considering the following C++ code defining

a simple object:

1 // File: myobject.h

2 //C++ code for the definition of MyObject class

3 #pragma once

4
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5 #include <string >

6 //If required , headers from the core code can be used

7 #include "corecode.h"

8
9 class MyObject{

10 double alpha;

11 std:: string tag;

12 public:

13 MyObject(std:: string const& val_tag);

14 ~MyObject ();

15 void set_alpha(double val_alpha);

16 double get_alpha () const;

17 void run();

18 };

and wrapping this code using SWIG will create a Python module, e.g. MyMo-

dule, that could be used with the following code:

1 #Python code that uses the wrapper of MyObject

2 import MyModule

3
4 pyobject = MyModule.MyObject("Put a tag here")

5 pyobject.set_alpha (5.0)

6 data = pyobject.get_alpha ()

7 pyobject.run()

This methodology is the basic principle used by the coupler CUPyDO to

synchronize the sub-systems and perform communications. For data exchange

and to call the required functionalities, CUPyDO directly interacts with the

solvers through their wrappers as if they were simple Python objects. These

communications do not involve any file I/O. The wrapped functionalities of each

solver can thus be easily and intuitively managed in Python while the critical

and computationally intensive calculations are performed by the native solvers

under their own language. Particular attention may be paid to the fact that the

solvers are not driven through basic OS system calls. This allows the coupled

simulation to avoid redundant and time-consuming pre-processing operations,

such as mesh construction and configuration reading, at each solver call.

Another example of the wrapping process and the interaction between the

solvers and the coupling environment is given in Figure 1 with a broader point of

view on the procedure that shows all the steps from the core code to a simplified

generic Python coupling environment by including the SWIG compilation and

the Python wrapper generation.
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Core code (C++)

Py wrapper
FluidSolver.py

SWIG

Fluid solver

#CouplingEnvironment.py

FluidSolverimport
SolidSolverimport

FluidSolver.run()
data = FluidSolver.getData()
SolidSolver.setData(data)
SolidSolver.run()
#etc

Core code (C++)

Py wrapper
SolidSolver.py

SWIG

Solid solver

Figure 1: Schematic illustration of a coupling environment and its interaction with the re-
spective fluid and solid Python wrappers.

This way of using a Python framework as a coupling environment allows the

users and the developers to reach the largest level of flexibility for performing top

level tasks such as managing the coupled solvers and communicating the data.

First, those data can be expressed under friendly Python-oriented formats such

as lists or dictionaries, or with numpy [44] arrays for larger data sets on which

computational operations have to be performed. SWIG allows those Python

types to be interfaced with classical and efficient static C/C++ arrays (pointers)

or C++ std::vector, again taking C/C++ as an example. Secondly, using a

Python wrapping methodology is less intrusive than compiling the coupled code

with an external library or an API adapter coming from the coupler. Thirdly, the

Python wrapper can be generated as a generic interfacing layer without being

restricted to FSI coupling purposes. Finally, the coupling with commercial codes

is technically conceivable since several of them, such as Abaqus [45], are already

designed with a Python interface.

3.2. Overall coupling architecture

The coupling Python environment CUPyDO is an object-oriented code whose

architecture is summarized in Figure 2 where the main classes are represented

with white boxes. The framework is divided into three distinct layers: Utilitiy

(U), Core (C) and Interface (I). The Utility layer defines common functionali-
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ties such as MPI communication functions based on the mpi4py [46] wrapping

module. The Interface data class is designed to handle in parallel the data

that have to be exchanged at the fluid-structure interface between the solvers.

Equivalently, the Interface matrix class is used to define and construct in

parallel the interpolation matrix used for the mapping of non-matching meshes

(Section 3.5). Those classes are derived from the petsc4py [47] wrapping mo-

dule for the PETSc library so that they can be used in every parallel algebraic

operation such as matrix(data)-data (scalar) products or matrix-data linear

systems. In this case, the Linear solver class, which is an interface to the

Krylov-type iterative solvers from PETSc, is used.

MPI functions

Fluid solver

Interface data Interface matrix Linear solver

petsc4py/scipympi4py

Manager

Algorithm

Interpolator

Generic fluid Generic solid

Fluid solver
interface

Solid solver

Solid solver
interface

U

I

C

Figure 2: Overview of the implemented architecture of CUPyDO.

The Core layer is the central part of the coupling environment where the

main classes are defined according to different tasks such as the management

of the MPI partitioning and the communication network, the interpolation of

the fluid-structure interface meshes, the coupling algorithm and the interfacing

with the solvers. The Manager class is the first class to be instantiated and

is designed to build the network describing the MPI partitioning of each sol-

ver. For example, this will identify the processes on which the fluid and/or
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solid solvers are running and, among all those processes, it will distinguish the

subset of processes that effectively own fluid-structure interface nodes. Storing

the number of interface nodes on each process and identifying the halo nodes

(i.e. nodes that support the communication between the MPI partitions of one

solver) are also important tasks dedicated to the Manager. The Interpolator

uses the information built by the Manager to construct the non-matching mesh

interpolant that will be called each time the solvers have to exchange their data

from one grid to the other. The coupled solvers are represented in the Core

layer by Generic fluid/solid classes (one fluid and one solid). These are

almost pure virtual classes whose purpose is to ensure the flexibility and the

compatibility between the solvers and the single coupling environment. Finally,

the Algorithm class is the central part of the Core layer where the coupling

algorithm (see next section) is actually implemented. The other classes are sy-

nchronized inside the Algorithm in order to perform all the coupling tasks such

as communication, interpolation, and sub-system computation.

The Interface layer is an important part of the coupling environment since

it ensures the flexibility of the coupling and the compatibility between the sol-

vers and the coupling environment. It is composed of child interfacing classes

(red boxes in Figure 2) that are directly derived from the generic classes of

the Core layer. First, this inheritance ensures the compatibility between any

coupled solver and the central Algorithm class. Then the interfacing classes

are overloaded with the particular wrapper coming from each coupled solver so

that one interfacing class (red box) is required per coupled solver. The inter-

facing class plays the role of a plugin layer and thus ensures the flexibility of

the coupling. Consequently, the individual Python wrappers of the solvers do

not have to be designed while seeking a deep compatibility with the coupling

environment. Also, modifying the coupling environment, e.g. for maintenance

or improvements, does not need to affect the individual Python wrappers and,

reversely, any deep change in the core code of the coupled solvers has no impact

on the central coupler. Templates for interfacing classes are provided by CU-

PyDO to users wishing to couple their solvers providing a Python wrapper can
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be generated. Users then have the possibility to overload the provided templates

with the wrapped features of their solvers in order to ensure compatibility with

the coupler.

