Solid State Modulated GC×GC

Sjaak de Koning, Lena Dubois, Delphine Zanella, Pierre-Hugues Stefanuto, Jean-François Focant Da Vinci Laboratory Solutions, Sydneystraat 5 3047BP Rotterdam, the Netherlands; solutions@DaVinci-LS.com

Organic and Biological Analytical Chemistry Group, MolSys, University of Liège, Belgium

Keywords: Solid State, GC×GC

The first dual-stage thermal modulator for GC×GC was invented by Liu and Philips in 1991 [1]. Air at ambient temperature was used for trapping, and releasing was done by resistive heating of the modulation column. In 1997, Marriott and Kinghorn [2] demonstrated a modulator device, where a cryogenically cooled trap was moving oven the column inside the GC oven. Current commercially available modulators use non-moving jets, using CO_{2} or N_{2} gas (chilled using LN 2). The amount of gas and liquid supplied for these modulators lead to high operational costs.
In this contribution is a two-stage solid state modulator demonstrated. Compounds eluting from the first-dimension column move via the $1^{\text {st }}$ hot-zone into a thermo-electric cooler (TEC) where they get trapped. Following, the column is moved, such the part containing the trapped compounds comes in the $2^{\text {nd }}$ hot-zone, where the compounds are rapidly released to the second-dimension column. While releasing, compounds coming from the first-dimenstion column are trapped in the TEC (stage 1). After the release time, the column moves back, so the compounds trapped during the release time get remobilised in the $1^{\text {st }}$ hot-zone and re-trapped in the TEC (stage 2). After the trapping period, the column moves again to release the compounds.
Analytical performance of the two-stage solid state modulator is comparable to the well-known two-stage modulators. Modulated peak widths are $20-25 \mathrm{~ms}$ and compounds are modulated from C_{2} till $\mathrm{C}_{40}+$

[^0]
[^0]: 1. Z. Liu, J. Phillips, J. Chromatogr. Sci. 29 (1991) 227.
 2. P.J. Marriott, R.M. Kinghorn, Anal. Chem. 69 (1997) 2582.
