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Abstract—The problem faced by the operator of a storage
device participating in a continuous intra-day (CID) market is
addressed in this paper. The goal of the storage device operator
is the maximization of the cumulative rewards received over the
entire trading horizon, while taking into account operational con-
straints. The energy trading is modeled as a Partially Observable
Markov Decision Process. An equivalent state representation and
high-level actions are proposed in order to tackle the variable
number of the existing orders in the order book. The problem
is solved using deep reinforcement learning (RL). Preliminary
results indicate that the agent converges to a policy that scores
higher total revenues than the “rolling intrinsic”.

I. INTRODUCTION

The efficient integration of renewable energy resources
(RES) in future power systems as directed by the recent
worldwide energy policy drive [1] has given rise to discussions
related to the security, sustainability and affordability of the
power system(“The Energy Trilemma”). In this context, flexi-
ble energy sources such as storage devices (e.g. pumped-hydro
storage units) able to accommodate the variability of the RES
generation have a key role [2]. There is a need for a market
place where such systems can valorise their smart planning
and their provision of flexibility services to the power system
[3]. High accuracy on the generation output of RES can only
be achieved closer to the time of physical delivery. In that
sense, a real-time energy market would be the most suitable
candidate for storage devices.

The participation of storage devices in short-term energy
markets has been extensively studied in the literature and
often cast as an optimal resource allocation problem. In [4]
a multi-stage stochastic programming framework is selected
to represent the different sequential trading floors, namely the
day-ahead (DA), the intra-day (ID) and the balancing market.
The optimal bidding curves of a hydro-reservoir for the Nordic
spot market are derived accounting for price uncertainty in [5].
Several measures, such as the value of the stochastic solution
are used to estimate the quality of the considered formulation.

In these approaches, the intra-day market is considered as
auction-based and is modeled as a single recourse action. For
each trading period, the optimal quantity offered is derived
according to the realization of various stochastic variables.
However, in reality, for most countries trading in intra-day
market is a continuous process.

The continuous intra-day (CID) market participation for
a thermal generator is considered in [6] and approximate
optimal strategies are derived. However, the ability to trade
through an order book for multiple future periods and the time
overlap between trading and imbalance settlement is not taken
into account. In this paper we adopt the continuous market
framework as proposed in [7]. We extend the trading agents
considered in [7], where each agent is supposed to select the
price to buy or sell its energy in a constant range. We propose
a novel approach where the agent can learn an optimal trading
policy through the interaction with a market simulator.

In this paper, we extend the real-time bidding strategies
proposed in [8] for the case of a storage device. The sequential
decision making problem of participating in the CID market is
formulated as a Partially Observable Markov Decision Process
(POMDP). The trading agent is supposed to dynamically
select the orders that maximize its benefits through the entire
horizon. The dynamics of the storage system as well as the
specifications of the ID market are modeled. Due to the high
dimensionality and the dynamically evolving size of the order
book we motivate an equivalent state representation and the
use of high-level actions. The goal of the selected actions
is the identification of the opportunity cost of trading. We
solve the intra-day trading problem of a storage device using
reinforcement-learning techniques, more specifically the Deep
Q-Network proposed in [9]. The resulting optimal policy is
evaluated using real data from the German ID market [10].

II. CONTINUOUS INTRA-DAY MARKET DESIGN

The CID market is a continuous process similar to the stock
exchange market as presented in [7]. The need for a CID
market is motivated by the reduction of imbalance costs, the
optimization of participants’ portfolios closer to real-time and
the better exploitation of flexibility [11]. Each market product
x∈ X , where X is the set of all available products, corresponds
to the physical delivery of energy in a pre-defined time-slot.
As presented in Figure 1, every time-slot is defined by its
starting point tx

d and its duration λ . Participants express their
willingness to buy or sell energy by posting orders ox

i , where
i ∈ N ⊆ N corresponds to the index of each order posted in
order book Ox for product x. The trading process for time-slot
x opens at tx

o = tx
d − τ and closes at tx

c . For every time-step
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Fig. 1: Trading time-line for products Q-1 and Q-2

TABLE I: Order Book for Q-1 and time-slot 00:00-00:15
i Type v [MW] p [e/MWh]

4 “Sell” 6.25 36.3
2 “Sell” 2.35 34.5 ←− ask

1 “Buy” 3.15 33.8 ←− bid
3 “Buy” 1.125 29.3
5 “Buy” 2.5 15.9

t in the trading horizon tx
o < t < tx

c , each participant has the
possibility to place new orders or adjust existing orders.