This architecture allows the user to launch the coupled simulations with a

very simple Python script and a minimal amount of code, as illustrated by the

code below:

1 #Schematic launching script for a coupled simulation with CUPyDO

2 import cupydo

3
4 args[’fluid’] = list()

5 args[’solid’] = list()

6 args[’man’] = list()

7 args[’int’] = list()

8 args[’alg’] = list()

9
10 # Initialization of fluid solver

11 import fluidSolverInterface

12 fluidSolver = fuidSolverInterface.FluidSolverConstructor(args[’

fluid’])

13
14 # Initialization of solid solver

15 import solidSolverInterface

16 solidSolver = solidSolverInterface.SolidSolverConstructor(args[’

solid’])

17
18 # Initialization of manager

19 manager = cupydo.Manager(fluidSolver ,solidSolver ,args[’man’])

20
21 # Initialization of interpolator

22 interpolator = cupydo.Interpolator(manager ,fluidSolver ,

solidSolver , args[’int’])

23
24 # Initialization of algortihm

25 algorithm = cupydo.Algorithm(manager ,fluidSolver ,solidSolver ,

interpolator ,args[’alg’])

26
27 # Run the coupled simulation

28 algorithm.run()

The fluid and solid solvers are first instantiated with their own parameters,

e.g. configuration and mesh files, followed by the manager, interpolator and

algorithm, in this order to respect the dependencies. The coupled computation

is then launched by calling the run method of the algorithm class.

3.3. Coupling algorithm

The coupling environment of CUPyDO for solving the FSI problem, repre-

sented by Equation (15), is implemented using a partitioned framework. It is
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based on a block-Gauss-Seidel (BGS) algorithm [41, 48], that synchronizes the

solvers in a strong coupling scheme. After one fluid computation, the loads are

transferred to the structural part which is also solved in order to calculate the

solid displacements that are defined as new fluid boundary conditions for the

next coupling iteration. The coupling conditions on the fluid-structure inter-

face at each time step (for time-marched computations) are met by iterating

between the fluid (operator F) and solid (operator S) computations and by

exchanging their boundary conditions. The same procedure can be applied for

thermal coupling by exchanging temperatures and heat fluxes. These iterati-

ons are repeated until a convergence criterion, based on the Euclidean norm of

the difference in the structural displacements (or temperatures and heat fluxes)

between two successive BGS iterations (index j),

||rΓ
j || = ||d̃Γ

j − dΓ
j−1|| < ε , (17)

is met. In Equation (17), ε is a case-dependent dimensional tolerance that is

set by the user, d̃Γ
j is the computed displacement by the solid solver at the

current BGS iteration and dΓ
j−1 is the relaxed displacement at the previous

BGS iteration.

For cases where the fluid density is close to the structural density, strong

interactions between the fluid and solid are expected (added-mass effects). This

leads to a slower convergence of the BGS coupling that can even diverge in the

most severe cases and an under-relaxation on the computed structural displa-

cement can be applied to stabilize the coupling:

dΓ
j = dΓ

j−1 + ωjr
Γ
j , (18)

with ω < 1. Static (constant ω) or dynamic relaxation are both available. In

the dynamic case, Aitken’s formulation [41] is used to update the relaxation

parameter at each coupling iteration:

ωj = −ωj−1

(rΓ
j−1)T · (rΓ

j − rΓ
j−1)

||rΓ
j − rΓ

j−1||2
. (19)

For time-marched solutions, Aitken’s formula cannot be directly applied at the

first BGS iteration. The last calculated ω value at the previous time step is
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thus used as initial value for the first BGS iteration. This value can be limited

by an upper or lower user-defined boundary. The choice of an upper bound is

more conservative from a stability point of view but can lead to a higher number

of coupling iterations and thus slower convergence of the iterative procedure.

The convergence of the BGS coupling algorithm at each time step can also be

improved by using a predictor [49] on the solid displacements at the beginning

of a time step i, before the first fluid computation:

dΓ
i = dΓ

i−1 + α0 ∆t ḋΓ
i−1 + α1 ∆t (ḋΓ

i−1 − ḋΓ
i−2) , (20)

in which α0 = 1 and α1 = 0.5 for a second-order predictor. The predicted value

is then communicated to the fluid solver as an initial guess of the fluid-structure

interface position. The overall time-dependent coupling algorithm is illustrated

in Figure 3. Note that an explicit (weak) coupling can be achieved if only one

coupling iteration is performed at each time step.

In order to track the motion of the fluid-structure interface, the deformation

of the fluid volume mesh is usually chosen over a complete and costly remeshing.

Deforming the grid also allows us to conserve its topology. This mesh morphing

task is a major step in the coupling algorithm, especially for large structural

deformations where low quality fluid cells may appear leading to a low quality

fluid solution or even the divergence of the computation. In this architecture,

the fluid volume mesh deformation step is considered as an intrinsic feature of

the coupled fluid solver in line with its own ALE implementation (as described

in Section 2.1). Since it is expected that the fluid part of the problem can deform

its own volume mesh with its own method, no mesh deformation technique is

currently implemented in CUPyDO.

3.4. Conjugate heat transfer capabilities

As already mentioned, thermal transfer between the coupled solvers is also

possible. In addition to loads and displacements, temperatures and heat fluxes

can be communicated through the coupler. Four thermal coupling schemes are

available depending on the direction of the data transfer [50, 51]: Temperature
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Figure 3: Time-marching coupling algorithm based on a block-Gauss-Seidel scheme (i is the
time iterator and j is the FSI iterator).

Forward Flux Back (TFFB), Flux Forward Temperature Back (FFTB), Heat

transfer coefficient Forward Temperature Back (hFTB) and Heat transfer coef-

ficient Forward Flux Back (hFFB). Those are defined from a fluid-side point of

view and are depicted in Figure 4.

The first two schemes directly exchange temperatures T and heat fluxes

q at the fluid-structure interface. In this case, stability criteria are found to

be dependent on the Biot number of the coupled problem [51]. The TFFB

scheme is stable for Bi > 1 whereas the FFTB scheme is stable for Bi < 1.

The last two schemes use a Robin boundary condition on the solid side. They

are based on a user-defined parameter hc being a numeric, i.e. with no true

physical meaning, convective heat transfer coefficient. This coefficient is used as
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Figure 4: Illustration of the available thermal coupling schemes for CHT applications.

a relaxation parameter that affects the convergence rate of the coupled solution.

