CUPyDO - An integrated Python environment for
coupled fluid-structure simulations

D. Thomas®* M.L. Cerquaglia®, R. Boman?®, T.D. Economon®, J.J. Alonso®,
G. Dimitriadis®, V.E. Terrapon®

®Department of Aerospace and Mechanical Engineering
University of Liége
Liege, 4000, Belgium
b Department of Aeronautics and Astronautics
Stanford University
Stanford, CA, 94305, USA

Abstract

CUPyDO, a fluid-structure interaction (FSI) tool that couples existing inde-
pendent fluid and solid solvers into a single synchronization and communication
framework based on the Python language is presented. Each coupled solver
has to be wrapped in a Python layer in order to embed their functionalities
(usually written in a compiled language) into a Python object, that is called
and used by the coupler. Thus a staggered strong coupling can be achieved
for time-dependent FSI problems such as aeroelastic flutter, vortex-induced vi-
brations (VIV) or conjugate heat transfer (CHT). The synchronization between
the solvers is performed with the predictive block-Gauss-Seidel algorithm with
dynamic under-relaxation. The tool is capable of treating non-matching meshes
between the fluid and structure domains and is optimized to work in paral-
lel using Message Passing Interface (MPI). The implementation of CUPyDO
is described and its capabilities are demonstrated on typical validation cases.
The open-source code SU2 is used to solve the fluid equations while the solid

equations are solved either by a simple rigid body integrator or by in-house

*Corresponding author at: University of Liege, Department of Aerospace and Mechanical
Engineering, Allée de la Découverte, 9, 4000, Liege, Belgium.
Email addresses: dthomas@ulg.ac.be (D. Thomas), marcolucio.cerquaglia@ulg.ac.be
(M.L. Cerquaglia), r.boman@ulg.ac.be (R. Boman), economon@stanford.edu
(T.D. Economon), jjalonso@stanford.edu (J.J. Alonso), gdimitriadis@ulg.ac.be
(G. Dimitriadis), vincent.terrapon@ulg.ac.be (V.E. Terrapon)

Preprint submitted to Elsevier May 16, 2018

linear /nonlinear Finite Element codes (GetDP/Metafor). First, the modularity
of the coupling as well as its ease of use is highlighted and then the accuracy of
the results is demonstrated.

Keywords: Coupling Environment, Python Wrapper, Fluid-Structure
Interaction, Partitioned Coupling, Computational Aeroelasticity, CUPyDO

1. INTRODUCTION

The study of fluid-structure interaction (FSI) problems is an important cen-
ter of interest for researchers and engineers in a significant range of applications
in different fields such as aerospace [II, 2], B, 4], biomedical/biological [5] 6] [7]
and civil engineering [8], to cite a few. The drastic evolution of the available
computational power allows the use of advanced and complex models for each
type of physics involved. These models are usually based on high-fidelity three-
dimensional frameworks in order to quantify phenomena that low-order models
are not able to reproduce. Such high-fidelity computation of FSI problems is
usually based on one of two possible strategies: the monolithic or the parti-
tioned approach [9 [I0]. In the monolithic approach, both the structural and
fluid problems are solved by a single solver and within the same mathemati-
cal framework, where the interfacial conditions are implicit to the procedure.
This requires significant coding efforts and the implementation is usually de-
signed to accommodate a particular case of interest, often leading to a lack of
generality. On the other hand, the partitioned approach couples two different
specialized existing codes that are used to solve separated sub-systems. This
requires an efficient communication and synchronization interface but allows the
intrinsic features of the individual solvers to be exploited. If the implementation
of the coupling interface is flexible enough and compatible with many different
solvers, a wide range of coupled physics and related numerical methods can
be considered for many different applications. In a partitioned approach, we
distinguish two coupling schemes [I1]: weak and strong coupling. The weak

coupling scheme requires only one solution of the sub-systems per time step,

which is the most efficient choice in terms of computational time but could lead
to a time-lagged solution. Also, numerical instabilities may appear for problems
that involve strong added-mass effects [I1], i.e. when the fluid and solid densi-
ties are similar and/or the solid is very flexible. If not properly identified, those
numerical instabilities might be erroneously treated as physical instabilities such
as wing flutter. The strong coupling scheme requires solving several times the
sub-systems per time step in order to guarantee the convergence at the interface
and gives the same results as the monolithic approach but with a larger simu-
lation time compared to weak coupling. Strong added-mass effects are usually
better handled but can still lead to a non-convergent iterative process.

An integrated framework to strongly couple two heterogeneous existing fluid
and solid solvers is presented in this paper. It is called CUPyDO and consists
in a Python coupling environment designed to interact with the two solvers
through an API Python wrapped layer. Data exchange and synchronization are
thus implemented in a very intuitive and flexible way in Python, whereas the
computationally intensive routines within each solver are kept in their native
languages (C, C++, etc.). Because the coupled solvers are reduced to black-box
tools by their wrappers, minimal effort is required to achieve compatibility with
the coupler ensuring significant flexibility in solver choice. Other workers in the
field have developed coupling schemes between different solvers; Bungartz et
al. [12] give a list of some current implementations. One of the most standard
tool is the commercial software MpCCI [13], that proposes ready-to-use adapters
to many commercial solvers. The client-server architecture of MpCCI leads to
coupling frameworks of potentially high complexity but limits thus the parallel
scalability of large systems by serializing important coupling tasks. ADVEN-
TURE_Coupler [14] is an open-source coupling tool for large-scale problems that
is also based on a client-server architecture. The coupling compatibility is per-
formed by intrusive coupler-specific routines that have to be added in the solver
core code. OpenPALM [I5] is another open-source software for massively paral-
lel coupled applications. Functionalities from the coupler have to be explicitly

added in the coupled core codes and the communications between the coupled

systems rely on the MPI protocole. The preCICE open-source coupling frame-
work [12] is designed to maintain an efficient parallel scalability by avoiding the
use of a server instance. The communication between the coupled codes are still
based on MPI or TCP/IP protocoles and intrusive specific routines need to be
introduced in the coupled core codes from the coupling library.

In this paper, an open-source coupling environment, based on the Python
wrapping methodology, is proposed as an alternative integrated implementation
that does not rely on MPI or TCP/IP protocols for communications between
the coupled modules. In CUPyDO, emphasis is given to the parallel imple-
mentation and to the modularity of the coupling mechanism with no explicit
coupler-specific routines to be introduced into the coupled codes, thus mini-
mizing intrusive code modification. User-friendliness is also ensured by pro-
viding ready-to-use coupling functionalities, such as interpolation methods for
non-matching grids or iterative algorithms, but also by limiting the amount of
actions required by the user to set and launch a coupled simulation of low com-
plexity. Although the coupling mechanism of CUPyDO is demonstrated here on
fluid-structure interaction problems, such as flutter, vortex-induced vibrations
and steady conjugate heat transfer, the infrastructure is designed in a general
way to allow an easy extension to many other multi-physics problems.

The paper is organized as follows. Section 2 is dedicated to describing the
governing equations of the coupled problem. Fluid and solid equations as well
as the interface conditions are introduced. The different solvers used to solve
FSI problems are also presented. The implementation of CUPyDO is then
detailed in Section 3. Particular attention is paid on the solvers interfacing
mechanism, the way the communication with the solvers is performed and the
parallel implementation. In Section 4 several FSI test cases are reproduced
using different coupled solvers and results are presented in order to show the
accuracy and the flexibility of the coupling tool. Finally, Section 5 summarizes

the main concepts and results, and suggests further steps for future work.

2. GOVERNING EQUATIONS OF THE COUPLED PROBLEM

This section describes the governing equations and the numerical implemen-
tations used in this paper for both the fluid and solid parts of the coupled
problem. The fluid equations, in an Arbitrary Lagrangian-Eulerian (ALE) for-
mulation, are solved in a moving and conforming fluid domain Q¢ that shares
a common boundary I" with the solid domain €2, in which the solid equations
are solved in a Lagrangian formulation. In addition to intrinsic boundary con-
ditions for each of the disciplines, coupling conditions on the displacements, the
loads, the temperatures and the heat fluxes across the common boundary I" are

required to achieve a strong coupling scheme.

2.1. Fluid mechanics

The dynamic behavior of a compressible Newtonian fluid is predicted by
solving the Navier-Stokes or Euler equations. The conservation of mass, mo-

mentum and energy in)¢ can be expressed as [16]

oU
E‘FVFC*v_F‘V:Q HleX[O,t], (1)
where the conservative variables are given by U = [p, pv, pE]T. The advective
and diffusive fluxes are given by
pv
F'=| pvov+pl |, FY = T ; (2)
pEvV + pv TV 4 picp VT

and @ is a source term. In these expressions p is the fluid density, v the velocity
field, F the total energy per unit mass, p the static pressure, c, the specific heat
capacity at constant pressure, and 71" the temperature. For a Newtonian fluid,

the viscous stress tensor is given by
T 2
T = ot | VV+ VV© — gI(V V), (3)

and the system is closed with state equations and boundary conditions. Note

that the Euler equations are recovered by discarding the viscous terms.

Viscous turbulent flows are modelled using the Reynolds-Averaged Navier-
Stokes equations for which an additional eddy viscosity is calculated by suitable
turbulence models such as the Shear Stress Transport k-w [I7] or the Spalart-
Allmaras (SA) [18] model. The contribution of the turbulent viscosity to the

viscous terms is given by

ot = Hd + M,
L e)
Heot Pry Pr;’

where p and Pr are the viscosity and Prandtl number, respectively. The subscript
“d” stands for dynamic and expresses intrinsic properties of the fluid, whereas
the subscript “t” expresses quantities coming from turbulence modelling. The
contribution of the turbulent quantities are removed for laminar flow computa-
tions.

Equations — are written for a purely Eulerian formulation and do not
account for any motion of the computational domain that may appear in the con-
text of fluid-structure interaction problems. The Arbitrary Lagrangian-Eulerian
formulation [I9] takes into account the motion of Q¢ by adding its contribution

to the advective fluxes in :

p(v = va)
FC=| pva(v—vq)+pl |, (5)
pE(v —vq) +pv
where vq is the local velocity field of the moving computational domain. Purely
Eulerian or purely Lagrangian formulations can be recovered by setting v = 0
or v = v, respectively.

The open-source CFD code SU2 [16] 20} 21} 22, 23] is used to solve the
fluid part of the coupled problem in ALE. The governing equations are spatially
discretized using the Finite Volume Method on a dual-grid using a vertex-based
approach so that the nodes of the primal grid represent the centers of the control
volumes. Temporal discretization is achieved through a dual time-stepping [24]
strategy, where each physical time step is transformed into a steady problem

for which steady state acceleration techniques can be used. The grid motion

is considered as a part of the fluid problem. It is usually computed by one
of three approaches: the spring analogy where the mesh edges are replaced by
springs [25 [26], the solution of a Laplace equation [27] or the solution of a
pseudo-elastic solid problem. In SU2, the grid deformation is computed at each
time step by a steady pseudo-elastic solid problem where the mesh is casted as
a deformable solid, and whose boundary conditions correspond to the motion
of the wetted solid surface. The governing equation for the displacement of the

mesh nodes dg, is based on a finite element approach and given by:
Kodg = fo, (6)

where Kq is a fictitious stiffness matrix and fo a fictitious force to enforce the
boundary motion. A variable Young’s modulus is defined in order to control
the mesh quality in specific regions. Typically, high stiffness is required for
cells with a large aspect ratio in wall boundary layers in order to minimize
their deformation. Lower stiffness is used for larger cells in the farfield, where
they can withstand larger deformations. The grid velocities are then computed
using a consistent finite difference scheme from the positions of the mesh nodes
stored at previous time steps. The Geometric Conservation Law (GCL) [2§],
that has to be satisfied for unsteady flows on moving meshes computed with
the ALE formulation, is numerically implemented in SU2 as part of the dual
time-stepping procedure [22] 29]. Although only the SU2 solver is used, another
fluid solver based on the PFEM formulation [30} B1] has recently been coupled
with CUPyDO but no application involving this coupling are treated in this
paper.
2.2. Solid mechanics

The dynamic behavior of a deformable solid results from the balance between

inertial, internal and external forces. The equilibrium equation in) is given
by

0%d

P o

where p, d, o and f are the solid density, the displacement vector, the Cauchy

~V.o=f in Q x [0,1] (7)

stress tensor and the body forces, respectively. The temperature field within a

solid is obtained by solving the linear heat equation in ;:
oT .

