PRE-DESIGN OF WASTE HEAT RECOVERY ORC SYSTEMS FOR HEAVY-DUTY TRUCKS BY MEANS OF DYNAMIC SIMULATION

> Ludovic Guillaume and Vincent Lemort SAE – Waste Heat Recovery Symposium Haïfa - May 24th 2018

Introduction Context

- ♦ Reduce fuel consumption is necessary
 - to reduce GHG emissions (HD represents ¼ of EU road transport emissions)
 - to increase competitiveness of transportation by trucks (fuel=28% of the total operating cost of the truck)
- \diamond How could we reduce fuel consumption?
 - Waste heat valorization is a promising solution
 - Even with a large engine efficiency, 50-60% of fuel energy is lost in waste heat

Introduction ORC technology

 \diamond Among the WHR techniques, the Rankine cycle is one of the most promising

Many possible architectures for given boundary conditions

♦ However, R&D activities are still necessary to find the most appropriate architecture (working fluid, heat source/sink, expansion machine, etc.) in order to reach an acceptable economical profitability and to increase reliability

Introduction ORC technology – working fluids

Introduction ORC technology – working fluids

Introduction ORC technology - heat sources and heat sinks

➔ 6 topologies

Introduction ORC technology – previous work

- \diamond Previous work showed (VTMS London 2017)
 - ✓ Ethanol + screw expander minimizes the Specific Investment Cost (EUR/kW)
 - ✓ Results are quite similar with scroll and piston
 - ✓ EGR last configuration (#4) does not ensure enough cooling of EGR
- ♦ Dynamic simulation on driving cycle should help refine the results

Content of the presentation

- 1. Introduction
- 2. Dynamic simulation model
- 3. Control strategy
- 4. Simulation results
- 5. Conclusions

Simulation model Heat exchangers

- Heat exchangers "concentrate" most of the dynamics of the ORC system
- Each side considered as a 1-dimensional tube in the flow direction
- Amesim (Siemens) modeling platform
- Finite volume approach: energy, mass and momentum balances are expressed and solved for each volume

 Heat transfer coefficients are adjusted in order to reproduce results by steadystate heat exchanger models previously developed in Matlab.

Simulation model Heat exchangers

- Experimental validation of the model
 - \diamond Shell and plate heat exchanger
 - Connected to the tailpipe of a passenger car gasoline engine
 - $\diamond\,$ Exhaust gas to water heat exchanger
 - Upwards and downwards steps on the pump flow rate

Vincent Lemort - Haifa, May 2018

Expander container

Torque mete

(Collaboration with Technical University Dortmund)

Axial-piston

Scroll

Screw

- 120 cm3 (compressor mode) Ο
- **Oil-free** Ο
- Tested with R245fa \cap
- Built-in volume ratio close to 4.2 Ο
- Nominal power of 2 kWe Ο
- 20 cm3 Ο
- Unsynchronized Ο
- Tested with R245fa 0
- Built-in volume ratio close to 2.5 Ο
- Nominal power of 2 kWe Ο
- 195 cm3 (total cylinder) Ο
- External oil lubrication loop Ο
- Tested with R245fa 0
- Built-in volume ratio close to 5 0
- Nominal power of 4 kWe Ο

Vincent Lemort - Haifa, May 2018

Roots

Vane

- o 100 cm3
- o Tested with R245fa
- Nominal power of 3.5 kWe
- Volume ratio close to 1

(Collaboration with Czech technical university in Prague)

- 0
 - o Tested with siloxane

60 cm3

Nominal power of 1 kWe

- Development of a generic grey-box model (lumped parameter model)
- Accounts for: inlet pressure droop, heat transfer between the fluid/machine/ ambient, mechanical losses, leakages, under-/over- expansion/compression

Simulation model

Pump and expansion machine

R245fa test bench

• Prediction on the performance of the machines at their nominal rotational speed

- Piston expander suffers from large clearance volume and large mechanical losses
- Leakages affect the performance of all machines
- ♦ Over-expansion losses is visible at low pressure ratio

- Dynamics of expanders (and pumps) is very limited compared with that of the heat exchangers (much smaller time constants)
- Grey-box model is used to derive operating maps of isentropic efficiency and filling factor as function of inlet/outlet pressures, inlet temperature, rotational speed