On the fluid interface, the convective heat flux can be written as follows, by using

the coefficient hc and defining an equivalent fluid temperature T̂f :

qΓ
f = hc

(
TΓ

f − T̂f

)
, (21)

where

qΓ
f = qΓ

f · nΓ
f . (22)

From these expressions, the equivalent fluid temperature is calculated and then

communicated to the solid domain. Equation (21) is written on the solid domain

to get the heat flux that is imposed as a solid boundary condition:

qΓ
s = hc

(
TΓ

s − T̂f

)
. (23)

The thermal coupling uses the same algorithm as for the mechanical problem

without Aitken relaxation in such a way that only the additional thermal data

have to be communicated through the interface. The user is allowed to choose

between pure mechanical, pure thermal or mixed mechanical-thermal couplings.

Independent coupling tolerances are defined by the user for each physics.
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3.5. Non-matching fluid-structure interface meshes

In a partitioned coupling approach solid and fluid meshes are likely to be

created independently of each other for optimality in resolving different physics

that impose different stretching constraints. Consequently, there is no guaran-

tee that the boundary discretization at the fluid-structure interface consists in

matching meshes. Non-matching geometries may also be used. For example,

one may represent a wing with its true geometry in the fluid domain so that the

fluid loads are correctly recovered, but this same wing could be represented as

an equivalent structural box in the solid domain. In both cases, the data trans-

ferred between the two solvers must be interpolated from one grid to the other.

This is equivalent to defining a new operator If
s that maps the displacements of

the solid interface mesh onto the fluid interface mesh during the communication

step of the BGS algorithm,

dΓ
f = If

s(dΓ
s ) , (24)

or, analogously, an operator Is
f that maps the load from the fluid to the solid,

tΓ
s = Is

f (tΓ
f ) . (25)

The same operators can be defined for interpolation of temperatures and heat

fluxes. These operators can be expressed as simple linear algebraic interpolation

matrices [52]. Equation (24) for the displacement of the fluid-structure interface

can be rewritten as

dΓ
f = HdΓ

s , (26)

and a conservative interpolation is used for the loads so that Equation (25)

becomes

tΓ
s = HTtΓ

f . (27)

Conservative interpolation assumes that energy is conserved through the fluid-

structure interface [53] by writing the equilibrium of virtual work acting on the

fluid and solid sides:

δWs =
(
tΓ
s

)T
δdΓ

s =
(
tΓ
f

)T
δdΓ

f = δWf , (28)
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such that only one matrix, i.e. a one-sided mapping (solid to fluid), is needed

between the fluid and solid interface grids. For a consistent interpolation [53],

matrices for the displacements and for the loads are built separately and need

a two-sided mapping (solid to fluid and fluid to solid). Consistent mapping is

used for thermal data interpolation.

The interpolation matrix H is defined according to the technique used to

map the interface nodes from one grid to the other. Nearest neighbor inter-

polation is the cheapest technique and results in a boolean structure for the

interpolation matrix but also leads to a very poor interface reconstruction when

the difference on the discretization of the two domains becomes significant. A

stair-shaped fluid interface is recovered since several fluid nodes may have the

same displacement coming from one particular solid node. However this method

is perfectly suited for matching mesh mapping. Projection methods consist in

projecting the fluid nodes onto the structural mesh and using the shape functions

of the structural elements to define the elements of H. Topological information

is required to solve the projection problem leading to a lack of flexibility if

this is not directly available from the coupled solvers. Moreover, the projection

step is prone to robustness issues when the discretization mismatching is again

significant.

The interpolation technique implemented in the present coupling architec-

ture is a point-match method based on Radial Basis Function (RBF) interpola-

tion [54, 52, 55]. This approach is said to be “meshless” because no topological

information is required, thus conserving coupling flexibility. The parallelization

of the method is also easier and the accuracy/cost ratio can be nicely tuned by

the user with minimal effort.

In the context of RBF, the interpolation of a quantity of interest reads

s(x) =

N∑
i=1

αiφ (||x− xi||) + p(x) , (29)

where the position of an interface mesh point is given by the vector x = [x, y, z]T,

N is the number of points, p(x) is a polynomial and φ are basis functions of the

Euclidean distance. The coefficients αi and the coefficients of the polynomial
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are determined by requiring an exact recovery of the function, for example the

structural nodal displacements,

dΓ
s (xj) = dΓ

s,j (30)

and the additional requirements

N∑
i=1

αiq(x) = 0 (31)

for any polynomial q with a degree less than or equal to that of polynomial p.

The degree of the polynomial p depends on the choice of the basis function φ.

A unique interpolant is given if the basis function is a conditionally positive

definite function; if it is of order m ≤ 2, a linear polynomial p,

p(x) = β0 + βxx+ βyy + βzz , (32)

can be chosen [54]. Using a linear polynomial guarantees that any rigid body

motion of the fluid-structure interface will be recovered. Discretely, Equati-

ons (29) and (31) are written for the structural displacement in a matrix form

as (for the x-dimension, similar expressions in the other dimensions)dΓ
s,x

0

 =

Css Ps

PT
s 0

αx
βx

 , (33)

where the α and β vectors contain the coefficients αi and the coefficients of the

polynomial p, respectively. The matrix Css is a Ns ×Ns matrix containing all

the evaluations of the basis functions such as Css(i, j) = φ
(
||xsi − xsj ||

)
and

the matrix Ps is a Ns×4 matrix whose rows are defined by
[
1 xsj ysj zsj

]
.

A similar expression can be used for the fluid displacement, for which Equa-

tion (29) writes

dΓ
f,x =

[
Cfs Pf

]αx
βx

 (34)

In this case Cfs and Pf contain the evaluation of the basis functions based on

distances computed between fluid and solid nodes and the coordinates of the

fluids nodes, respectively.
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Combining Equations (33) and (34) enables us to express the interpolation

matrix H as being the first Nf ×Ns block of

H̃ =
[
Cfs Pf

]Css Ps

PT
s 0

−1

. (35)

Similarly, we write the transposed interpolation matrix that gives the conserva-

tive interpolation of the fluid loads on the solid mesh as being the first Ns×Nf

block of

H̃T =

Css Ps

PT
s 0

−T [
Cfs Pf

]T
. (36)

The construction of the different blocks requires nothing else than node coor-

dinates and distance computations. The sub-matrices are assembled at the

beginning of the overall simulation but the matrix H and its transpose are not

computed explicitly since they require matrix inversion. This operation might

be costly and inaccurate. Moreover, a direct inversion of the matrix does not

take advantage of the potential sparsity of the matrix to be inverted if basis

functions defined on a radial compact (see below) are used for the interpolation.

Consequently the system (33) is solved using the FGMRES iterative solver of

the PETSc library and the product (34) is computed at each communication of

the coupled simulation. A FGMRES approach was chosen as default because

it is known to provide good convergence and has proved to be robust in most

cases, but any other PETSc solver could otherwise be used.