P~ V-(A\VT)=Q, in Qg x [0,¢] , (8)
where A and @, are the thermal conductivity and a possible volume heat source,
respectively. Equations and are coupled by considering the decompo-
sition of the total deformation between a mechanical and a thermal part, the
latter being dependent on the thermal field. Plastic deformations and friction
forces during contacts may also produce heat sources in Equation .

The in-house nonlinear Finite Element code Metafor [32, 33, B34, 35 36,
37] is one of the solvers used to compute the structural part of the coupled
problem. The solver is designed to simulate large structural deformations in a
Lagrangian formulation by expressing the principle of virtual work (PVW) on
the deformed configuration. A particular feature of Metafor is also the large
range of nonlinear material laws that can be used (elasticity, elasto-plasticity or
visco-elasto-plasticity, etc.). For each time increment, the equations of motion

are solved using a Newton-Raphson approach:

Md —+ Kt (dk)Adk = fext - fint (dk)) (9)

a*t = d* 4+ Ad"

In this system M is the mass matrix, fo is the vector of external forces, fi,
is the vector of internal forces accounting for internal stresses and K; is the
tangent stiffness matrix being defined as the derivative of fi,; with respect to d.
Time discretization typically uses the Generalized-a method but a quasi-static
integration is also available when inertia terms are negligible. The thermo-
mechanical coupling is performed by an explicit staggered integration scheme
where the thermal part is solved after the mechanical part on each time step. Re-
evaluation of the internal stresses after the thermal step is possible for problems
that are highly driven by thermal effects.

The structural part of the problem is also solved using the open-source code
GetDP [38] [39] that is a free linear Finite Element software and a general en-

vironment for the treatment of discrete problems. In GetDP, Equation can

only be treated as a linear problem involving small deformations/displacements
and linear elastic materials. Thus the discretized equations for the structural

motion take the standard linear form:
Md + Kd = f.. , (10)

where K is the constant stiffness matrix of the system. Time integration is
performed using the Newmark method.

Finally, simpler coupled fluid-structure problems involve the motion of non-
deformable solids for which the dynamics is constrained using linear stiffness and
damping. Such a model is implemented in an in-house rigid body integrator code

also based on the Generalized-a method for time integration.

2.8. Coupling conditions

The following coupling formulation expresses how the fluid (subscript “f”)

and solid (subscript “s”) domains are coupled at their common interface I'

through continuity boundary conditions on the displacement d' and the load

My
dal = dl,
f s (11)
t? = _tg)
where the load on the fluid side is given by t; = —pn¢ 4+ 7ng, with p the pressure

and 7 the viscous stress, and the load on the solid side by ts = ons. The
normal unit vectors n; and ng are both pointing outwards from their respective
domains. When thermal coupling is taken into account, additional continuity

relations on the temperatures and heat fluxes are considered:

™ = 1¢, (12)
MVTHT = WV,

where A is the thermal conductivity.
The coupled problem can be solved using a Dirichlet-Neumann approach [40],
as illustrated below for mechanical coupling; the technique can be easily exten-

ded to thermal coupling. Introducing a Dirichlet nonlinear operator F that

computes the fluid loads from a given fluid interface displacement,
tf = F(df), (13)

and a Neumann nonlinear operator S that computes the solid interface displa-

cement as a function of the solid loads,

dl =s(th), (14)

S

Equation can be formulated as a fixed-point problem [41]:
d" =S (-F(@d)), (15)

where dU is the displacement common to both the solid and fluid interfaces.
Section [3| presents the flexible implementation of CUPyDO that solves this
fixed-point problem by considering F and S as black-box tools representing
generic fluid and solid solvers. The state variables of each solver depend on
its intrinsic boundary conditions in addition to the conditions imposed at the
coupling interface.

Finally, the mesh within the fluid domain must be adapted to accommodate
the deformation/displacement of the solid. The mesh morphing used with the

ALE formulation can be expressed as
(x¢', vi') = M(d}), (16)

where x{? and v{! are the position and velocity of the mesh points, respectively,
and M a mesh deformation operator. The combination of the 7, § and M
operators may be referred to as a three-field problem [42]. In this paper, the
mesh morphing step is considered as a fluid solver task so that this procedure

is implicitly included in Equation .
3. IMPLEMENTATION OF THE COUPLING ENVIRONMENT

The implementation of the computational tool CUPyDO designed to solve
the fixed-point equation using a partitioned approach is described hereafter.
CUPyDO uses the Python language in order to interface independent solvers,

10

usually written in a compiled language, in one single and integrated framework
such that the solvers can be intuitively synchronized and data can be exchanged
between each other. The coupler provides a ready-to-use coupling algorithm
as well as interpolation capabilities for non-matching fluid-structure interface
meshes. Parallel functionalities are also available, based on communication
(collective or point-to-point) between the processes of each solver involved in
the computation. Python bindings for the Message Passing Interface (MPI)
protocol as well as Python bindings for the PETSc library, used for all parallel
linear algebra operations mainly required for the mesh interpolation step, are
available. Point searches and filtering are performed using binary trees for

efficient computation of nearest neighbors during the mesh mapping.

8.1. Coupling methodology and Python wrapping

In order to ensure the highest level of flexibility, the coupling of the solvers is
based on an abstracted black-box approach that is achieved through a modular
and high-level implementation of the coupling environment using the Python
programming language. Modules and functionalities of the coupled solvers are
wrapped in a Python layer that behaves as a driving and communicating channel
for CUPyDO. The wrapping procedure is easily performed using the Simplified
Wrapper and Interface Generator (SWIG) tool [43]. SWIG is able to interface
any function or object defined in the core code of the solvers with Python by
performing an additional but not intrusive compilation step. The generated
Python wrapper plays the role of a scripting API without using brute code
translation nor interfering with the libraries and executables created during the
basic compilation. A schematic example is proposed below based on C++,
which is the language used by the fluid and solid solvers involved in this paper.
However, the procedure can be extended to any compiled language, including
the widely used Fortran language. Considering the following C++ code defining

a simple object:

1||//File: myobject.h
2 || //C++ code for the definition of MyObject class
3 || #pragma once

4

11

5 || #include <string>

6 || //If required, headers from the core code can be used
7 || #include "corecode.h"

8

9 || class MyObject{

10 double alpha;

11 std::string tag;

12 || public:

13 MyObject(std::string const& val_tag);
14 “My0Object () ;

15 void set_alpha(double val_alpha);

16 double get_alpha() const;

17 void run();

18 || };

and wrapping this code using SWIG will create a Python module, e.g. MyMo-
dule, that could be used with the following code:

#Python code that uses the wrapper of MyObject
import MyModule

pyobject = MyModule.MyObject ("Put a tag here")
pyobject.set_alpha(5.0)

data = pyobject.get_alpha()

pyobject.run()

N O Ut W N

This methodology is the basic principle used by the coupler CUPyDO to
synchronize the sub-systems and perform communications. For data exchange
and to call the required functionalities, CUPyDO directly interacts with the
solvers through their wrappers as if they were simple Python objects. These
communications do not involve any file I/O. The wrapped functionalities of each
solver can thus be easily and intuitively managed in Python while the critical
and computationally intensive calculations are performed by the native solvers
under their own language. Particular attention may be paid to the fact that the
solvers are not driven through basic OS system calls. This allows the coupled
simulation to avoid redundant and time-consuming pre-processing operations,
such as mesh construction and configuration reading, at each solver call.

Another example of the wrapping process and the interaction between the
solvers and the coupling environment is given in Figure[[]with a broader point of
view on the procedure that shows all the steps from the core code to a simplified
generic Python coupling environment by including the SWIG compilation and

the Python wrapper generation.

12

Fluid solver Solid solver
Core code (C++) Core code (C++)
SWIG SWIG

N N
Py wrapper Py wrapper
FluidSolver.py SolidSolver.py

#CouplingEnvironment.py

n

import FluidSolver
import SolidSolver €

a

FluidSolver.run()

data = FluidSolver.getData()
SolidSolver.setData(data)
SolidSolver.run()

#etc

Figure 1: Schematic illustration of a coupling environment and its interaction with the re-
spective fluid and solid Python wrappers.

This way of using a Python framework as a coupling environment allows the
users and the developers to reach the largest level of flexibility for performing top
level tasks such as managing the coupled solvers and communicating the data.
First, those data can be expressed under friendly Python-oriented formats such
as lists or dictionaries, or with numpy [44] arrays for larger data sets on which
computational operations have to be performed. SWIG allows those Python
types to be interfaced with classical and efficient static C/C++ arrays (pointers)
or C++ std::vector, again taking C/C++ as an example. Secondly, using a
Python wrapping methodology is less intrusive than compiling the coupled code
with an external library or an API adapter coming from the coupler. Thirdly, the
Python wrapper can be generated as a generic interfacing layer without being
restricted to FSI coupling purposes. Finally, the coupling with commercial codes
is technically conceivable since several of them, such as Abaqus [45], are already

designed with a Python interface.

8.2. Qwerall coupling architecture

The coupling Python environment CUPyDO is an object-oriented code whose
architecture is summarized in Figure [2| where the main classes are represented
with white boxes. The framework is divided into three distinct layers: Utilitiy

(U), Core (C) and Interface (I). The Utility layer defines common functionali-

13

ties such as MPI communication functions based on the mpi/py [46] wrapping
module. The Interface data class is designed to handle in parallel the data
that have to be exchanged at the fluid-structure interface between the solvers.
Equivalently, the Interface matrix class is used to define and construct in
parallel the interpolation matrix used for the mapping of non-matching meshes
(Section [3.5). Those classes are derived from the petsc/py [AT] wrapping mo-
dule for the PETSc library so that they can be used in every parallel algebraic
operation such as matrix(data)-data (scalar) products or matrix-data linear
systems. In this case, the Linear solver class, which is an interface to the

Krylov-type iterative solvers from PETSc, is used.

mpidpy petsc4py/scipy

MPI functions Interface data | | Interface matrix

Interpolator
Algorithm

Fluid solver Solid solver

Figure 2: Overview of the implemented architecture of CUPyDO.

The Core layer is the central part of the coupling environment where the
main classes are defined according to different tasks such as the management
of the MPI partitioning and the communication network, the interpolation of
the fluid-structure interface meshes, the coupling algorithm and the interfacing
with the solvers. The Manager class is the first class to be instantiated and
is designed to build the network describing the MPI partitioning of each sol-

ver. For example, this will identify the processes on which the fluid and/or

14

solid solvers are running and, among all those processes, it will distinguish the
subset of processes that effectively own fluid-structure interface nodes. Storing
the number of interface nodes on each process and identifying the halo nodes
(i.e. nodes that support the communication between the MPI partitions of one
solver) are also important tasks dedicated to the Manager. The Interpolator
uses the information built by the Manager to construct the non-matching mesh
interpolant that will be called each time the solvers have to exchange their data
from one grid to the other. The coupled solvers are represented in the Core
layer by Generic fluid/solid classes (one fluid and one solid). These are
almost pure virtual classes whose purpose is to ensure the flexibility and the
compatibility between the solvers and the single coupling environment. Finally,
the Algorithm class is the central part of the Core layer where the coupling
algorithm (see next section) is actually implemented. The other classes are sy-
nchronized inside the Algorithm in order to perform all the coupling tasks such
as communication, interpolation, and sub-system computation.

The Interface layer is an important part of the coupling environment since
it ensures the flexibility of the coupling and the compatibility between the sol-
vers and the coupling environment. It is composed of child interfacing classes
(red boxes in Figure that are directly derived from the generic classes of
the Core layer. First, this inheritance ensures the compatibility between any
coupled solver and the central Algorithm class. Then the interfacing classes
are overloaded with the particular wrapper coming from each coupled solver so
that one interfacing class (red box) is required per coupled solver. The inter-
facing class plays the role of a plugin layer and thus ensures the flexibility of
the coupling. Consequently, the individual Python wrappers of the solvers do
not have to be designed while seeking a deep compatibility with the coupling
environment. Also, modifying the coupling environment, e.g. for maintenance
or improvements, does not need to affect the individual Python wrappers and,
reversely, any deep change in the core code of the coupled solvers has no impact
on the central coupler. Templates for interfacing classes are provided by CU-

PyDO to users wishing to couple their solvers providing a Python wrapper can

15

be generated. Users then have the possibility to overload the provided templates
with the wrapped features of their solvers in order to ensure compatibility with
the coupler.