For instance, in the German CID market, trading of hourly
(λ = 1 hr) or quarterly (λ = 15 min) products for day D
opens at 3p.m. or 4 p.m. of day D−1 respectively. The gate
closes 30 min before the actual energy delivery. The time-line
for trading products Q-1 and Q-2 that correspond to the 15
min time-slots 00:00-00:15 and 00:15-00:30 respectively, is
presented in Figure 1.

In practice, the available contracts (buy and sell orders) fall
in three categories, i.e. the market order where no limit price
is specified (order is matched at the best price), the limit order
that contains a price limit and can be matched only at that or
at a better price and the market sweep order that is executed
immediately (fully or partially) or gets canceled. Limit orders
may appear with restrictions related to their execution and their
validity. For instance, an order that carries the specification Fill
or Kill should either be fully and immediately executed or
canceled. An order that is specified as All or Nothing remains
in the order-book until it is entirely executed. In this paper, for
the sake of simplicity all the orders are assumed to be limit
orders without any particular specifications.

After the gate opens, participants submit orders with the
predefined specifications. The orders are treated according to
the first come first serve (FCFS) rule. Table I contains all the
available orders ox

i defined by their type (“sell” or “buy), the
volume level v and the price level for each energy unit p.
The difference between the most expensive buy order (bid”)
and the cheapest sell” order (ask”) defines the bid-ask spread
of the product. A deal between two counter-parties is struck
when the price pbuy of a “buy” order and the price psell of a
“sell” order satisfy the condition pbuy ≥ psell . This condition
is tested at the arrival of each new order. The volume of the
transaction is defined as the minimum quantity between the
“buy” and “sell” order min(vbuy,vsell). The residual volume
will remain available in the market at the same price.

III. PROBLEM STATEMENT

The problem faced by the storage device operator is the
selection of the optimal sequence of orders that maximizes its
revenues over the entire trading horizon. The sequential deci-

sion making problem for ID market participation is formulated
as a Partially Observable Markov Decision Process (POMDP)
as in [8].

Two modules are used to describe the simulation environ-
ment: the “Storage” module models the transition dynamics of
the storage device and the “ID Market Simulator” simulates
the transition dynamics of the ID market. The state of the
trading agent st ∈ S =

{
sI

t ,s
E
t
}

is composed of the internal
sI

t ∈ SI (“Storage” module) and the external sE
t ∈ SE (“ID

Market Simulator”) state. The agent can interact with the
simulation environment by selecting an action at and observing
the subsequent state of the environment. The trading agent
can decide whether to accept (partially or fully) or not the
existing orders ox

i for each open product in the order book
Ox. The action matrix is at ∈ A = {0,1}|N|×|X | , where X is
the set of available products and N ⊆ N is the number of
unmatched orders for each product. The transition from state
st to the next state st+1 is described by equation (1), where the
arrival of new orders is denoted by the exogenous parameter
ωt sampled from a process as shown in equation (2).

st+1 = f (st ,at ,ωt) (1)
ωt ∼ pW (·) (2)

At every time-step t in the trading horizon, the internal state
sI

t ∈ SI = {sB
t }|X | contains the variables that describe the

transition dynamics of the storage device. In particular, it
contains the projection of the state of charge of the storage
device sB

t for every open time-slot. The internal state sI
t is

updated according to function g, based on the action matrix
at selected by the agent:

sI
t+1 = g

(
sI

t ,at
)
. (3)

The state of the ID market is represented by the external state
sE

t ∈ SE = {v, p}|N|×|X |. At each time-step t of the trading
horizon the “ID Market Simulator” outputs the set of orders
O. As shown in equation (4), the state at t +1 depends on the
state of the previous time-step t, the orders accepted by the
trading agent at and the stochastic arrival of new orders ωt .
The orders accepted by the agent are removed from the order
book at the next time-step t +1.

sE
t+1 = z

(
sE

t ,at ,ωt
)

(4)