The intrinsic behavior of the interpolation algorithm is determined by the

choice of the basis functions. In CUPyDO, two commonly used basis functions

are available, namely the C2 function with radial compact support of size r,

φ(|| · ||) =

(
1− || · ||

r

)4

+

(
4
|| · ||
r

+ 1

)
, (37)

where the subscript + indicates that only the positive part of the expression is

taken into account, and the Thin Plate Spline (TPS) with global support,

φ(|| · ||) = || · ||2 log(|| · ||) . (38)
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The C2 function gives a sparse interpolation system for which the sparsity level

is dictated by the value of the radius r. A large value of the radius yields a more

accurate interpolation but also a larger system to store in memory and to solve.

Conversely, small values of the radius imply sparse and light systems with lower

accuracy. The value of the radius is constant and dimensional. It is fixed by the

user as a case-dependent configuration parameter. There is no specific rule that

defines an optimal value for the radius but choosing an excessively small value

could lead to inaccurate interface reconstruction. The global TPS function was

shown to give accurate interpolations but automatically involves full systems to

be stored and solved [52].

3.6. Parallelization

CUPyDO is developed for large systems requiring a parallelized implemen-

tation with MPI. In the framework of a partitioned architecture, the paralleli-

zation is not straightforward and keeping a high level of flexibility while con-

serving good parallel scalability is challenging. Two types of communications

are considered: intra- and inter-communications. Intra-communications refer

to the communications between the processes belonging to one of the coupled

solvers. These communications usually depend on the intrinsic parallelization

of the solvers and can be treated as black-box functionalities. This abstracted

approach also allows CUPyDO to use pure serial solvers. Inter-communications

refer to the communications between processes across the coupling algorithm.

These communications are typically used to exchange data in parallel between

the coupled solvers on top of the primary communication mechanism based on

the wrapping methodology.

The most flexible inter-communication approach would be to use a sequen-

tial coupling interface. Collective communications are used to gather the data

from the parallel solvers on one single core and the coupling computations, such

as fluid-structure mesh interpolation, are run in serial. This obviously leads to

a severe bottleneck due to the loss of the fluid-structure interface partitioning

and the serialization of some computation-intensive tasks. In the coupling ar-
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chitecture of CUPyDO, parallel coupling is achieved using a re-partitioning of

the fluid-structure interface from a local distribution to a global distribution.

This re-partitioning step is used to perform coupling calculations in parallel

with adequate load balancing on the fluid-structure interface nodes. The paral-

lel coupling computations are performed using the PETSc library by interfacing

its Python bindings directly into the coupling architecture (as mentioned in

Section 3.2). Typically, this allows us to construct the interpolation matrices

and solve the associated system of equations in parallel.

The parallel coupling scheme is depicted in Figure 5 for data interpolation.

The re-partitioning of the fluid-structure interface is directly performed by the

PETSc library through the Interface data class that is globally assembled in

parallel from the processes owning the nodes belonging the the fluid-structure

interface (filled boxes in Figure 5). This is called local-to-global mapping. Fluid-

structure interface nodal data are then interpolated, with parallel system solu-

tions and parallel matrix-vector products, in the global space and then redistri-

buted to their respective solver instances using reverse mapping (from global to

local). Reverse mapping is performed by first gathering all the data on the mas-

ter thread and then distributing the data with peer-to-peer communications. A

direct peer-to-peer communication strategy that avoids gathering of the data is

part of ongoing work. In order to build the parallel interpolation matrix, repre-

sented in green in Figure 5, each partition of the interface solid (fluid) mesh is

sent to the partitions of the fluid (solid) interface mesh through several commu-

nication rounds. For each round, the receiving fluid (solid) partitions compute

the elements of C and P using the RBF mapping. In case of local RBF, the

mapping is enhanced by building K-D trees of the received mesh partitions in

order to filter the points that are outside the specified radius, thus reducing the

amount of data that have to be treated.

The parallel implementation of the coupler has been developed to take into

account the heterogeneous distribution of each coupled solver. Most of the time,

the fluid domain will require many more processors than the solid one. Conse-

quently, different numbers of processors should be allocated for the fluid/solid
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Figure 5: Parallel distribution mapping and parallel fluid-structure interface data interpolation
(blue for fluid side and red for solid side). Each box represents a process on which the fluid or
solid solver is instantiated. Filled boxes represents processes owning fluid-structure interface
nodes.

solvers. This segregation can be achieved by defining specific groups of proces-

ses, that are subsets of the total amount of processes, on which the solver will be

instantiated. Consequently, each process can instantiate a fluid, a solid or both

fluid/solid instances. When there is no intersection between the fluid and solid

subsets of processes (the processes instantiate either a fluid or a solid, never

both), simultaneous computations where the fluid and solid solvers are running

at the same time could be considered. Although the parallel framework of CU-

PyDO is compatible with such a distribution of processes, there is no coupling

algorithm currently implemented to tackle this case.

Additionally, other tasks that are purely related to the coupling, such as re-

sidual computation, interface relaxation or interface prediction, are also distri-

buted in the global partitioning space. This ensures a fully parallelized coupling

algorithm.
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4. RESULTS

The implementation of CUPyDO described in the previous section has been

used to solve several FSI test cases in order to demonstrate its accuracy, flexibi-

lity and robustness. Depending on the test case, different solid solvers are used

whereas the fluid solver is always SU2. Additionally, different functionalities of

the coupler are highlighted, such as the interpolation of non-matching meshes

or under-relaxation of the BGS coupling.

4.1. Isogai wing section

The coupling between SU2 and the rigid body integrator is tested using the

classical Isogai wing section aeroelastic case (case A) [56, 57]. This test case

represents the dynamics of the outboard portion of a swept-back wing in the

transonic regime. The airfoil is a symmetric NACA 65a010 profile with chord

c = 2b. The two-degree-of-freedom structural model is shown in Figure 6. The

displacement h of the elastic axis is positive downwards and the pitch angle α

is positive clockwise. The static unbalance S is defined as the product of the

airfoil mass m with the distance xCG − xf between the center of gravity and

the elastic axis. The structural restoring force is provided by a spring-dashpot

system with stiffnesses Kh and Kα and damping coefficients Ch and Cα for the

plunging and pitching mode, respectively.