This architecture allows the user to launch the coupled simulations with a
very simple Python script and a minimal amount of code, as illustrated by the

code below:

#Schematic launching script for a coupled simulation with CUPyDO
import cupydo

args[’fluid’] = 1list ()
args[’solid’] = 1list ()
args[’man’] = 1list()
args[’int’] = list ()
args[’alg’] = list ()

© 00U W+

10 || # Initialization of fluid solwver

11 || import fluidSolverInterface

12 || fluidSolver = fuidSolverInterface.FluidSolverConstructor (argsl[’
fluid’])

14 || # Initialization of solid solwver
15 || import solidSolverInterface

16 || solidSolver = solidSolverInterface.SolidSolverConstructor (argsl[’
solid’])

17

18 || # Initialization of manager

19 || manager = cupydo.Manager (fluidSolver ,solidSolver ,args[’man’])

20

21 || # Initialization of interpolator

22 || interpolator = cupydo.Interpolator (manager ,fluidSolver,

solidSolver, args[’int’])
23
24 || # Initialization of algortihm

25 || algorithm = cupydo.Algorithm(manager ,fluidSolver ,solidSolver,
interpolator ,args[’alg’])

26
27 || # Run the coupled stimulation
28 || algorithm.run ()

The fluid and solid solvers are first instantiated with their own parameters,
e.g. configuration and mesh files, followed by the manager, interpolator and
algorithm, in this order to respect the dependencies. The coupled computation

is then launched by calling the run method of the algorithm class.

8.8. Coupling algorithm

The coupling environment of CUPyDO for solving the FSI problem, repre-
sented by Equation ([L5), is implemented using a partitioned framework. It is

16

based on a block-Gauss-Seidel (BGS) algorithm [41] [48], that synchronizes the
solvers in a strong coupling scheme. After one fluid computation, the loads are
transferred to the structural part which is also solved in order to calculate the
solid displacements that are defined as new fluid boundary conditions for the
next coupling iteration. The coupling conditions on the fluid-structure inter-
face at each time step (for time-marched computations) are met by iterating
between the fluid (operator F) and solid (operator S) computations and by
exchanging their boundary conditions. The same procedure can be applied for
thermal coupling by exchanging temperatures and heat fluxes. These iterati-
ons are repeated until a convergence criterion, based on the Euclidean norm of
the difference in the structural displacements (or temperatures and heat fluxes)

between two successive BGS iterations (index j),
[[ej] = [1dj —dj_y[] <e, (17)

is met. In Equation , € is a case-dependent dimensional tolerance that is
set by the user, &jf is the computed displacement by the solid solver at the
current BGS iteration and d}ll is the relaxed displacement at the previous
BGS iteration.

For cases where the fluid density is close to the structural density, strong
interactions between the fluid and solid are expected (added-mass effects). This
leads to a slower convergence of the BGS coupling that can even diverge in the
most severe cases and an under-relaxation on the computed structural displa-

cement can be applied to stabilize the coupling:

df =dj_, +wr}, (18)

with w < 1. Static (constant w) or dynamic relaxation are both available. In
the dynamic case, Aitken’s formulation [4I] is used to update the relaxation

parameter at each coupling iteration:
I \T.(.T r
(rj 1) -(rj —r; 1)

[Irj —xiall?

(19)

wj = —wj,l

For time-marched solutions, Aitken’s formula cannot be directly applied at the

first BGS iteration. The last calculated w value at the previous time step is

17

thus used as initial value for the first BGS iteration. This value can be limited
by an upper or lower user-defined boundary. The choice of an upper bound is
more conservative from a stability point of view but can lead to a higher number
of coupling iterations and thus slower convergence of the iterative procedure.
The convergence of the BGS coupling algorithm at each time step can also be
improved by using a predictor [49] on the solid displacements at the beginning

of a time step ¢, before the first fluid computation:
dl =db | 4o At dY | 4oy At (A, —dl), (20)

in which g = 1 and a1 = 0.5 for a second-order predictor. The predicted value
is then communicated to the fluid solver as an initial guess of the fluid-structure
interface position. The overall time-dependent coupling algorithm is illustrated
in Figure [3] Note that an explicit (weak) coupling can be achieved if only one
coupling iteration is performed at each time step.

In order to track the motion of the fluid-structure interface, the deformation
of the fluid volume mesh is usually chosen over a complete and costly remeshing.
Deforming the grid also allows us to conserve its topology. This mesh morphing
task is a major step in the coupling algorithm, especially for large structural
deformations where low quality fluid cells may appear leading to a low quality
fluid solution or even the divergence of the computation. In this architecture,
the fluid volume mesh deformation step is considered as an intrinsic feature of
the coupled fluid solver in line with its own ALE implementation (as described
in Section. Since it is expected that the fluid part of the problem can deform
its own volume mesh with its own method, no mesh deformation technique is

currently implemented in CUPyDO.

3.4. Conjugate heat transfer capabilities

As already mentioned, thermal transfer between the coupled solvers is also
possible. In addition to loads and displacements, temperatures and heat fluxes
can be communicated through the coupler. Four thermal coupling schemes are

available depending on the direction of the data transfer [50, [5I]: Temperature

18

Initialize =0, i=0, j=0

Interpolate solid displacements i+=1
from solid to fluid interface grids t+=At
J=0

Deform fluid mesh
Compute grid velocities
=l

Call fluid solver
Compute fluid interface loads
Relax solid displacement

Interpolate fluid loads
from fluid to solid interface grids

Compute relaxation parameter
Call solid solver (Aitken)
Compute solid interface displacements

Compute solid interface residual NO
and assess convergence
- J
YES
. NO ict solid i it
Is ¢ the final time ? Predict solid interface position

at the next time step
YES

Exit

Figure 3: Time-marching coupling algorithm based on a block-Gauss-Seidel scheme (i is the
time iterator and j is the FSI iterator).

Forward Flux Back (TFFB), Flux Forward Temperature Back (FFTB), Heat
transfer coefficient Forward Temperature Back (hFTB) and Heat transfer coef-
ficient Forward Flux Back (hFFB). Those are defined from a fluid-side point of
view and are depicted in Figure [4]

The first two schemes directly exchange temperatures 7" and heat fluxes
q at the fluid-structure interface. In this case, stability criteria are found to
be dependent on the Biot number of the coupled problem [51I]. The TFFB
scheme is stable for Bi > 1 whereas the FFTB scheme is stable for Bi < 1.
The last two schemes use a Robin boundary condition on the solid side. They
are based on a user-defined parameter h. being a numeric, i.e. with no true

physical meaning, convective heat transfer coefficient. This coefficient is used as

19

T; 9
q, T
he T, he T,
q, T

Figure 4: Illustration of the available thermal coupling schemes for CHT applications.

a relaxation parameter that affects the convergence rate of the coupled solution.
On the fluid interface, the convective heat flux can be written as follows, by using

the coefficient h. and defining an equivalent fluid temperature Tr:
F = he (TE - Tf) : (21)
where
9 =qf -nf . (22)

From these expressions, the equivalent fluid temperature is calculated and then
communicated to the solid domain. Equation is written on the solid domain

to get the heat flux that is imposed as a solid boundary condition:
o =he (T8 -1 . (23)

The thermal coupling uses the same algorithm as for the mechanical problem
without Aitken relaxation in such a way that only the additional thermal data
have to be communicated through the interface. The user is allowed to choose
between pure mechanical, pure thermal or mixed mechanical-thermal couplings.

Independent coupling tolerances are defined by the user for each physics.

20

8.5. Non-matching fluid-structure interface meshes

In a partitioned coupling approach solid and fluid meshes are likely to be
created independently of each other for optimality in resolving different physics
that impose different stretching constraints. Consequently, there is no guaran-
tee that the boundary discretization at the fluid-structure interface consists in
matching meshes. Non-matching geometries may also be used. For example,
one may represent a wing with its true geometry in the fluid domain so that the
fluid loads are correctly recovered, but this same wing could be represented as
an equivalent structural box in the solid domain. In both cases, the data trans-
ferred between the two solvers must be interpolated from one grid to the other.
This is equivalent to defining a new operator Z{ that maps the displacements of
the solid interface mesh onto the fluid interface mesh during the communication
step of the BGS algorithm,

di =7:(ds), (24)

or, analogously, an operator Zf that maps the load from the fluid to the solid,

t! = T3 (t). (25)

S

The same operators can be defined for interpolation of temperatures and heat
fluxes. These operators can be expressed as simple linear algebraic interpolation
matrices [52]. Equation for the displacement of the fluid-structure interface
can be rewritten as

di =Hd;, (26)

and a conservative interpolation is used for the loads so that Equation
becomes

th = HTt] . (27)

Conservative interpolation assumes that energy is conserved through the fluid-
structure interface [53] by writing the equilibrium of virtual work acting on the

fluid and solid sides:

oW, = (t0) " 6d" = (t) " 6df = oWy, (28)

21

such that only one matrix, i.e. a one-sided mapping (solid to fluid), is needed
between the fluid and solid interface grids. For a consistent interpolation [53],
matrices for the displacements and for the loads are built separately and need
a two-sided mapping (solid to fluid and fluid to solid). Consistent mapping is
used for thermal data interpolation.

The interpolation matrix H is defined according to the technique used to
map the interface nodes from one grid to the other. Nearest neighbor inter-
polation is the cheapest technique and results in a boolean structure for the
interpolation matrix but also leads to a very poor interface reconstruction when
the difference on the discretization of the two domains becomes significant. A
stair-shaped fluid interface is recovered since several fluid nodes may have the
same displacement coming from one particular solid node. However this method
is perfectly suited for matching mesh mapping. Projection methods consist in
projecting the fluid nodes onto the structural mesh and using the shape functions
of the structural elements to define the elements of H. Topological information
is required to solve the projection problem leading to a lack of flexibility if
this is not directly available from the coupled solvers. Moreover, the projection
step is prone to robustness issues when the discretization mismatching is again
significant.

The interpolation technique implemented in the present coupling architec-
ture is a point-match method based on Radial Basis Function (RBF) interpola-
tion [54] [52] [B5]. This approach is said to be “meshless” because no topological
information is required, thus conserving coupling flexibility. The parallelization
of the method is also easier and the accuracy/cost ratio can be nicely tuned by
the user with minimal effort.

In the context of RBF, the interpolation of a quantity of interest reads

N
s(x) =Y i (|lx = xill) + p(x), (29)
i=1
where the position of an interface mesh point is given by the vector x = [z, y, 2T,
N is the number of points, p(x) is a polynomial and ¢ are basis functions of the

Euclidean distance. The coefficients a; and the coefficients of the polynomial

22

are determined by requiring an exact recovery of the function, for example the

structural nodal displacements,
d (x;) = df (30)

and the additional requirements

N
3 aialx) =0 (31)

for any polynomial ¢ with a degree less than or equal to that of polynomial p.
The degree of the polynomial p depends on the choice of the basis function ¢.
A unique interpolant is given if the basis function is a conditionally positive

definite function; if it is of order m < 2, a linear polynomial p,

p(x) = Bo + o + Byy + B27, (32)

can be chosen [54]. Using a linear polynomial guarantees that any rigid body
motion of the fluid-structure interface will be recovered. Discretely, Equati-
ons and are written for the structural displacement in a matrix form

as (for the z-dimension, similar expressions in the other dimensions)

dfr Cse Pol| |y
N , (33)
0 PT 0| |8,

where the a and 3 vectors contain the coefficients a; and the coefficients of the
polynomial p, respectively. The matrix Cy, is a Ny X Ny matrix containing all
the evaluations of the basis functions such as Cy(i,7) = ¢ (|[xs, — %s,||) and
the matrix P is a N5 x 4 matrix whose rows are defined by [1 Ts, Y, Zs,} .
A similar expression can be used for the fluid displacement, for which Equa-
tion (29)) writes

Oy

dEz = [Cfs Pf} (34)

xT
In this case Cg and Py contain the evaluation of the basis functions based on
distances computed between fluid and solid nodes and the coordinates of the

fluids nodes, respectively.

