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Introduction
Context
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» Even with a large engine efficiency, 50-60% of fuel energy
is lost in waste heat
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Introduction
ORC technology

<> Among the WHR techniques, the Rankine cycle is one of the most promising
ones<
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( | | Many possible architectures for
) coouan given boundary conditions

<> However, R&D activities are still necessary to find the most appropriate
architecture (working fluid, heat source/sink, expansion machine, etc.) in order to
reach an acceptable economical profitability and to increase reliability
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Introduction
ORC technology — working fluids
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Introduction
ORC technology — working fluids

Volumetric expanders Turbomachines
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Introduction

ORC technology - heat sources and heat sinks
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Introduction
ORC technology - previous work

<> Previous work showed (VTMS London - 2017)
v Ethanol + screw expander minimizes the Specific Investment Cost (EUR/kW)
v’ Results are quite similar with scroll and piston

v EGR last configuration (#4) does not ensure enough cooling of EGR

<> Dynamic simulation on driving cycle should help refine the results
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Simulation model
Heat exchangers

o Heat exchangers “concentrate” most of the dynamics of the ORC system
o Each side considered as a 1-dimensional tube in the flow direction
o Amesim (Siemens) modeling platform

o Finite volume approach: energy, mass and momentum balances are expressed
and solved for each volume

Hot gases

Wall

Water

o Heat transfer coefficients are adjusted in order to reproduce results by steady-
state heat exchanger models previously developed in Matlab.
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Simulation model
Heat exchangers

o Experimental validation of the model
<> Shell and plate heat exchanger

<> Connected to the tailpipe of a passenger
car gasoline engine

<> Exhaust gas to water heat exchanger

<> Upwards and downwards steps on the
pump flow rate
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Simulation model
Pump and expansion machine
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Simulation model
Pump and expansion machine
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Simulation model
Pump and expansion machine

su

o Development of a generic grey-box model (lumped parameter model)

o Accounts for: inlet pressure droop, heat transfer between the fluid/machine/

ambient, mechanical losses, leakages, under-/over- expansion/compression
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Simulation model
Pump and expansion machine

o Experimental validation of the model
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Simulation model
Pump and expansion machine

o Prediction on the performance of the machines at their nominal rotational speed
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Simulation model
Pump and expansion machine

o Dynamics of expanders (and pumps) is very limited compared with that of the
heat exchangers (much smaller time constants)

o Grey-box model is used to derive operating maps of isentropic efficiency and
filling factor as function of inlet/outlet pressures, inlet temperature, rotational

speed
.
o Filling factor:
0.9~
5= M 1
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o Isentropic effectiveness:
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Simulation model
Complete ORC system

o The complete ORC model is built by assembling components models

o Amesim model in steady-sate regime is compared to a previously developed
steady-state model (built in Matlab) => good agreement
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Control strategy
Gain-scheduled PID

o In order to conduct dynamic simulation,
control (even simple) must be
implemented

o Pump speed controls the superheat

o Expander speed controls the high
pressure

o The system to control is non-linear

o Multi-linear model approach is
considered = combination of linear
models to approach the real system

o 17 operating points are considered

17 FOPTD transfer functions

J

J

17 sets of PID parameters interpolated as
function of the heat source power (“gain-
scheduling”)
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Example for the pump

Heat source power: th,su = MEGRCp,EGR,su(TEGR,su - wa,sat) + MEGCp,EG,su(TEG,su - wf,sat)
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Control strategy
Operating points used for the gain-scheduled PID
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Simulation results

Driving cycle

Driving cycle split into 7 phases
(to represent all conditions met

by a long-haul truck)

Each phase is an independent
driving cycle

Each phase has a weight

according to its contribution to

real life of the truck

Driving cycle 1 2 3 4 5 6 7
Road type Extra Highway Highway Extra Extra Extra Hilly
urban urban wurban urban
Vehicle speed Mid High Mid Low Mid High  High
Weight 0.1 0.1 0.5 0.075 0.1 0.075 0.05
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Simulation results
Performances of the controllers

o Superheat set point: 20K (pump control)

o Optimal evaporating pressure set point identified based on a steady-state model
and interpolated as function of heat source power (expander control)
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Simulation results
Gas outlettemperartures and additional cooling load

o Additional cooling load approx. ranges between 20 and 40 kW (EGR does not
yield additional cooling load)

o Recirculated exhaust gas outlet temperature must be between 100-120°C (NO,
emission reduction)

o Tailpipe gas outlet temperature >100°C (condensation)
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Simulation results
Gas outlettemperartures and additional cooling load

o Time evolution of the pump and expander shaft power and isentropic efficiencies
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Simulation results
Average values of the composite driving cycle

Energy performance indicators

o Working fluid: ethanol
o Parallel architecture yields largest fuel savings, but also largest additional cooling
load

o Fuel saving in the range of 2.3 t0 3.2%
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Simulation results
Average values of the composite driving cycle

Economic indicators

o Assumptions: 150,000 km/y; 35 1/100 km; 1.1 EUR/I; truck owner cost =1.5 TIC
o ORC weight: loss of trailer load (not taken into account)

o Payback time range from 2 years (parallel) to 2.5-2.6 years (EGR first)
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Conclusions and future work

o Dynamic simulations of driving cycles give more accurate results regarding energy
and economical performance

o An ORC dynamic model is built in Amesim platform (Siemens)

o Components and system models are validated by means of steady state and/or
dynamic experimental data.

o Dynamic simulation requires controllers. 2 gain-scheduled PID controllers are
implemented (control of the superheat and evaporating pressure)

o Performance is evaluated on a composite driving cycle

o Fuel consumption reduction from 2.3% (EGR first) to 3.2% (parallel)

o Payback time from 2 years (parallel) to 2.5-2.6 years (EGR first)

o Cooling load limitation and additional fan consumption must be taken into account

o Impact of ORC on engine warm-up phase could be taken into account

Vincent Lemort - Haifa, May 2018 26



Thank you for your attention!

Vincent Lemort
Vincent.Lemort@uliege.be
Thermodynamics Laboratory

University of Liege - Belgium

Vincent Lemort - Haifa, May 2018

27