The equations of motion for this aeroelastic system can be written as [58]

mḧ+ Sα̈+ Chḣ+Khh = −L ,

Sḧ+ If α̈+ Cαα̇+Kαα = M ,
(39)

where If is the moment of inertia of the airfoil around the elastic axis, L the

aerodynamic lift (positive upwards) and M the aerodynamic moment with re-

spect to the elastic axis (positive clockwise). The overall system is charac-

terized by several non-dimensional parameters, i.e., the normalized static un-

balance χ = S/mb and moment of inertia r2
α = If/mb

2, the plunging and

pitching damping ratios ηh = Ch/2
√
Khm and ηα = Cα/2

√
KαIf , the mass

ratio µ = m/πρ∞b
2 where ρ∞ is the free-stream fluid density, and the natural
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Figure 6: Schematic of a two-degree-of-freedom pitching-plunging airfoil aeroelastic model.

frequency ratio ω = ωh/ωα where ωh =
√
Kh/m and ωα =

√
Kα/If are the

natural frequencies of the uncoupled system. The parameters for the Isogai test

case are χ = 1.8, rα = 1.865, ω = 1 and µ = 60. There is no structural dam-

ping, i.e., Ch = Cα = 0. The elastic axis is placed in front of the airfoil at a

distance xf = −b from the leading edge and the natural pitching frequency is

here ωα = 100 rad/s.

The Euler equations are solved in the transonic regime on the fluid domain

which is discretized by a structured O-mesh of 21760 cells (68× 320 for the

radial and circumferential direction respectively) with a small stretching from

the airfoil surface to the outer boundary. The external domain is circular and

extends up to 25c from the airfoil in each direction. The simulation is performed

starting from uniform flow and an initial airfoil pitch angle α0 = 0.0174 rad

(1o). The time step is set to ∆t = 0.0016 s which corresponds to 39 time steps

per period of the uncoupled pitch mode. Because of the high mass ratio of

the coupled system, low added-mass effects are expected, thus no relaxation is

used in the coupling algorithm. Three BGS iterations per time step are typically

required to achieve a coupling tolerance of 10−6 m (10−4 times the displacement

of the center of gravity associated to the initial perturbation) on the structural

displacement.
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Several FSI simulations at different transonic free-stream Mach numbers (M∞ =

0.7− 0.9) are performed with variable speed index

V ∗ =
U∞

bωα
√
µ
, (40)

where U∞ is the free-stream velocity, in order to predict the flutter point. Flut-

ter is identified as the point for which the damping rate of the system’s dynamic

response is zero. For each speed index, the damping coefficient ζ is computed

from the logarithmic decrement of the time response on the pitch and plunge

degrees of freedom. The next speed index is determined by interpolating/ex-

trapolating (least square fitting) the damping coefficients previously computed

and plotted on a ζ − V ∗ diagram.

The computed flutter speed indices V ∗f are compared to values from the

literature [59, 60, 61, 62], in Figure 7. The best approximation curve (spline)

is a representation of the flutter boundary, i.e. the limit between the stable

(under the flutter point) and unstable (beyond the flutter point) regions. It can

be seen that the “transonic dip” and the typical “S-shape” of the boundary for

M∞ between 0.7 and 0.9 are both well predicted.

4.2. VIV of a flexible cantilever in the wake of a square cylinder

The study of the flexible cantilever attached to the downstream side of a

perfectly rigid square cylinder is a classical two-dimensional benchmark test

case for FSI [49]. The geometry of the computational domain is described in

Figure 8. In this case H = 0.01 m. The physical properties of the solid and fluid

are summarized in Table 1. The uniform incoming flow velocity is Ux = 0.513

m/s, which corresponds to a Reynolds number Re = UxH/νf = 333. The top

and bottom sides of the domain are modeled as inviscid walls whereas no-slip

conditions are imposed on solid boundaries (cylinder and cantilever).

The velocity and Reynolds number are such that an unsteady laminar Von

Karman vortex street is generated in the wake of the cylinder with a shedding

frequency close to the first bending frequency of the flexible cantilever. There-

fore, the vortical structure of the wake generates harmonic aerodynamic loads

that induce periodic oscillations of the flexible cantilever.
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Figure 8: Flexible cantilever attached to a rigid square cylinder: geometry of the computati-
onal domain.

This interaction is numerically reproduced by coupling SU2 and Metafor

using CUPyDO. A nonlinear formulation for the structural part is necessary to
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Solid
Density [kg m-3] ρs 100
Young’s modulus [Pa] E 2.5 · 105

Poisson’s ratio [-] νs 0.35

Fluid
Density [kg m-3] ρf 1.18
Kinematic viscosity [m2 s-1] νf 1.54 · 10−5

Table 1: Flexible cantilever attached to a rigid square cylinder: physical properties of the
solid and fluid.

correctly predict the bending of the cantilever undergoing large displacements.

The fluid domain is solved using the compressible laminar Navier-Stokes equa-

tions on a hybrid structured-unstructured grid with 15798 cells. The mesh is

globally unstructured with a structured layer near the solid boundary. The can-

tilever is modeled as pure elastic material and discretized with 240 × 10 (length

× thickness) quad elements. In order to eliminate any interpolation error, dis-

cretization is performed so as to have matching meshes at the fluid-structure

interface.

The time step for the simulation is ∆t = 0.0025 s, which corresponds to

122 time steps per period for the first bending mode of the beam. Four BGS

iterations with no relaxation are typically required to reach a coupling tolerance

of 10−6 m (10−4 times the expected tip displacement) on the structural displa-

cement. The simulation starts with uniform flow and no initial displacement of

the cantilever. Figure 9 shows the computed tip displacement dz as a function

of time. At the start of the simulation, a transient behavior is observed until the

vortex shedding, and consequently the tip displacement, reaches an established

regime where the displacement amplitude is clearly modulated by higher fre-

quency waves. This stems from the complex structure of the vortex shedding,

as was already observed by Sanchez et al. [63] who also used the SU2 solver but

with a native FSI implementation.

A summary of results from the literature (e.g., [64, 48, 65]) is provided

by Habchi et al. [49]. The oscillation frequency typically falls in the range

2.94 − 3.25 Hz, while the amplitude of the tip displacement is in the range

0.95 − 1.15 cm, as summarized in Table 2. The present computation predicts
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Figure 9: Displacement of the flexible cantilever tip as a function of time.

a maximum tip displacement dy = 1.07 cm and a frequency f = 3.14 Hz ,

which is in very good agreement with results from the literature. Figure 10

dy (cm) f (1/s)
CUPyDO 1.07 3.14
Sanchez et al. [63] 1.05-1.15 3.05-3.15
Habchi et al. [49] 1.02 3.25
Kassiotis et al. [64] 1.05 2.98
Wood et al. [48] 1.15 2.94
Olivier et al. [65] 0.95 3.17

Table 2: Comparison of the maximum tip displacement and oscillation frequency of the flex-
ible cantilever between the present computation and results from the literature. The range
of values obtained by Sanchez et al. corresponds to a parametric study on the relaxation
parameter in the BGS algorithm.

shows the velocity magnitude contour at several time steps of a period T , where

the vortical flow structures and the large displacement of the cantilever can be

observed.