23

Combining Equations (33]) and enables us to express the interpolation
matrix H as being the first Nt x Ny block of
- CSS PS

H=|C, P or ol (35)

S

Similarly, we write the transposed interpolation matrix that gives the conserva-
tive interpolation of the fluid loads on the solid mesh as being the first Ny x N¢

block of
-T

¥ Co P {cfs Pf]T. (36)

H' =

Pl o
The construction of the different blocks requires nothing else than node coor-
dinates and distance computations. The sub-matrices are assembled at the
beginning of the overall simulation but the matrix H and its transpose are not
computed explicitly since they require matrix inversion. This operation might
be costly and inaccurate. Moreover, a direct inversion of the matrix does not
take advantage of the potential sparsity of the matrix to be inverted if basis
functions defined on a radial compact (see below) are used for the interpolation.
Consequently the system is solved using the FGMRES iterative solver of
the PETSc library and the product is computed at each communication of
the coupled simulation. A FGMRES approach was chosen as default because
it is known to provide good convergence and has proved to be robust in most

cases, but any other PETSc solver could otherwise be used.
The intrinsic behavior of the interpolation algorithm is determined by the
choice of the basis functions. In CUPyDO, two commonly used basis functions

are available, namely the C? function with radial compact support of size r,

a1 1) = (1—'7;')1(4';'“) , (37)

where the subscript + indicates that only the positive part of the expression is

taken into account, and the Thin Plate Spline (TPS) with global support,

oI - 11) = Il 11 log ([- II) - (38)

24

The C? function gives a sparse interpolation system for which the sparsity level
is dictated by the value of the radius r. A large value of the radius yields a more
accurate interpolation but also a larger system to store in memory and to solve.
Conversely, small values of the radius imply sparse and light systems with lower
accuracy. The value of the radius is constant and dimensional. It is fixed by the
user as a case-dependent configuration parameter. There is no specific rule that
defines an optimal value for the radius but choosing an excessively small value
could lead to inaccurate interface reconstruction. The global TPS function was
shown to give accurate interpolations but automatically involves full systems to

be stored and solved [52].

3.6. Parallelization

CUPyDO is developed for large systems requiring a parallelized implemen-
tation with MPI. In the framework of a partitioned architecture, the paralleli-
zation is not straightforward and keeping a high level of flexibility while con-
serving good parallel scalability is challenging. Two types of communications
are considered: intra- and inter-communications. Intra-communications refer
to the communications between the processes belonging to one of the coupled
solvers. These communications usually depend on the intrinsic parallelization
of the solvers and can be treated as black-box functionalities. This abstracted
approach also allows CUPyDO to use pure serial solvers. Inter-communications
refer to the communications between processes across the coupling algorithm.
These communications are typically used to exchange data in parallel between
the coupled solvers on top of the primary communication mechanism based on
the wrapping methodology.

The most flexible inter-communication approach would be to use a sequen-
tial coupling interface. Collective communications are used to gather the data
from the parallel solvers on one single core and the coupling computations, such
as fluid-structure mesh interpolation, are run in serial. This obviously leads to
a severe bottleneck due to the loss of the fluid-structure interface partitioning

and the serialization of some computation-intensive tasks. In the coupling ar-

25

chitecture of CUPyDO, parallel coupling is achieved using a re-partitioning of
the fluid-structure interface from a local distribution to a global distribution.
This re-partitioning step is used to perform coupling calculations in parallel
with adequate load balancing on the fluid-structure interface nodes. The paral-
lel coupling computations are performed using the PETSc library by interfacing
its Python bindings directly into the coupling architecture (as mentioned in
Section [3.2)). Typically, this allows us to construct the interpolation matrices
and solve the associated system of equations in parallel.

The parallel coupling scheme is depicted in Figure [5] for data interpolation.
The re-partitioning of the fluid-structure interface is directly performed by the
PETSc library through the Interface data class that is globally assembled in
parallel from the processes owning the nodes belonging the the fluid-structure
interface (filled boxes in Figure. This is called local-to-global mapping. Fluid-
structure interface nodal data are then interpolated, with parallel system solu-
tions and parallel matrix-vector products, in the global space and then redistri-
buted to their respective solver instances using reverse mapping (from global to
local). Reverse mapping is performed by first gathering all the data on the mas-
ter thread and then distributing the data with peer-to-peer communications. A
direct peer-to-peer communication strategy that avoids gathering of the data is
part of ongoing work. In order to build the parallel interpolation matrix, repre-
sented in green in Figure |5, each partition of the interface solid (fluid) mesh is
sent to the partitions of the fluid (solid) interface mesh through several commu-
nication rounds. For each round, the receiving fluid (solid) partitions compute
the elements of C and P using the RBF mapping. In case of local RBF, the
mapping is enhanced by building K-D trees of the received mesh partitions in
order to filter the points that are outside the specified radius, thus reducing the
amount of data that have to be treated.

The parallel implementation of the coupler has been developed to take into
account the heterogeneous distribution of each coupled solver. Most of the time,
the fluid domain will require many more processors than the solid one. Conse-

quently, different numbers of processors should be allocated for the fluid/solid

26

Interface Interface
data data

= g = Rﬂ

I I Interface
Local-global matrix
mapping

Figure 5: Parallel distribution mapping and parallel fluid-structure interface data interpolation
(blue for fluid side and red for solid side). Each box represents a process on which the fluid or
solid solver is instantiated. Filled boxes represents processes owning fluid-structure interface
nodes.

solvers. This segregation can be achieved by defining specific groups of proces-
ses, that are subsets of the total amount of processes, on which the solver will be
instantiated. Consequently, each process can instantiate a fluid, a solid or both
fluid/solid instances. When there is no intersection between the fluid and solid
subsets of processes (the processes instantiate either a fluid or a solid, never
both), simultaneous computations where the fluid and solid solvers are running
at the same time could be considered. Although the parallel framework of CU-
PyDO is compatible with such a distribution of processes, there is no coupling
algorithm currently implemented to tackle this case.

Additionally, other tasks that are purely related to the coupling, such as re-
sidual computation, interface relaxation or interface prediction, are also distri-
buted in the global partitioning space. This ensures a fully parallelized coupling

algorithm.

27

4. RESULTS

The implementation of CUPyDO described in the previous section has been
used to solve several FSI test cases in order to demonstrate its accuracy, flexibi-
lity and robustness. Depending on the test case, different solid solvers are used
whereas the fluid solver is always SU2. Additionally, different functionalities of
the coupler are highlighted, such as the interpolation of non-matching meshes

or under-relaxation of the BGS coupling.

4.1. Isogai wing section

The coupling between SU2 and the rigid body integrator is tested using the
classical Isogai wing section aeroelastic case (case A) [56, [57]. This test case
represents the dynamics of the outboard portion of a swept-back wing in the
transonic regime. The airfoil is a symmetric NACA 65a010 profile with chord
¢ = 2b. The two-degree-of-freedom structural model is shown in Figure [f] The
displacement h of the elastic axis is positive downwards and the pitch angle «
is positive clockwise. The static unbalance S is defined as the product of the
airfoil mass m with the distance xcg — x¢ between the center of gravity and
the elastic axis. The structural restoring force is provided by a spring-dashpot
system with stiffnesses K and K, and damping coefficients C, and C,, for the
plunging and pitching mode, respectively.

The equations of motion for this aeroelastic system can be written as [58]

mh+ Sé + Chh+ Knh = —L,

) (39)
Sh+ Iti + Cod + Koo = M,

where Iy is the moment of inertia of the airfoil around the elastic axis, L the
aerodynamic lift (positive upwards) and M the aerodynamic moment with re-
spect to the elastic axis (positive clockwise). The overall system is charac-

terized by several non-dimensional parameters, i.e., the normalized static un-

2
«

pitching damping ratios np, = Ch/2vKpm and 1, = Co/2v/K,If, the mass

ratio = m/mpoob? where po is the free-stream fluid density, and the natural

balance Y = S/mb and moment of inertia r2 = I;/mb?, the plunging and

28

]]] _»
I I

I I g
X; Xeg €2 c x

Figure 6: Schematic of a two-degree-of-freedom pitching-plunging airfoil aeroelastic model.

frequency ratio @ = wyp/ws where wy = \/m and wy, = \/m are the
natural frequencies of the uncoupled system. The parameters for the Isogai test
case are x = 1.8, r, = 1.865, w = 1 and p = 60. There is no structural dam-
ping, i.e., Cp, = C, = 0. The elastic axis is placed in front of the airfoil at a
distance x¢ = —b from the leading edge and the natural pitching frequency is
here w, = 100 rad/s.

The Euler equations are solved in the transonic regime on the fluid domain
which is discretized by a structured O-mesh of 21760 cells (68x 320 for the
radial and circumferential direction respectively) with a small stretching from
the airfoil surface to the outer boundary. The external domain is circular and
extends up to 25¢ from the airfoil in each direction. The simulation is performed
starting from uniform flow and an initial airfoil pitch angle ag = 0.0174 rad
(1°). The time step is set to At = 0.0016 s which corresponds to 39 time steps
per period of the uncoupled pitch mode. Because of the high mass ratio of
the coupled system, low added-mass effects are expected, thus no relaxation is
used in the coupling algorithm. Three BGS iterations per time step are typically
required to achieve a coupling tolerance of 107% m (10~* times the displacement
of the center of gravity associated to the initial perturbation) on the structural

displacement.

29

Several FSI simulations at different transonic free-stream Mach numbers (M,
0.7 — 0.9) are performed with variable speed index
Uss
bwar/1t

where Uy, is the free-stream velocity, in order to predict the flutter point. Flut-

*

(40)

ter is identified as the point for which the damping rate of the system’s dynamic
response is zero. For each speed index, the damping coefficient ¢ is computed
from the logarithmic decrement of the time response on the pitch and plunge
degrees of freedom. The next speed index is determined by interpolating/ex-
trapolating (least square fitting) the damping coefficients previously computed
and plotted on a { — V* diagram.

The computed flutter speed indices Vi are compared to values from the
literature [59, 60, 61} 62], in Figure [7] The best approximation curve (spline)
is a representation of the flutter boundary, i.e. the limit between the stable
(under the flutter point) and unstable (beyond the flutter point) regions. It can
be seen that the “transonic dip” and the typical “S-shape” of the boundary for
My, between 0.7 and 0.9 are both well predicted.

4.2. VIV of a flexible cantilever in the wake of a square cylinder

The study of the flexible cantilever attached to the downstream side of a
perfectly rigid square cylinder is a classical two-dimensional benchmark test
case for FSI [49]. The geometry of the computational domain is described in
Figure[8] In this case H = 0.01 m. The physical properties of the solid and fluid
are summarized in Table [I} The uniform incoming flow velocity is U, = 0.513
m/s, which corresponds to a Reynolds number Re = U, H /vy = 333. The top
and bottom sides of the domain are modeled as inviscid walls whereas no-slip
conditions are imposed on solid boundaries (cylinder and cantilever).

The velocity and Reynolds number are such that an unsteady laminar Von
Karman vortex street is generated in the wake of the cylinder with a shedding
frequency close to the first bending frequency of the flexible cantilever. There-
fore, the vortical structure of the wake generates harmonic aerodynamic loads

that induce periodic oscillations of the flexible cantilever.

30

A CUPyDO simulations
— Spline interpolation x4
2.5 O Liu et al. [59]

O Alonso et al. [60]
¢ Biao er al. [61]

2| % Thomas ef dl. [62] |
Unstable
T 1.52';(|
~ % &,
1 L _
Stable
05 8

O I I
0.7 0.75 0.8 0.85 0.9 0.95

Figure 7: Flutter speed index as a function of the free-stream Mach number for the Isogai wing
section. Comparison between current computations and numerical results from the literature.

RN SN U_x

.I 0.06H 12H
4H

N N y
e —— I—‘x

5.5H 14H

Figure 8: Flexible cantilever attached to a rigid square cylinder: geometry of the computati-
onal domain.

This interaction is numerically reproduced by coupling SU2 and Metafor

using CUPyDO. A nonlinear formulation for the structural part is necessary to

31

Density [kgm™] Ds 100

Solid Young’s modulus [Pa] E 2.5-10°
Poisson’s ratio [-] Vs 0.35

: -3
Fluid Density [kgm™| Pt 1.18

Kinematic viscosity [m?s?] ¢ 1.54-107°

Table 1: Flexible cantilever attached to a rigid square cylinder: physical properties of the
solid and fluid.

correctly predict the bending of the cantilever undergoing large displacements.
The fluid domain is solved using the compressible laminar Navier-Stokes equa-
tions on a hybrid structured-unstructured grid with 15798 cells. The mesh is
globally unstructured with a structured layer near the solid boundary. The can-
tilever is modeled as pure elastic material and discretized with 240 x 10 (length
x thickness) quad elements. In order to eliminate any interpolation error, dis-
cretization is performed so as to have matching meshes at the fluid-structure
interface.

The time step for the simulation is At = 0.0025 s, which corresponds to
122 time steps per period for the first bending mode of the beam. Four BGS
iterations with no relaxation are typically required to reach a coupling tolerance
of 107% m (10~* times the expected tip displacement) on the structural displa-
cement. The simulation starts with uniform flow and no initial displacement of
the cantilever. Figure [9] shows the computed tip displacement d, as a function
of time. At the start of the simulation, a transient behavior is observed until the
vortex shedding, and consequently the tip displacement, reaches an established
regime where the displacement amplitude is clearly modulated by higher fre-
quency waves. This stems from the complex structure of the vortex shedding,
as was already observed by Sanchez et al. [63] who also used the SU2 solver but
with a native FSI implementation.