• Filling factor:

$$\phi = \frac{\dot{M}}{\dot{M}_{th}} = \frac{1}{\epsilon_v}$$

 $\circ\;$ Isentropic effectiveness:

$$\epsilon_s = \frac{\dot{W}}{\dot{M}(h_{su} - h_{ex,s})}$$

Example of map for the screw expander

Simulation model Complete ORC system

- The complete ORC model is built by assembling components models
- Amesim model in steady-sate regime is compared to a previously developed steady-state model (built in Matlab) => good agreement

Control strategy Gain-scheduled PID

- In order to conduct dynamic simulation, control (even simple) must be implemented
- Pump speed controls the superheat
- Expander speed controls the high pressure
- The system to control is non-linear
- Multi-linear model approach is considered = combination of linear models to approach the real system
- 17 operating points are considered
- \Rightarrow 17 FOPTD transfer functions
- ⇒ 17 sets of PID parameters interpolated as function of the heat source power ("gainscheduling")

Example for the pump

Heat source power: $\dot{Q}_{hf,su} = \dot{M}_{EGR}C_{p,EGR,su}(T_{EGR,su} - T_{wf,sat}) + \dot{M}_{EG}C_{p,EG,su}(T_{EG,su} - T_{wf,sat})$ Vincent Lemort - Haita, May 2018

Control strategy *Operating points used for the gain-scheduled PID*

Simulation results Driving cycle

- Driving cycle split into 7 phases (to represent all conditions met by a long-haul truck)
- Each phase is an independent driving cycle
- Each phase has a weight according to its contribution to real life of the truck

Driving cycle	1	2	3	4	5	6	7
Road type	Extra	Highway	Highway	Extra	Extra	Extra	Hilly
	urban			urban	urban	urban	
Vehicle speed	Mid	High	Mid	Low	Mid	High	High
Weight	0.1	0.1	0.5	0.075	0.1	0.075	0.05

Simulation results Performances of the controllers

- <u>Superheat</u> set point: 20K (pump control)
- Optimal <u>evaporating pressure</u> set point identified based on a steady-state model and interpolated as function of heat source power (<u>expander</u> control)

Vincent Lemort - Haifa, May 2018

Simulation results

Gas outlettemperartures and additional cooling load

- Additional cooling load approx. ranges between 20 and 40 kW (EGR does not yield additional cooling load)
- Recirculated exhaust gas outlet temperature must be between 100-120°C (NO_X emission reduction)
- Tailpipe gas outlet temperature >100°C (condensation)

(screw expander + ethanol)

Simulation results

Gas outlettemperartures and additional cooling load

• Time evolution of the pump and expander shaft power and isentropic efficiencies

Simulation results Average values of the composite driving cycle

Energy performance indicators

- Working fluid: ethanol
- Parallel architecture yields largest fuel savings, but also largest additional cooling load
- Fuel saving in the range of 2.3 to 3.2%

Additional cooling load

Fuel saving

Simulation results Average values of the composite driving cycle

Economic indicators

- Assumptions: 150,000 km/y; 35 l/100 km; 1.1 EUR/l; truck owner cost =1.5 TIC
- ORC weight: loss of trailer load (not taken into account)
- Payback time range from 2 years (parallel) to 2.5-2.6 years (EGR first)

Conclusions and future work

- Dynamic simulations of driving cycles give more accurate results regarding energy and economical performance
- An ORC dynamic model is built in Amesim platform (Siemens)
- Components and system models are validated by means of steady state and/or dynamic experimental data.
- Dynamic simulation requires controllers. 2 gain-scheduled PID controllers are implemented (control of the superheat and evaporating pressure)
- Performance is evaluated on a composite driving cycle
- Fuel consumption reduction from 2.3% (EGR first) to 3.2% (parallel)
- Payback time from 2 years (parallel) to 2.5-2.6 years (EGR first)
- Cooling load limitation and additional fan consumption must be taken into account
- Impact of ORC on engine warm-up phase could be taken into account

Thank you for your attention!

Vincent Lemort Vincent.Lemort@uliege.be Thermodynamics Laboratory University of Liège - Belgium

Vincent Lemort - Haifa, May 2018