4.3. Aeroelastic study of the AGARD 445.6 wing

The experimental AGARD 445.6 wing test case [66] is a frequently used

three-dimensional validation case for transonic flutter simulations. The present

computational study is based on the weakened model 3 of the wing. This is a

33



t = T/4 t = T/2 t = 3T/4

Figure 10: Flexible cantilever attached to a rigid square cylinder: velocity magnitude contour
at three phases of a period.

45◦ swept-back wing whose geometrical properties are summarized in Table 3.

The cross section is a symmetric NACA 65a004 airfoil and the wing is clamped

at the root.

Root chord [m] cr 0.559
Taper ratio [-] λ 0.658
Tip chord [m] ct 0.368
Semi-span [m] bs 0.762
Aspect ratio [-] AR 1.644
Wing surface [m2] S 0.353
Mean aerodynamic chord [m] c 0.470

Table 3: Geometrical properties of the AGARD 445.6 wing.

The solid wing is modeled in Metafor with 8-node continuum elements and

an orthotropic elastic material whose properties are summarized in Table 4. It

is discretized with 31, 17 and 2 cells in the spanwise, chordwise and thickness

direction, respectively. A modal analysis is first performed and the first four

natural frequencies computed are compared with results in the literature in

Table 5, showing good agreement with models coming from other references.

The fluid part of the problem is discretized using a structured O-mesh with
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Longitudinal Young’s modulus [GPa] E1 3.151
Transverse Young’s moduli [GPa] E2, E3 0.4162
Shear moduli [GPa] G12, G13, G23 0.4392
Poisson’s ratio [-] ν12, ν13, ν23 0.31
Density [kg m-3] ρs 381.98

Table 4: Material properties for the AGARD 445.6 wing.

f1 f2 f3 f4

Metafor 9.54 40.35 50.22 97.67
Yates [66] 9.60 38.10 50.70 98.50
Goura [67] 9.67 36.87 50.26 90.00
Beaubien et al. [68] 9.46 39.44 49.71 94.39
Zhanget al. [69] 9.57 38.17 48.35 91.55

Table 5: First four natural frequencies of the AGARD 445.6 wing from the present calculation
and the literature. Frequencies are in Hz with f1 and f3 corresponding to the first and second
bending modes, and f2 and f4 to the first and second torsion modes, respectively.

a total number of 248000 cells. The fluid domain extends up to 25cr from the

wing in each direction. The wing surface is discretized with 30, 50 and 20 cells in

the spanwise, chordwise and thickness direction respectively. The mesh around

the wing is illustrated in Figure 11.

A coupled simulation is used to compute the flutter boundary of the wing.

The compressible solver of SU2 is used to solve the Euler equations for the fluid

part of the problem. A symmetry boundary condition is imposed on the plane

in which the wing is clamped. Similarly to the experimental investigation, a

large range of Mach numbers, from M∞ = 0.499 to M∞ = 1.141, is simulated.

Based on experimental conditions, the corresponding Reynolds numbers are in

the range Re = 0.54 · 106 to Re = 1.89 · 106. As for the Isogai wing section test

case, computations are performed with variable speed indices for a given Mach

number and flutter is inferred from the damping coefficients extracted from the

aeroelastic response. The speed index for the AGARD 445.6 wing test case is

defined as

V ∗ =
U∞

0.5crω2
√
µ
, (41)
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Figure 11: CFD mesh around the AGARD 445.6 wing.

where cr, ω2 and µ are the root chord, the first torsion natural frequency and

the mass ratio, respectively. The mass ratio is given by µ = m/ρ∞V where

m = 1.863 kg and V = 0.130 m3 are taken from Yates [66].

Since the discretization of the two interfaces is not matching, the mesh in-

terpolator of the coupling tool is used to map the two interface meshes and to

communicate the data. As the number of points on the interface is limited, TPS

interpolation can be used for high accuracy without drastically impacting the

computational cost. The simulation is performed with a time step of 0.001 s

(≈ 105 time steps per period of the first bending mode) with no relaxation on

the BGS coupling. In order to limit the computation time of the simulation,

a maximum number of four coupling iterations is imposed which is typically

sufficient to reach a coupling tolerance of order 10−7 m (about 10−5 times the

expected displacement amplitude at flutter).

The simulation is initialized with uniform flow and no deformation of the

solid wing. During the first 0.01 s of simulation, a vertical load is applied on

an upstream portion of the wing tip in order to induce a small perturbation
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of a determined amplitude (around 0.66 % of the span). Then the loading is

released and the wing is free to vibrate in the flow. The aeroelastic response

is illustrated in Figure 12, which shows the vertical displacement of the leading

edge at the wing tip for three different speed indices around the flutter boundary

at M∞ = 0.96. Simulations are performed in parallel on 16 cores (16 fluid

instances, 1 solid) of a computing node with Intel Xeon E5-2650 processor (2

GHz, 16 threads).
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Figure 12: Aeroelastic response of the AGARD 445.6 for three speed indices V ∗ with M∞ =
0.96 and ρ∞ = 0.0634 kg/m3: vertical displacement dz of the leading edge at the wing tip.

As previously mentioned, the flutter condition is determined by successive

evaluations of the damping coefficient ζ as a function of the speed index. Fi-

gure 13 illustrates the standard evolution of the damping coefficient as a function

of the speed index at M∞ = 0.96. It first increases starting from low values at

low speed indices, then reaches a maximum value and finally drops until it

crosses the ζ = 0 axis corresponding to the flutter point.

Figure 14 shows the pressure contours on the wing at M∞ = 0.96 and V ∗ =

0.300 for three time steps over a cycle. Contours of the Mach number in the
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Figure 13: Evolution of the computed damping coefficient of the AGARD 445.6 wing aeroe-
lastic response as a function of the speed index for M∞ = 0.96 and ρ∞ = 0.0634 kg/m3.

supersonic region are superposed at three wing sections in order to show its

motion within one cycle and thus highlight the non-linearities typical of the

transonic regime.

t = T/4 t = T/2 t = 3T/4

Figure 14: Surface pressure and Mach number in supersonic region for the AGARD 445.6 wing
at three different times of a period with M∞ = 0.96, ρ∞ = 0.0634 kg/m3 and V ∗ = 0.300.
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Figure 15 shows the computed flutter boundary that is compared to the

experimental results [66] and to computational results obtained solving the

Euler [68, 70, 59, 71] or RANS [3, 71] equations. For all the computational

reference results, the structural part is modelled by a modal decomposition ap-

proach which differs from the fully time-integrated approach used in this paper.