A summary of results from the literature (e.g., [64] 48] [65]) is provided
by Habchi et al. [49]. The oscillation frequency typically falls in the range
2.94 — 3.25 Hz, while the amplitude of the tip displacement is in the range

0.95 — 1.15 cm, as summarized in Table 2] The present computation predicts

32

_0.015 1 1 1 1 1
0 2 4 6 8 10 12

Figure 9: Displacement of the flexible cantilever tip as a function of time.

a maximum tip displacement d, = 1.07 cm and a frequency f = 3.14 Hz ,

which is in very good agreement with results from the literature. Figure

dy (cm) f (1/s)

CUPyDO 1.07 3.14
Sanchez et al. [63] 1.05-1.15 3.05-3.15
Habchi et al. [49] 1.02 3.25
Kassiotis et al. [64] 1.05 2.98
Wood et al. [48] 1.15 2.94
Olivier et al. [65] 0.95 3.17

Table 2: Comparison of the maximum tip displacement and oscillation frequency of the flex-
ible cantilever between the present computation and results from the literature. The range
of values obtained by Sanchez et al. corresponds to a parametric study on the relaxation
parameter in the BGS algorithm.

shows the velocity magnitude contour at several time steps of a period T', where
the vortical flow structures and the large displacement of the cantilever can be

observed.

4.8. Aeroelastic study of the AGARD 445.6 wing

The experimental AGARD 445.6 wing test case [66] is a frequently used
three-dimensional validation case for transonic flutter simulations. The present

computational study is based on the weakened model 3 of the wing. This is a

33

Ul [m/s]: 0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09 1

t=T/4 t=3

Figure 10: Flexible cantilever attached to a rigid square cylinder: velocity magnitude contour
at three phases of a period.

45° swept-back wing whose geometrical properties are summarized in Table

The cross section is a symmetric NACA 65a004 airfoil and the wing is clamped

at the root.
Root chord [m] ¢ 0.559
Taper ratio [-] A 0.658
Tip chord [m)] ¢ 0.368
Semi-span [m] bs 0.762
Aspect ratio [-] AR 1.644
Wing surface [m?] S 0.353
Mean aerodynamic chord [m] ¢ 0.470

Table 3: Geometrical properties of the AGARD 445.6 wing.

The solid wing is modeled in Metafor with 8-node continuum elements and
an orthotropic elastic material whose properties are summarized in Table [d] It
is discretized with 31, 17 and 2 cells in the spanwise, chordwise and thickness
direction, respectively. A modal analysis is first performed and the first four
natural frequencies computed are compared with results in the literature in
Table [5} showing good agreement with models coming from other references.

The fluid part of the problem is discretized using a structured O-mesh with

34

Longitudinal Young’s modulus [GPa] E, 3.151

Transverse Young’s moduli [GPa] E>, E5 0.4162
Shear moduli [GPa] Glg, G13, G23 0.4392
Poisson’s ratio [-] V12,113, V23 0.31
Density [kgm™] Ps 381.98

Table 4: Material properties for the AGARD 445.6 wing.

fi f2 /3 Ja

Metafor 9.54 40.35 50.22 97.67
Yates [66] 9.60 38.10 50.70 98.50
Goura [67] 9.67 36.87 50.26 90.00
Beaubien et al. [63] 9.46 39.44 49.71 94.39
Zhanget al. [69) 9.57 38.17 4835 91.55

Table 5: First four natural frequencies of the AGARD 445.6 wing from the present calculation
and the literature. Frequencies are in Hz with f; and f3 corresponding to the first and second
bending modes, and f2 and f4 to the first and second torsion modes, respectively.

a total number of 248000 cells. The fluid domain extends up to 25¢, from the
wing in each direction. The wing surface is discretized with 30, 50 and 20 cells in
the spanwise, chordwise and thickness direction respectively. The mesh around
the wing is illustrated in Figure

A coupled simulation is used to compute the flutter boundary of the wing.
The compressible solver of SU2 is used to solve the Euler equations for the fluid
part of the problem. A symmetry boundary condition is imposed on the plane
in which the wing is clamped. Similarly to the experimental investigation, a
large range of Mach numbers, from My, = 0.499 to M., = 1.141, is simulated.
Based on experimental conditions, the corresponding Reynolds numbers are in
the range Re = 0.54 - 105 to Re = 1.89 - 105. As for the Isogai wing section test
case, computations are performed with variable speed indices for a given Mach
number and flutter is inferred from the damping coefficients extracted from the
aeroelastic response. The speed index for the AGARD 445.6 wing test case is

defined as
U,

AR -
0.5¢,wa /1t

(41)

35

\\\\\\\\\\\\\\\\\\\\\\\\\‘\i,

\\ QU
§\\\\\\\§\\\\\\\\\\\\\\\\\\\\\\\}\\N l

N

—
RN

Il

L

T N
||\\\\\\\$§{§\‘\\\\\§§§\\\\\\\\\

where ¢, wo and p are the root chord, the first torsion natural frequency and
the mass ratio, respectively. The mass ratio is given by pu = m/psV where
m = 1.863 kg and V = 0.130 m? are taken from Yates [66].

Since the discretization of the two interfaces is not matching, the mesh in-
terpolator of the coupling tool is used to map the two interface meshes and to
communicate the data. As the number of points on the interface is limited, TPS
interpolation can be used for high accuracy without drastically impacting the
computational cost. The simulation is performed with a time step of 0.001 s
(= 105 time steps per period of the first bending mode) with no relaxation on
the BGS coupling. In order to limit the computation time of the simulation,
a maximum number of four coupling iterations is imposed which is typically
sufficient to reach a coupling tolerance of order 10=7 m (about 1075 times the
expected displacement amplitude at flutter).

The simulation is initialized with uniform flow and no deformation of the
solid wing. During the first 0.01 s of simulation, a vertical load is applied on

an upstream portion of the wing tip in order to induce a small perturbation

36

of a determined amplitude (around 0.66 % of the span). Then the loading is
released and the wing is free to vibrate in the flow. The aeroelastic response
is illustrated in Figure [T2] which shows the vertical displacement of the leading
edge at the wing tip for three different speed indices around the flutter boundary
at Moo = 0.96. Simulations are performed in parallel on 16 cores (16 fluid
instances, 1 solid) of a computing node with Intel Xeon E5-2650 processor (2

GHz, 16 threads).

0.027

—v'=0218
0.015F [—V =0281 ” ”

0.01F

0.005

-0.005 |

-0.01

-0.015 U

_0'02 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2

t[s]

Figure 12: Aeroelastic response of the AGARD 445.6 for three speed indices V* with Moo =
0.96 and poo = 0.0634 kg/m3: vertical displacement d of the leading edge at the wing tip.

As previously mentioned, the flutter condition is determined by successive
evaluations of the damping coefficient ¢ as a function of the speed index. Fi-
gure([l13|illustrates the standard evolution of the damping coefficient as a function
of the speed index at My, = 0.96. It first increases starting from low values at
low speed indices, then reaches a maximum value and finally drops until it
crosses the ¢ = 0 axis corresponding to the flutter point.

Figure [[4) shows the pressure contours on the wing at Mo, = 0.96 and V* =

0.300 for three time steps over a cycle. Contours of the Mach number in the

37

0.021
0.015 ¢
0.01

= 0.005"
o

-0.005 ¢

0 005 01 015 02 025 03
Vel

-0.01

Figure 13: Evolution of the computed damping coefficient of the AGARD 445.6 wing aeroe-
lastic response as a function of the speed index for Mo, = 0.96 and poo = 0.0634 kg/m3.

supersonic region are superposed at three wing sections in order to show its
motion within one cycle and thus highlight the non-linearities typical of the

transonic regime.

P [Pa]: 4000 4400 4800 5200 5600 6000 6400 6800

t="T/4 t="T/2 t=3T/4

Figure 14: Surface pressure and Mach number in supersonic region for the AGARD 445.6 wing
at three different times of a period with Moo = 0.96, poo = 0.0634 kg/m?3 and V* = 0.300.

Figure shows the computed flutter boundary that is compared to the
experimental results [66] and to computational results obtained solving the
Euler [68] [70, (9L [71] or RANS [3] [7I] equations. For all the computational
reference results, the structural part is modelled by a modal decomposition ap-
proach which differs from the fully time-integrated approach used in this paper.
It can be seen that the results obtained by coupling SU2 and Metafor with
CUPyDO are in good agreement with experiments and with the other compu-
tational results found in the literature in the subsonic and transonic regimes.
It is also important to note that the transonic dip is well-captured. Howe-
ver, larger discrepancies with the experimental data are observed for supersonic
Mach numbers, especially at M., = 1.141. Similarly to other computations,
the flutter boundary is over-estimated at these Mach numbers. Although the
origin of this discrepancy remains unclear, several explanations [59, [71] have
been proposed, such as the impact of viscous effects (not accounted for in the
present Euler simulations) and the complex nonlinear shock - boundary layer
interaction. Even for RANS simulations, uncertainties remain concerning the
turbulence model and the impact of transition. Additionally, the wing tip geo-
metry, i.e., cut-off or rounded (rounded here), and spatial discretization scheme
(centered or upwind) [3] could also play a role in the supersonic regime. Finally,
the effect of structural damping on the flutter boundary should be investigated,
since no indication of its experimental value is given [70]. All these details are
relevant for accurately capturing the flutter boundary at high Mach numbers

but are beyond the scope of this paper.

4.4. Flexible plate in a cross flow

A test case involving stronger added-mass effects is considered in order to
asses the performance of coupling relaxation. A flexible linear elastic plate is
immersed in a cross flow and clamped at the bottom so that it bends under its
own drag. This case is directly taken from Tian et al. [7] and originally comes
from an experimental study made by Luhar and Nepf [72] on the deformation

of aquatic plants submitted to a water flow. The computational domain as well

39

0.7

-©-CUPyDO
X Experiment [66] 5
+ Beaubien ez al. [68]

0.6 | ¢ Chen eral. [3] 1
O Lee-Rausch et al. [70]

XX Liu et al. [59] A

¥ Xiao et al. (Euler) [71]

A Xiao et al. (Rans) [71]

Ny 0
0.4 X
0.3+ —
0.2 ‘ ‘ ‘

0.4 0.6 0.8 1 12

Mo

Figure 15: Flutter boundary of the AGARD 445.6 wing in the transonic regime.

as the fluid boundary conditions are represented in Figure A flexible plate
of length L, width b and thickness h is placed vertically in a uniform flow of
velocity Uy, density pso and viscosity pi. One side of the plate is clamped
and all the other sides are free. The external boundary of the domain is a
rectangular box extending from (—5b, —8b, —8.5b) to (16b, 8b, 8.5b). The plate
is fixed at the origin of the xy-plane. The dimensions of the plate are such that
L = 5band h = 0.2b. In this case a value of 0.1 m for the plate width b is chosen.
Note that the plane in which the plate is clamped is considered as an inviscid
wall to neglect the boundary layer and conserve upstream flow uniformity. The
following non-dimensional parameters are used: Re = Uyxb/Voo = 1600 where
Voo is the fluid kinematic viscosity, E* = E/p.,U2 where E is the Young’s
modulus of the plate, and p* = ps/poo = 0.678 where p; is the plate density.

The Poisson’s ratio is set to v, = 0.4.

40

16b

_ Z T Z
— Us
T farfield o —
- \X g
R N .
— 3 no-slip 17o —
i /
-+ r slip
—
T 16b !

Figure 16: Plate in a cross flow: geometry and computational domain and fluid boundary
conditions.

The fluid domain is discretized into a structured mesh with a total num-
ber of 193900 cells. The plate is discretized with 40, 15 and 10 cells along the
length, width and thickness, respectively. The structural domain is discretized
with a structured mesh with 8-node continuum elements so that the meshes are
matching at the fluid-structure interface. The fluid is solved using the laminar
compressible Navier-Stokes equations in SU2 while the structural displacements
are computed with Metafor. Although the solution obtained by Tian et al. [7]
seems to be stationary, the simulation with CUPyDO is performed with un-
steady time integration in order to capture the complex transient part of the
response of the plate and assess the performance of the relaxation scheme of the
BGS coupling algorithm during the whole time integration. The time step of
the simulation is set to 0.005 s which corresponds approximately to 1/400 of the
time needed to reach a steady-state solution. Because the fluid and solid den-
sities have the same order of magnitude, making the coupled system converge
is challenging. In particular, only low values of the static relaxation parame-
ter (i.e., below 0.5) lead to a stable solution, but at the expense of a very low
convergence rate. A large number of coupling iterations (up to 87) is needed to
reach the specified coupling tolerance of 1076 m (4-107° times the displacement
of the plate along the z-axis).

The dynamic Aitken relaxation strategy is thus used to achieve convergence

while keeping the number of iterations per time step at an acceptable level. A

41

minimal criterion (see Section is used to restrict the relaxation parameter
to a low value of 0.1 at the beginning of each time step, but this value natu-
rally increases along the coupling iterations allowing the iterative procedure to
reach the desired tolerance within 6 to 20 iterations. The computation is run
on 16 cores (16 fluid instances, 1 solid) of the same computing node used for
the AGARD 445.6 test case and needs about 2 seconds of simulated time for
the plate to reach a steady state deflection. Figure [17] shows the displacement
of the tip face’s center of the plate as a function of time. At the beginning of
the simulation, the plate is rapidly bent under the effect of drag and then a
small restoration is observed before reaching a steady-state deformation, which
is depicted in Figure [18 where streamlines are superposed in order to highlight
the vorticity dynamics in the near field behind the plate. Note that no vortex
shedding is observed due to three-dimensional effects for which the tip vortices
significantly influence the vortex dynamics and tend to smooth out the unstea-
diness that typically appears in two-dimensional simulations. This behavior was
already highlighted with flow simulations around rigid flat plate wings featu-
ring comparable aspect ratios but lower Reynolds numbers than in the present

case [73]. Table |§| gives the comparison between the present results and those

——X-axis
= = z-axis

Figure 17: Displacements along the x and z-axis of the plate tip as a function of time.

42

1.5 2 25 3 35 4

1

0.5

U [m/s]:

\ ,,)\ , ‘
\ // ¢¢o00 ‘0
R

,////,,/ o.,o

\
......
/,....

A

N
i

\
il
i

()
"
W

!
i

.,

i

))

o//

/4
7

ML
ALY
i\

0

)
\

o

Qv

)

Figure 18: Steady-state deformation of the plate in a cross flow with steamlines colored with

velocity magnitude.

obtained by Tian et al. [7]. Similar values are obtained with a maximum discre-

pancy of 13.8% on the drag coefficient and a minimal discrepancy of 1.6% for

Although the root causes for these discre-

the displacement along the x-axis.

pancies could not be unequivocally identified, the results of several tests suggest

that they originate in the fluid solution. In particular, they likely stem from

, while Tian et al. [7] results are based

the present use of a compressible solver

the respective numerical methods

on an incompressible approach. Additionally,

Nonet-

also differ (immersed boundary [7] vs. ALE with mesh deformation).

heless, this test case demonstrates the performance of the Aitken relaxation

implemented in the coupling algorithm of CUPyDO.

d./b
0.72
-0.75

b
1

dy/
4

Cp

2

1.07

CUPyDO

2.45

Tian et al. [7] 0.94

Table 6: Comparison of the drag coefficient and tip displacements of the plate between the

present computation and the results of Tian et al. [7].

43

4.5. CHT with a heated hollow cylinder

The last validation test case involves the thermal coupling capability of CU-
PyDO. The test case is taken from Nettis [51]. This is a perfectly rigid hollow
cylinder immersed in a uniform flow, as illustrated in Figure [I9] The ratio bet-
ween the inner and outer diameter is D./D = 0.5. A temperature T, = 350 K is
imposed on the inner boundary of the cylinder. The farfield fluid temperature
is also imposed, T, = 288.15 K, so that the thermal exchange at the outer
boundary of the cylinder defines a convective CHT problem. Nettis [51] perfor-
med the simulation using a compressible fluid solver with the parameters Re =
40, Pr = 0.72 and M, = 0.38 for the Reynolds, Prandtl and Mach numbers,
respectively. The ratio between the thermal conductivities A\s/A is set to 4.
The coupled simulation is here reproduced with the same parameters using SU2
to solve the fluid problem and GetDP to solve the thermal conduction problem
within the solid. A steady coupled simulation is used since the Reynolds number

is low enough to guarantee a stationary flow in the wake of the cylinder. The

=

Figure 19: Heated hollow cylinder on a cross flow.

fluid domain is circular and extends up to 25D. It is discretized by a structured
O-mesh with 50 cells in the radial direction and 120 cells in the circumferen-
tial direction. The structural domain is discretized into a structured mesh with
20 quad elements in the radial direction and the meshes are matching at the

fluid-structure interface.

44

The four thermal coupling schemes presented in Section are tested. Only
the TFFB scheme is unstable since the Biot number is below 1 for this particular
case. The three other schemes provide a converged solution. In the case of the
hFFB scheme, the value of the numerical heat transfer coefficient influences the
number of iterations needed to reach a tolerance of 10 W/m? on the heat flux
at the interface. This is summarized in Table [7] showing that increasing the
value of h. reduces the number of coupling iterations. For tested values higher
than h. = 20, the coupled simulations become unstable. The hFTB scheme
is less sensitive to the value of h.. As shown in Table [7] the same number
of iterations is necessary to reach the specified temperature tolerance of 0.1 K
on the interface (leading to an equivalent level of convergence as for the hFFB
scheme). For values higher than h. = 1 the scheme is unstable. It is also shown
that the FFTB scheme takes the same number of iterations as hFTB to reach

the same tolerance.

Value of h, (W/m?K) Coupling iterations

1 198
) 92
hFFB 10 32
15 23
20 19
0.01 8
0.05 8
hFTB 0.1 8
0.5 8
1 8
FFTB - 8

Table 7: Comparison of the performances for different CHT coupling schemes.

Figure 20| shows the temperature distribution at the fluid-structure interface
T, obtained with the hFTB and hFFB couplings in CUPyDO. Good agreement
is obtained between the present hFTB calculations and the results from Net-
tis [5I] where a hFTB scheme and a compressible solver to compute the fluid

part of the problem are used as well. Discrepancies between hFTB and hFFB

45

are observed mainly on the upstream part of the cylinder surface, however the
temperature difference at the stagnation point between the two schemes is not
higher than 0.2%. The temperature field inside the solid domain is illustrated
in Figure 21| showing the non-symmetric distribution due to the convective heat

transfer induced by the surrounding flow.

1 : : :
—CUPyDO - hFTB
—CUPyDO - hFFB
—Nettis [51] - hFTB
09t
$§ 0.8} .
|
S
0.7F |
0.6 : : :
0 50 100 150

0 [deg]

Figure 20: Temperature distribution on the wetted surface of the cylinder. The upstream
stagnation point corresponds to 0°.

5. CONCLUSION AND FUTURE WORK

CUPyDO, a modular and flexible implementation of a coupling environment
for fluid-structure interaction problems has been presented. The coupled pro-
blem is solved using a partitioned approach in which the fluid and solid solvers
are integrated in a single coupling environment and communicate through a
Python wrapping layer. This ensures that the high-level management of the
two solvers (black-box tools) is very intuitive and flexible and that all the inten-
sive calculations remain embedded in their respective core codes. The object-

oriented architecture of CUPyDO is designed to guarantee the compatibility of

46

TK]
333 337 342 346 350
L I

Figure 21: Temperature distribution inside the hollow cylinder.

each coupled solver with minimal adaptation effort by using dedicated interfa-
cing classes based on generic fluid and solid classes. The coupling tool is designed
to work on parallel environments using the MPI protocol so that engineering
studies involving large systems can be considered. Communications between the
solvers, data interpolations and coupling algorithms are parallelized in order to
avoid any bottleneck due to partial serialization of several coupling procedures.
Parallel algebraic operations are supported by the PETSc library that is used in
CUPyDO with dedicated Python bindings. Interpolation based on Radial Basis
Functions is used to transfer data across the fluid-structure interface when the
two meshes are not matching. The time-marched block Gauss-Seidel algorithm
is used to strongly couple the two domains and Aitken under-relaxation is used

to stabilize the coupling when significant added-mass effects are involved.

47

The results of several test cases have been compared to the literature, de-
monstrating the accuracy of the coupling tool for coupled problems of various
complexity. To compute the fluid part of the problem, the Euler or Navier-
Stokes equations are solved in SU2 with the finite volume method in a Arbi-
trary Lagrangian-Eulerian formulation. The high modularity of the framework
has been demonstrated by using different structural solvers and models. La-
grangian linear /non-linear finite element solvers such as GetDP or Metafor are
used to solve the structural dynamic equilibrium for deformable solids and the
heat equation for thermal conduction. A simpler integrator is used to compute
constrained rigid body motions as in the Isogai aeroelastic test case.

Future work will focus on extending the current capabilities of the tool. In
particular, this includes the implementation of a Newton method for the cou-
pling algorithm and other interpolation methods. The parallel scalability of the
implementation should also be assessed in order to identify potential impro-
vements to the parallelization. Another avenue for future work is to interface
other fluid and solid solvers with CUPyDO, as it has already been done with a
PFEM solver. This would also provide the opportunity to tackle other multip-
hysics applications, for which the technical implementation in CUPyDO would
simply require a straightforward extension of the quantities that are transferred
between the solvers (e.g., species flux for problems with chemical reactions, such
as in ablation). The main challenge in this case would rather stem from possible
numerical instabilities and convergence issues of the coupling algorithm. Other
multiphysics problems might also require the coupling of more than two different
solvers. Such a development could be envisaged, but would be challenging due
to the higher complexity of the resulting communication network and coupling

algorithm.

ACKNOWLEDGEMENT

The authors would like to acknowledge the Walloon Region and Walloon-
Brussels Federation as research funding entities of this project under Grant No.

7093, the Consortium des FEquipements de Calculs Intensifs (CECI), funded

48

by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under

Grant No. 2.5020.11, for providing the computational resources required for

the three dimensional test cases presented in Sections [£.3] and [£:4] and Professor

Christophe Geuzaine (University of Liege) for his collaborative work on the

interface between GetDP and CUPyDO.

REFERENCES

1]

[6]

V. Kalro and T.E. Tezduyar. A parallel 3D computational method for
fluid-structure interactions in parachute systems. Computer Methods in
Applied Mechanics and Engineering, 190:321-332, 2000. https://doi.
org/10.1016/S0045-7825(00) 00204-8.

R. Kamakoti and W. Shyy. Fluid-structure interaction for aeroelastic ap-
plications. Progress in Aerospace Sciences, 40(8):535-558, 2004. https:
//doi.org/10.1016/j.paerosci.2005.01.001l

X. Chen, G-C. Zha, and M-T. Yang. Numerical simulation of 3-D wing
flutter with fully coupled fluid-structure interaction. Computers and Fluids,
36(5):856-867, 2007. https://doi.org/10.1016/j.compfluid.2006.08.
005.

J.R.R.A. Martin, J.J. Alonso, and J.J. Reuther. High-fidelity aerostructural
design optimization of a supersonic business jet. Journal of Aircraft, 41(3):

523-530, 2004. https://doi.org/10.2514/1.11478.

H. Luo, R. Mittal, X. Zheng, S.A. Bielamowicz, R.J. Walsh, and J.K. Hahn.
An immersed-boundary method for flow-structure interaction in biological
systems with application to phonation. Journal of Computational Phy-
sics, 227(22):9303-9332, 2008. https://doi.org/10.1016/j.jcp.2008.
05.001.

Y. Wu and X-C. Cai. A fully implicit domain decomposition based ALE

framework for three-dimensional fluid-structure interaction with applica-

49

https://doi.org/10.1016/S0045-7825(00)00204-8
https://doi.org/10.1016/S0045-7825(00)00204-8
https://doi.org/10.1016/j.paerosci.2005.01.001
https://doi.org/10.1016/j.paerosci.2005.01.001
https://doi.org/10.1016/j.compfluid.2006.08.005
https://doi.org/10.1016/j.compfluid.2006.08.005
https://doi.org/10.2514/1.11478
https://doi.org/10.1016/j.jcp.2008.05.001
https://doi.org/10.1016/j.jcp.2008.05.001

[13]

tion in blood flow computation. Journal of Computational Physics, 258:

524-537, 2014. https://doi.org/10.1016/j.jcp.2013.10.046.

F-B. Tian, H. Dai, H. Luo, J.F. Doyle, and B. Rousseau. Fluid-structure in-
teraction involving large deformations: 3D simulations and applications to
biological systems. Journal of Computational Physics, 258:451-469, 2014.
https://doi.org/10.1016/5.jcp.2013.10.047.

R. Wiichner, A. Kupzok, and K-U. Bletzinger. A framework for stabili-
zed partitioned analysis of thin membrane-wind interaction. Internatio-
nal Journal for Numerical Methods in Fluids, 54:945-963, 2007. https:
//doi.org/10.1002/f1d.1474.