It can be seen that the results obtained by coupling SU2 and Metafor with

CUPyDO are in good agreement with experiments and with the other compu-

tational results found in the literature in the subsonic and transonic regimes.

It is also important to note that the transonic dip is well-captured. Howe-

ver, larger discrepancies with the experimental data are observed for supersonic

Mach numbers, especially at M∞ = 1.141. Similarly to other computations,

the flutter boundary is over-estimated at these Mach numbers. Although the

origin of this discrepancy remains unclear, several explanations [59, 71] have

been proposed, such as the impact of viscous effects (not accounted for in the

present Euler simulations) and the complex nonlinear shock - boundary layer

interaction. Even for RANS simulations, uncertainties remain concerning the

turbulence model and the impact of transition. Additionally, the wing tip geo-

metry, i.e., cut-off or rounded (rounded here), and spatial discretization scheme

(centered or upwind) [3] could also play a role in the supersonic regime. Finally,

the effect of structural damping on the flutter boundary should be investigated,

since no indication of its experimental value is given [70]. All these details are

relevant for accurately capturing the flutter boundary at high Mach numbers

but are beyond the scope of this paper.

4.4. Flexible plate in a cross flow

A test case involving stronger added-mass effects is considered in order to

asses the performance of coupling relaxation. A flexible linear elastic plate is

immersed in a cross flow and clamped at the bottom so that it bends under its

own drag. This case is directly taken from Tian et al. [7] and originally comes

from an experimental study made by Luhar and Nepf [72] on the deformation

of aquatic plants submitted to a water flow. The computational domain as well
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Figure 15: Flutter boundary of the AGARD 445.6 wing in the transonic regime.

as the fluid boundary conditions are represented in Figure 16. A flexible plate

of length L, width b and thickness h is placed vertically in a uniform flow of

velocity U∞, density ρ∞ and viscosity µ∞. One side of the plate is clamped

and all the other sides are free. The external boundary of the domain is a

rectangular box extending from (−5b, −8b, −8.5b) to (16b, 8b, 8.5b). The plate

is fixed at the origin of the xy-plane. The dimensions of the plate are such that

L = 5b and h = 0.2b. In this case a value of 0.1 m for the plate width b is chosen.

Note that the plane in which the plate is clamped is considered as an inviscid

wall to neglect the boundary layer and conserve upstream flow uniformity. The

following non-dimensional parameters are used: Re = U∞b/ν∞ = 1600 where

ν∞ is the fluid kinematic viscosity, E∗ = E/ρ∞U
2
∞ where E is the Young’s

modulus of the plate, and ρ∗ = ρs/ρ∞ = 0.678 where ρs is the plate density.

The Poisson’s ratio is set to νs = 0.4.
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Figure 16: Plate in a cross flow: geometry and computational domain and fluid boundary
conditions.

The fluid domain is discretized into a structured mesh with a total num-

ber of 193900 cells. The plate is discretized with 40, 15 and 10 cells along the

length, width and thickness, respectively. The structural domain is discretized

with a structured mesh with 8-node continuum elements so that the meshes are

matching at the fluid-structure interface. The fluid is solved using the laminar

compressible Navier-Stokes equations in SU2 while the structural displacements

are computed with Metafor. Although the solution obtained by Tian et al. [7]

seems to be stationary, the simulation with CUPyDO is performed with un-

steady time integration in order to capture the complex transient part of the

response of the plate and assess the performance of the relaxation scheme of the

BGS coupling algorithm during the whole time integration. The time step of

the simulation is set to 0.005 s which corresponds approximately to 1/400 of the

time needed to reach a steady-state solution. Because the fluid and solid den-

sities have the same order of magnitude, making the coupled system converge

is challenging. In particular, only low values of the static relaxation parame-

ter (i.e., below 0.5) lead to a stable solution, but at the expense of a very low

convergence rate. A large number of coupling iterations (up to 87) is needed to

reach the specified coupling tolerance of 10−6 m (4 ·10−6 times the displacement

of the plate along the x-axis).

The dynamic Aitken relaxation strategy is thus used to achieve convergence

while keeping the number of iterations per time step at an acceptable level. A
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minimal criterion (see Section 3.3) is used to restrict the relaxation parameter

to a low value of 0.1 at the beginning of each time step, but this value natu-

rally increases along the coupling iterations allowing the iterative procedure to

reach the desired tolerance within 6 to 20 iterations. The computation is run

on 16 cores (16 fluid instances, 1 solid) of the same computing node used for

the AGARD 445.6 test case and needs about 2 seconds of simulated time for

the plate to reach a steady state deflection. Figure 17 shows the displacement

of the tip face’s center of the plate as a function of time. At the beginning of

the simulation, the plate is rapidly bent under the effect of drag and then a

small restoration is observed before reaching a steady-state deformation, which

is depicted in Figure 18 where streamlines are superposed in order to highlight

the vorticity dynamics in the near field behind the plate. Note that no vortex

shedding is observed due to three-dimensional effects for which the tip vortices

significantly influence the vortex dynamics and tend to smooth out the unstea-

diness that typically appears in two-dimensional simulations. This behavior was

already highlighted with flow simulations around rigid flat plate wings featu-

ring comparable aspect ratios but lower Reynolds numbers than in the present

case [73]. Table 6 gives the comparison between the present results and those
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Figure 17: Displacements along the x and z-axis of the plate tip as a function of time.
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Figure 18: Steady-state deformation of the plate in a cross flow with steamlines colored with
velocity magnitude.

obtained by Tian et al. [7]. Similar values are obtained with a maximum discre-

pancy of 13.8% on the drag coefficient and a minimal discrepancy of 1.6% for

the displacement along the x-axis. Although the root causes for these discre-

pancies could not be unequivocally identified, the results of several tests suggest

that they originate in the fluid solution. In particular, they likely stem from

the present use of a compressible solver, while Tian et al. [7] results are based

on an incompressible approach. Additionally, the respective numerical methods

also differ (immersed boundary [7] vs. ALE with mesh deformation). Nonet-

heless, this test case demonstrates the performance of the Aitken relaxation

implemented in the coupling algorithm of CUPyDO.