G. Hou, J. Wang, and A. Layton. Numerical methods for fluid-structure
interaction - A review. Communications in Computational Physics, 12(2):

337-377, 2012. https://doi.org/10.4208/cicp.291210.290411s

L. Garelli. Fluid-structure interaction using an arbitrary Lagrangian-

Eulerian formulation. PhD thesis, Universidad Nacional Del Litoral, 2011.

S.R. Idelsohn, E. Onate, R. Rossi, J. Marti, and F. Del Pin. New com-
putational challenges in fluid-structure interactions problems. In J Eber-
hardsteiner, C Hellmich, HA Mang, and J Périaux, editors, FCCOMAS
Multidisciplinary Jubilee Symposium, volume 14 of Computational Methods
in Applied Sciences, pages 17-31. Springer Netherlands, Dordrecht, 2009.
https://doi.org/10.1007/978-1-4020-9231-2_2,

H-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele,
A. Shukaev, and B. Uekermann. preCICE - A fully parallel library for
multi-physics surface coupling. Computers and Fluids, 141:250-258, 2016.
https://doi.org/10.1016/j.compfluid.2016.04.003,

Fraunhofer Institute for Algorithms and Germany Scientific Compu-

ting SCAI, Sankt Augustin. Mpcci 4.5.0-1 documentation. https://www.

o0

https://doi.org/10.1016/j.jcp.2013.10.046
https://doi.org/10.1016/j.jcp.2013.10.047
https://doi.org/10.1002/fld.1474
https://doi.org/10.1002/fld.1474
https://doi.org/10.4208/cicp.291210.290411s
https://doi.org/10.1007/978-1-4020-9231-2_2
https://doi.org/10.1016/j.compfluid.2016.04.003
https://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf
https://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf

[14]

[15]

[16]

[18]

[19]

[20]

mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf.
Accessed October 31, 2017.

S. Kataoka, S. Minami, H. Kawai, T. Yamada, and S. Yoshimura. A pa-
rallel iterative partitioned coupling analysis system for large-scale acoustic
fluid-structure interactions. Computational Mechanics, 53:1299-1310, 2014.
https://doi.org/10.1007/s00466-013-0973- 1l

F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel,
and L. Gicquel. Analysis of high performance conjugate heat transfer with
the OpenPALM coupler. Computational Science and Discovery, 8, 2015.
https://doi.org/10.1088/1749-4699/8/1/015003.

T.D. Economon, F. Palacios, S.R. Copeland, T.W. Lukaczyk, and J.J.
Alonso. SU2: An open-source suite for multiphysics simulation and de-
sign. AIAA Journal, 54(3):828-846, 2016. https://doi.org/10.2514/1.
J053813.

F.R. Menter. Zonal two equation k — w turbulence model for aerodynamic
flows. In ATAA Paper 1993-2906. 23rd Fluid Dynamics, Plasmadynamics,
and Lasers Conference, Orlando, Florida, USA, 1993. https://doi.org/
10.2514/6.1993-2906.

P.R. Spalart and S.R. Allmaras. A one-equation turbulence model for
aerodynamic flows. In 80th Aerospace Sciences Meeting and Exhibit, Reno,

NV, USA, 1992. https://doi.org/10.2514/6.1992-439.

J. Donéa, A. Huerta, J-Ph. Ponthot, and A. Rodriguez-Ferran. Arbitrary
lagrangian-eulerian methods. In R Stein, R de Borst, and TJR Hughes,
editors, Encyclopedia of Computational Mechanics. Wiley, 2004. https:
//doi.org/10.1002/0470091355, ISBN 9780470091357.

F. Palacios, M.R. Colonno, A.C. Aranake, A. Campos, S.R. Copeland, T.D.
Economon, A.K. Lonkar, T.W. Lukaczyk, T.W.R. Taylor, and J.J. Alonso.

o1

https://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf
https://www.mpcci.de/content/dam/scai/mpcci/documents/MpCCIdoc-4_5_0.pdf
https://doi.org/10.1007/s00466-013-0973-1
https://doi.org/10.1088/1749-4699/8/1/015003
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/1.J053813
https://doi.org/10.2514/6.1993-2906
https://doi.org/10.2514/6.1993-2906
https://doi.org/10.2514/6.1992-439
https://doi.org/10.1002/0470091355
https://doi.org/10.1002/0470091355

[22]

[23]

[25]

Stanford University Unstructured (SU?): An open-source integrated com-
putational environment for multi-physics simulation and design. In ATAA
Paper 2013-0287. 51st AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition 2013, Grapevine, Texas, USA,

7-10 January, 2013. https://doi.org/10.2514/6.2013-287.

T.D. Economon, D. Mudigere, G. Bansal, A. Heinecke, F. Palacios, J. Park,
M. Smelyanskiy, J.J. Alonso, and P. Dubey. Performance optimizations for
scalable implicit RANS calculations with SU2. Computers and Fluids, 129:
146-158, 2016. https://doi.org/10.1016/j.compfluid.2016.02.003.

R. Sanchez, H.L.. Kline, D. Thomas, A. Variyar, M. Righi, T.D. Economon,
J.J. Alonso, R. Palacios, G. Dimitriadis, and V. Terrapon. Assessment
of the fluid-structure interaction capabilities for aeronautical applications
of the open-source solver SU2. In ECCOMAS Congress, VII European
Congress on Computational Methods in Applied Sciences and Engineer-
ing, Crete Island, Greece, June 2016. https://doi.org/10.7712/100016.
1903.6597.

M. Pini, S. Vitale, P. Colonna, G. Gori, A. Guardone, T.D. Economon,
J.J. Alonso, and F. Palacios. SU2: the open-source software for non-ideal
compressible flows. Journal of Phyics: Conference Series, 821(1), 2017.
https://doi.org/10.1088/1742-6596/821/1/012013|

A. Jameson and S. Schenectady. An assessment of dual-time stepping,
time spectral and artificial compressibility based numerical algorithms for
unsteady flow with applications to flapping wings. In AIAA Paper 2009-
4278. 19th AIAA Computational Fluid Dynamics Conference, San Antonio,
Texas, USA, 2009. https://doi.org/10.2514/6.2009-4273.

J.T. Batina. Unsteady Euler algorithm with unstructured dynamic mesh
for complex-aircraft aerodynamic analysis. AIAA Journal, 29(3):327-333,
1991. https://doi.org/10.2514/3.10583.

92

https://doi.org/10.2514/6.2013-287
https://doi.org/10.1016/j.compfluid.2016.02.003
https://doi.org/10.7712/100016.1903.6597
https://doi.org/10.7712/100016.1903.6597
https://doi.org/10.1088/1742-6596/821/1/012013
https://doi.org/10.2514/6.2009-4273
https://doi.org/10.2514/3.10583

[26]

[28]

[31]

C. Farhat, C. Degand, B. Koobus, and M. Lesoinne. Torsional springs for
two-dimensional dynamic unstructured fluid meshes. Computer Methods
in Applied Mechanics and Engineering, 163:231-245, 1998. https://doi.
org/10.1016/S0045-7825(98) 00016-4.

R. Lohner and C. Yang. Improved ALE mesh velocities for moving bo-
dies. Communications in Numerical Methods in FEngineering, 12:599—
608, 1996. https://doi.org/10.1002/(SICI)1099-0887(199610)12:
10<599: :AID-CNM1>3.0.C0;2-Q.

M. Lesoinne and C. Farhat. Geometric conservation laws for flow problems
with moving boundaries and deformable meshes, and their impact on ae-
roelastic computations. Computer Methods in Applied Mechanics and En-
gineering, 134:71-90, 1996. https://doi.org/10.1016/0045-7825(96)
01028-6.

T.D. Economon, F. Palacios, and J.J. Alonso. Unsteady continuous adjoint
approach for aerodynamic design on dynamic meshes. AIAA Journal, 53

(9):2437-2453, 2015. https://doi.org/10.2514/1.3053763.

M.L. Cerquaglia, G. Deliege, R. Boman, L. Papeleux, and J.P. Ponthot.
The particle finite element method for the numerical simulation of bird
strike. International Journal of Impact Engineering, 109:1 — 13, 2017.
https://doi.org/10.1016/j.1jimpeng.2017.05.014.

E. Onate, S.R. Idelsohn, F. Del Pin, and R. Aubry. The particle fi-
nite element method - An overview. International Journal of Com-
putational Methods, 01(02):267-307, 2004. https://doi.org/10.1142/
S50219876204000204.

METAFOR. A nonlinear finite element code. University of Liege, http:
//metafor.ltas.ulg.ac.be/. Accessed October 31, 2017.

Y. Crutzen, R. Boman, L. Papeleux, and J-P. Ponthot. Continuous roll

forming including in-line welding and post-cut within an ALE formalism.

]

https://doi.org/10.1016/S0045-7825(98)00016-4
https://doi.org/10.1016/S0045-7825(98)00016-4
https://doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1099-0887(199610)12:10<599::AID-CNM1>3.0.CO;2-Q
https://doi.org/10.1016/0045-7825(96)01028-6
https://doi.org/10.1016/0045-7825(96)01028-6
https://doi.org/10.2514/1.J053763
https://doi.org/10.1016/j.ijimpeng.2017.05.014
https://doi.org/10.1142/S0219876204000204
https://doi.org/10.1142/S0219876204000204
http://metafor.ltas.ulg.ac.be/
http://metafor.ltas.ulg.ac.be/

[34]

[36]

[39]

Finite Elements in Analysis and Design, 143:11-31, 2018. https://doi.
org/10.1016/j.finel.2018.01.005

J-P. Ponthot. Unified stress update algorithms for the numerical si-
mulation of large deformation elasto-plastic and elasto-viscoplastic pro-
cesses. International Journal of Plasticity, 18(1):91-126, 2002. https:
//doi.org/10.1016/50749-6419(00)00097-8.

L. Adam and J-P. Ponthot. Thermomechanical modeling of metals at finite
strains: First and mixed order finite elements. International Journal of
Solids and Structures, 42:5615-5655, 2005. https://doi.org/10.1016/j.

ijsolstr.2005.03.020.

P. Bussetta, D. Marceau, and J-P. Ponthot. The adapted augmented
Lagrangian method: a new method for the resolution of the mechanical
frictional contact problem. Computational Mechanics, 49(2):259-275, 2012.
https://doi.org/10.1007/s00466-011-0644~-z.

R. Boman and J-P. Ponthot. Efficient ALE mesh management for 3D
quasi-Eulerian problems. International Journal For Numerical Methods in

Engineering, 92:857-890, 2012. https://doi.org/10.1002/nme.4361.

C. Geuzaine. GetDP: a general finite-element solver for the de Rham
complex. In PAMM Volume 7 Issue 1. Special Issue: Sixzth Internatio-
nal Congress on Industrial Applied Mathematics (ICIAMO07) and GAMM
Annual Meeting, Zirich, pages 1010603-1010604, 2007. https://doi.org/
10.1002/pamm. 200700750,

P. Dular, C. Geuzaine, F. Henrotte, and W. Legros. A general environment
for the treatment of discrete problems and its application to the finite
element method. IEEE Transactions on Magnetics, 34(5):3395-3398, 1998.
https://doi.org/10.1109/20.717799.

J. Degroote, A. Souto-Iglesias, W. Van Paepegem, S. Annerel, P. Brugge-

man, and J. Vierendeels. Partitioned simulation of the interaction between

o4

https://doi.org/10.1016/j.finel.2018.01.005
https://doi.org/10.1016/j.finel.2018.01.005
https://doi.org/10.1016/S0749-6419(00)00097-8
https://doi.org/10.1016/S0749-6419(00)00097-8
https://doi.org/10.1016/j.ijsolstr.2005.03.020
https://doi.org/10.1016/j.ijsolstr.2005.03.020
https://doi.org/10.1007/s00466-011-0644-z
https://doi.org/10.1002/nme.4361
https://doi.org/10.1002/pamm.200700750
https://doi.org/10.1002/pamm.200700750
https://doi.org/10.1109/20.717799

[43]

[45]

[46]

[47]

an elastic structure and free surface flow. Computer Methods in Applied
Mechanics and Engineering, 199:2085-2098, 2010. https://doi.org/10.
1016/j.cma.2010.02.019.

U. Kiittler and W. Wall. Fixed-point fluid-structure interaction solvers with
dynamic relaxation. Computational Mechanics, 43:61-72, 2008. https:
//doi.org/10.1007/s00466-008-0255-5.