CD dx/b dz/b
CUPyDO 1.07 2.41 -0.72
Tian et al. [7] 0.94 2.45 -0.75

Table 6: Comparison of the drag coefficient and tip displacements of the plate between the
present computation and the results of Tian et al. [7].
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4.5. CHT with a heated hollow cylinder

The last validation test case involves the thermal coupling capability of CU-

PyDO. The test case is taken from Nettis [51]. This is a perfectly rigid hollow

cylinder immersed in a uniform flow, as illustrated in Figure 19. The ratio bet-

ween the inner and outer diameter is Dc/D = 0.5. A temperature Tc = 350 K is

imposed on the inner boundary of the cylinder. The farfield fluid temperature

is also imposed, T∞ = 288.15 K, so that the thermal exchange at the outer

boundary of the cylinder defines a convective CHT problem. Nettis [51] perfor-

med the simulation using a compressible fluid solver with the parameters Re =

40, Pr = 0.72 and M∞ = 0.38 for the Reynolds, Prandtl and Mach numbers,

respectively. The ratio between the thermal conductivities λs/λf is set to 4.

The coupled simulation is here reproduced with the same parameters using SU2

to solve the fluid problem and GetDP to solve the thermal conduction problem

within the solid. A steady coupled simulation is used since the Reynolds number

is low enough to guarantee a stationary flow in the wake of the cylinder. The

U
∞

T∞

D
c

D

T
c

Figure 19: Heated hollow cylinder on a cross flow.

fluid domain is circular and extends up to 25D. It is discretized by a structured

O-mesh with 50 cells in the radial direction and 120 cells in the circumferen-

tial direction. The structural domain is discretized into a structured mesh with

20 quad elements in the radial direction and the meshes are matching at the

fluid-structure interface.
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The four thermal coupling schemes presented in Section 3.4 are tested. Only

the TFFB scheme is unstable since the Biot number is below 1 for this particular

case. The three other schemes provide a converged solution. In the case of the

hFFB scheme, the value of the numerical heat transfer coefficient influences the

number of iterations needed to reach a tolerance of 10 W/m2 on the heat flux

at the interface. This is summarized in Table 7, showing that increasing the

value of hc reduces the number of coupling iterations. For tested values higher

than hc = 20, the coupled simulations become unstable. The hFTB scheme

is less sensitive to the value of hc. As shown in Table 7, the same number

of iterations is necessary to reach the specified temperature tolerance of 0.1 K

on the interface (leading to an equivalent level of convergence as for the hFFB

scheme). For values higher than hc = 1 the scheme is unstable. It is also shown

that the FFTB scheme takes the same number of iterations as hFTB to reach

the same tolerance.

Value of hc (W/m2K) Coupling iterations

hFFB

1 198
5 52
10 32
15 23
20 19

hFTB

0.01 8
0.05 8
0.1 8
0.5 8
1 8

FFTB - 8

Table 7: Comparison of the performances for different CHT coupling schemes.

Figure 20 shows the temperature distribution at the fluid-structure interface

Tw obtained with the hFTB and hFFB couplings in CUPyDO. Good agreement

is obtained between the present hFTB calculations and the results from Net-

tis [51] where a hFTB scheme and a compressible solver to compute the fluid

part of the problem are used as well. Discrepancies between hFTB and hFFB
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are observed mainly on the upstream part of the cylinder surface, however the

temperature difference at the stagnation point between the two schemes is not

higher than 0.2%. The temperature field inside the solid domain is illustrated

in Figure 21 showing the non-symmetric distribution due to the convective heat

transfer induced by the surrounding flow.
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Figure 20: Temperature distribution on the wetted surface of the cylinder. The upstream
stagnation point corresponds to 0◦.

5. CONCLUSION AND FUTURE WORK

CUPyDO, a modular and flexible implementation of a coupling environment

for fluid-structure interaction problems has been presented. The coupled pro-

blem is solved using a partitioned approach in which the fluid and solid solvers

are integrated in a single coupling environment and communicate through a

Python wrapping layer. This ensures that the high-level management of the

two solvers (black-box tools) is very intuitive and flexible and that all the inten-

sive calculations remain embedded in their respective core codes. The object-

oriented architecture of CUPyDO is designed to guarantee the compatibility of
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Figure 21: Temperature distribution inside the hollow cylinder.

each coupled solver with minimal adaptation effort by using dedicated interfa-

cing classes based on generic fluid and solid classes. The coupling tool is designed

to work on parallel environments using the MPI protocol so that engineering

studies involving large systems can be considered. Communications between the

solvers, data interpolations and coupling algorithms are parallelized in order to

avoid any bottleneck due to partial serialization of several coupling procedures.

Parallel algebraic operations are supported by the PETSc library that is used in

CUPyDO with dedicated Python bindings. Interpolation based on Radial Basis

Functions is used to transfer data across the fluid-structure interface when the

two meshes are not matching. The time-marched block Gauss-Seidel algorithm

is used to strongly couple the two domains and Aitken under-relaxation is used

to stabilize the coupling when significant added-mass effects are involved.

47



The results of several test cases have been compared to the literature, de-

monstrating the accuracy of the coupling tool for coupled problems of various

complexity. To compute the fluid part of the problem, the Euler or Navier-

Stokes equations are solved in SU2 with the finite volume method in a Arbi-

trary Lagrangian-Eulerian formulation. The high modularity of the framework

has been demonstrated by using different structural solvers and models. La-

grangian linear/non-linear finite element solvers such as GetDP or Metafor are

used to solve the structural dynamic equilibrium for deformable solids and the

heat equation for thermal conduction. A simpler integrator is used to compute

constrained rigid body motions as in the Isogai aeroelastic test case.

Future work will focus on extending the current capabilities of the tool. In

particular, this includes the implementation of a Newton method for the cou-

pling algorithm and other interpolation methods. The parallel scalability of the

implementation should also be assessed in order to identify potential impro-

vements to the parallelization. Another avenue for future work is to interface

other fluid and solid solvers with CUPyDO, as it has already been done with a

PFEM solver. This would also provide the opportunity to tackle other multip-

hysics applications, for which the technical implementation in CUPyDO would

simply require a straightforward extension of the quantities that are transferred

between the solvers (e.g., species flux for problems with chemical reactions, such

as in ablation). The main challenge in this case would rather stem from possible

numerical instabilities and convergence issues of the coupling algorithm. Other

multiphysics problems might also require the coupling of more than two different

solvers. Such a development could be envisaged, but would be challenging due

to the higher complexity of the resulting communication network and coupling

algorithm.
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[8] R. Wüchner, A. Kupzok, and K-U. Bletzinger. A framework for stabili-

zed partitioned analysis of thin membrane-wind interaction. Internatio-

nal Journal for Numerical Methods in Fluids, 54:945–963, 2007. https:

//doi.org/10.1002/fld.1474.

[9] G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure

interaction - A review. Communications in Computational Physics, 12(2):

337–377, 2012. https://doi.org/10.4208/cicp.291210.290411s.

[10] L. Garelli. Fluid-structure interaction using an arbitrary Lagrangian-

Eulerian formulation. PhD thesis, Universidad Nacional Del Litoral, 2011.
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