M. Lesoinne and C. Farhat. Stability analysis of dynamic meshes for tran-
sient aeroelastic computations. In AIAA Paper 93-3325. 11th AIAA Com-
putational Fluid Dynamics Conference, pages 309-314, Orlando, Florida,
USA, July 6-9 1993. https://doi.org/10.2514/6.1993-3325|

D.M. Beazley. SWIG : An easy to use tool for integrating scripting langua-
ges with C and C++. In 4th Tecl/Tk Workshop, Monterey, CA, USA,
July 1996. https://www.usenix.org/legacy/publications/library/
proceedings/tcl196/full_papers/beazley/index.html, Accessed Octo-
ber 31, 2017.

S. van der Walt, S.C. Colbert, and G. Varoquaux. The NumPy array:
A structure for efficient numerical computation. Computing in Science €
FEngineering, 13(2):22-30, 2011. https://doi.org/10.1109/MCSE.2011.
37.

Abaqus analysis user’s guide V6.14, online documentation. SIMU-
LIA, http://abaqus.software.polimi.it/v6.14/books/usb/default.
htm, Accessed October 31, 2017.

L. Dalcin, R. Paz, M. Storti, and J. D’Elia. MPI for Python: Performance
improvements and MPI-2 extensions. Journal of Parallel and Distribu-
ted Computing, 68(5):655-662, 2008. https://doi.org/10.1016/j.jpdc.
2007.09.005.

L. Dalcin, R. Paz, P. Kler, and A. Cosimo. Parallel distributed compu-

99

https://doi.org/10.1016/j.cma.2010.02.019
https://doi.org/10.1016/j.cma.2010.02.019
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.2514/6.1993-3325
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley/index.html
https://www.usenix.org/legacy/publications/library/proceedings/tcl96/full_papers/beazley/index.html
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
http://abaqus.software.polimi.it/v6.14/books/usb/default.htm
http://abaqus.software.polimi.it/v6.14/books/usb/default.htm
https://doi.org/10.1016/j.jpdc.2007.09.005
https://doi.org/10.1016/j.jpdc.2007.09.005

[49]

[50]

[51]

[52]

ting using Python. Advances in Water Resources, 34(9):1124-1139, 2011.
https://doi.org/10.1016/j.advwatres.2011.04.013,

C. Wood, A.J. Gil, O. Hassan, and J. Bonet. Partitioned block-Gauss-Seidel
coupling for dynamic fluid-structure interaction. Computers and Structures,
88:1367-1382, 2010. https://doi.org/10.1016/j.compstruc.2008.08.
005.

C. Habchi, S. Russeil, D. Bougeard, J-L. Harion, T. Lemenand, A. Ghanem,
D. Della Valle, and H. Peerhossaini. Partitioned solver for strongly cou-
pled fluid-structure interaction. Computers and Fluids, 71:306-319, 2013.
https://doi.org/10.1016/5.compfluid.2012.11.004.

T. Verstraete, Z. Alsalihi, and R.A. Van den Braembussche. A conjugate
heat transfer method applied to turbomachinery. In Furopean Confe-
rence on Computational Fluid Dynamics, TU Delft, The Netherlands,
2006. https://repository.tudelft.nl/islandora/object/uuid:
cbbeae7b-6322-4fbf-ad7e-ae10d02f6f277?collection=research,
Accessed October 31, 2017.

L. Nettis. Conjugate heat transfer: Strategies and applications. PhD thesis,
Politecnico Di Bari, 2011.

A. de Boer, A.H. van Zuijlen, and H. Bijl. Review of coupling methods for
non-mathcing meshes. Computational Methods in Applied Mechanics and
Engineering, 196(8):1515-1525, 2007. https://doi.org/10.1016/j.cma.
2006.03.017.

A. de Boer, A.H. van Zuijlen, and H. Bijl. Radial basis functions for inter-
face interpolation and mesh deformation. In Barry Koren and Kees Vuik,
editors, Advanced Computational Methods in Science and Engineering, pa-
ges 143-178. Springer, Berlin, Heidelberg, 2010. https://doi.org/10.
1007/978-3-642-03344-5_6.

96

https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.1016/j.compstruc.2008.08.005
https://doi.org/10.1016/j.compstruc.2008.08.005
https://doi.org/10.1016/j.compfluid.2012.11.004
https://repository.tudelft.nl/islandora/object/uuid:cb5eae7b-6322-4fbf-ad7e-ae10d02f6f27?collection=research
https://repository.tudelft.nl/islandora/object/uuid:cb5eae7b-6322-4fbf-ad7e-ae10d02f6f27?collection=research
https://doi.org/10.1016/j.cma.2006.03.017
https://doi.org/10.1016/j.cma.2006.03.017
https://doi.org/10.1007/978-3-642-03344-5_6
https://doi.org/10.1007/978-3-642-03344-5_6

[54]

[55]

A. Beckert and H. Wendland. Multivariate interpolation for fluid-
structure-interaction problems using radial basis functions. Aerospace
Science and Technology, 5(2):125 — 134, 2001. https://doi.org/10.1016/
51270-9638(00)01087-7.

T.C.S. Rendall and C.B. Allen. Unified fluid-structure interpolation and
mesh motion using radial basis functions. International Journal for Nume-
rical Methods in Engineering, 74(10):1519-1559, 2008. https://doi.org/
10.1002/nme . 2219,

K. Isogai. On the transonic-dip mechanism of flutter of a sweptback wing.

ATAA Journal, 17(7):793-795, 1979. https://doi.org/10.2514/3.61226!

K. Isogai. Transonic-dip mechanism of flutter of a sweptback wing: Part
II. ATAA Journal, 19(9):1240-1242, 1981. https://doi.org/10.2514/3.
7853.

R.L. Bisplinghoff, H. Ashley, and R.L. Halfman. Aeroelasticity. Dover
Publications, 1996. ISBN 9780486691893.

F. Liu, J. Cai, Y. Zhu, H.M. Tsai, and A.S.F. Wong. Calculation of wing
flutter by a coupled fluid-structure method. Journal of Aircraft, 38(2):
334-342, 2001. https://doi.org/10.2514/2.2766.

J.J. Alonso and A. Jameson. Fully-implicit time-marching aeroelastic solu-
tion. In ATAA Paper 94-056. 32nd Aerospace Sciences Meeting and Exhi-
bit, Reno, NV, USA, 10-13 January, 1994. https://doi.org/10.2514/6.
1994-56.

Z. Biao, Q. Zhide, and G. Chao. Transonic flutter analysis of an airfoil with
approximate boundary method. In 26th international congress of the aero-
nautical sciences, 2008. http://www.icas.org/ICAS_ARCHIVE/ICAS2008/
PAPERS/230.PDF, Accessed October 31, 2017.

J.P. Thomas, K.C. Hall, and E.H. Dowell. Reduced-order aeroelastic mo-
deling using proper-orthogonal decompositions. Presented at CEAS/AI-

o7

https://doi.org/10.1016/S1270-9638(00)01087-7
https://doi.org/10.1016/S1270-9638(00)01087-7
https://doi.org/10.1002/nme.2219
https://doi.org/10.1002/nme.2219
https://doi.org/10.2514/3.61226
https://doi.org/10.2514/3.7853
https://doi.org/10.2514/3.7853
https://doi.org/10.2514/2.2766
https://doi.org/10.2514/6.1994-56
https://doi.org/10.2514/6.1994-56
http://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/230.PDF
http://www.icas.org/ICAS_ARCHIVE/ICAS2008/PAPERS/230.PDF

[63]

[65]

AA/ICASE/NASA Langley International Forum on Aeroelasticity and
Structural Dynamics, 1999. http://people.duke.edu/~jthomas/papers/
papers/podairfoil.pdf Accessed October 31, 2017.

R. Sanchez, R. Palacios, T.D. Economon, H.L. Kline, J.J. Alonso, and
F. Palacios. Towards a fluid-structure interaction solver for problems with
large deformations within the open-source SU2 suite. In ATAA 2016-
0205. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, January, 4-8, 2016. https://doi.org/10.2514/6.
2016-0205.

C. Kassiotis, A. Ibrahimbegovic, R. Niekamp, and H. Matthies. Non-
linear fluid-structure interaction problem. Part I : implicit partitioned
algorithm, nonlinear stability proof and validation examples. Compu-
tational Mechanics, 47(3):305-323, 2011. https://doi.org/10.1007/
s00466-010-0545-6.

M. Olivier, G. Dumas, and J. Morissette. A fluid-structure interaction sol-
ver for nano-air-vehicle flapping wings. In AIAA Paper 2009-3676. 19th
ATAA Computational Fluid Dynamics Conference, pages 1-15, San Anto-
nio, USA, June 2009. https://doi.org/10.2514/6.2009-3676l

E.C. Yates. AGARD standard aeroelastic configuration for dynamic re-
sponse I - Wing 445.6. AGARD Report 765, 1988. http://www.dtic.mil/
dtic/tr/fulltext/u2/a199433.pdf, Accessed October 31, 2017.

G.S.L. Goura. Time marching analysis of flutter using computational fluid

dynamics. PhD thesis, University of Glasgow, 2001.

R.J. Beaubien, F. Nitzsche, and D. Feszty. Time and frequency domain
solutions for the AGARD 445 wing. In International Forum on Aeroe-
lasticity and Structural Dynamics (IFASD), Munich, Germany, 2005.
https://www.researchgate.net/publication/228737999_Time_and_
frequency_domain_flutter_solutions_for_the_AGARD_4456_wing,
Accessed October 31, 2017.

98

http://people.duke.edu/~jthomas/papers/papers/podairfoil.pdf
http://people.duke.edu/~jthomas/papers/papers/podairfoil.pdf
https://doi.org/10.2514/6.2016-0205
https://doi.org/10.2514/6.2016-0205
https://doi.org/10.1007/s00466-010-0545-6
https://doi.org/10.1007/s00466-010-0545-6
https://doi.org/10.2514/6.2009-3676
http://www.dtic.mil/dtic/tr/fulltext/u2/a199433.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a199433.pdf
https://www.researchgate.net/publication/228737999_Time_and_frequency_domain_flutter_solutions_for_the_AGARD_4456_wing
https://www.researchgate.net/publication/228737999_Time_and_frequency_domain_flutter_solutions_for_the_AGARD_4456_wing

[69]

[71]

B. Zhang, W. Ding, J. Shengcheng, and J. Zhang. Transonic flutter analysis
of an AGARD 445.6 wing in the frequency domain using the Euler method.
Engineering applications of computational fluid mechanics, 10(1):244-255,
2016. http://dx.doi.org/10.1080/19942060.2016.1152200.

E.M. Lee-Rausch and J.T. Batina. Calculation of AGARD wing 445.6
flutter using Navier-Stokes aerodynamics. In AIAA paper 93-3476. 11th
Applied Aerodynamics Conference, Monterey, CA, USA, 1993. https://
doi.org/10.2514/6.1993-3476.

J. Xiao and C. Gu. Wing flutter simulations using an aeroelastic solver
based on the predictor-corrector scheme. Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering, 224(11):
1193-1210, 2010. https://doi.org/10.1243/09544100JAERO756.

M. Luhar and H.M. Nepf. Flow-induced reconfiguration of buoyant and
flexible aquatic vegetation. Limnology and Oceanography, 56(6):2003-2017,
2011. https://doi.org/10.4319/10.2011.56.6.2003.

K. Taira and T. Colonius. Three-dimensional flows around low-aspect-ratio
flat-plate wings at low Reynolds numbers. Journal of Fluid Mechanics, 623:
187207, 2009. https://doi.org/10.1017/50022112008005314.

99

http://dx.doi.org/10.1080/19942060.2016.1152200
https://doi.org/10.2514/6.1993-3476
https://doi.org/10.2514/6.1993-3476
https://doi.org/10.1243/09544100JAERO756
https://doi.org/10.4319/lo.2011.56.6.2003
https://doi.org/10.1017/S0022112008005314

	INTRODUCTION
	GOVERNING EQUATIONS OF THE COUPLED PROBLEM
	Fluid mechanics
	Solid mechanics
	Coupling conditions

	IMPLEMENTATION OF THE COUPLING ENVIRONMENT
	Coupling methodology and Python wrapping
	Overall coupling architecture
	Coupling algorithm
	Conjugate heat transfer capabilities
	Non-matching fluid-structure interface meshes
	Parallelization

	RESULTS
	Isogai wing section
	VIV of a flexible cantilever in the wake of a square cylinder
	Aeroelastic study of the AGARD 445.6 wing
	Flexible plate in a cross flow
	CHT with a heated hollow cylinder

	CONCLUSION AND FUTURE WORK