The transition dynamics of the whole system (1) are described
by (2) and (4) as

f (st ,at ,ωt) = F
(
g
(
sI

t ,at
)
,z
(
sE

t ,at ,ωt
))

(5)

The instantaneous reward signal rt = ρ (st ,at ,st+1) collected
after each transition is defined as the trading revenues at time-
step t as shown in equation (6).

rt =
X ,N

∑
x=1,i=1

at,x,ivt,x,i pt,x,i. (6)

The objective of the trading agent is the maximization of the
total received rewards in the end of the trading horizon. Thus,
we define in equation (7) the return Gt at each time-step t, as



the sum of the discounted rewards received over the rest of the
trading horizon (roll-out) [12]. The discount factor γ ∈ [0,1]
is used to adjust the strategy of the agent to be myopic or not.

Gt =
T−t−1

∑
k=0

γ
t · rt+k+1 (7)

IV. SOLUTION TECHNIQUE

The state-action value function Q following policy π is
defined by [12] as :

Q(s,a) = Eπ [Gt |st = s,at = a] (8)

The optimal solution to the problem defined in equations
(2)-(7) corresponds to the identification of the policy that
maximizes the expected returns over the trading horizon T .
The optimal policy π∗ = [a∗0,a

∗
1,a
∗
2, ...,a

∗
T ] is given by solving

Q∗ (s,a) = max
π

Eπ

[
T−t−1

∑
k=0

γ
t · rt+k+1|st = s,at = a

]
(9)

π
∗ = argmax

π

Q(s,a) (10)

The agent is able to learn the state-action value function Q
by approximating it using a Deep Q-Network [9]. Through
a series of episodic interactions with its environment, the
agent can extract an optimal policy without the need for an
explicit model of the system. A neural network (NN) is used to
approximate the value function due to the large and continuous
state space. The parameters θk of the Q-Network (Q(st ,a;θk))
are updated using samples of quadruples (st ,at ,rt ,st+1) ob-
tained by simulated experiences. The objective function to be
minimized is the temporal difference error δ . The goal is the
back-propagation of total rewards early stages in the decision
process. As proposed in [9], the final Q-values obtained from
training the neural network are the solution to the supervised
learning problem presented in equations (11) and (12), with
α,γ ∈ (0,1].

δ = rt+1 + γmaxat+1Q(st+1,at+1;θk)−Q(st ,a;θk) (11)
θk+1 = θk +αδ∇θk Q(st ,a;θk) (12)

V. STATE-SPACE REPRESENTATION

The high-dimensional continuous external state sE
t ∈ SE =

{v, p}|N|×|X | defined in section III is used to describe the
state of the CID market. Owing to the variable (non-constant)
amount of orders |N | in each order book Ox for product x∈X ,
the state-space SE does not have a constant size. In order to
approximate the Q-function using a NN as described in section
IV it is necessary to find an approximate representation of the
external state with constant size.

In Figure 2a the market depth for the products Q-1 to Q-6
at one time instant is presented. The market depth for each
side (“sell” or “buy”) at any point in time is defined as the
total available volume in each order book Ox. The market
depth per price level for “sell” or “buy” orders is computed by
accumulating the available volume in ascending or descending
price order respectively. In Figure 2a the bid-ask spread can be

identified as the distance between the most expensive “buy”
and the cheapest “sell” order. The bid-ask spread and the
market depth are indicators of the liquidity in a market. In
a liquid market there is always a counter-party willing to
exchange a product in minimum time while fulfilling several
requirements.

In the case of a storage device the main profit-generating
mechanism is the arbitraging between two time-steps. Its
functionality allows the charging of electricity in periods of
low prices and discharging in periods of high prices. In the
framework of the CID market a storage device would buy
energy from those willing to sell at a low price and would sell
this volume back to those willing to buy at a higher price. For
instance, in Figure 2a a storage device would buy volume for
product Q-4 and sell volume back for product Q-5.

Owing to the nature of a storage device it is then equivalent
to represent the individual order books shown in Figure 2a as
the aggregated curves presented in Figure 2b. These curves
correspond to the aggregated market depth, i.e. the total
available volume (“sell” or “buy”) per price level for all the
“open” products. The intersection of the “sell” and “buy”
curves in Figure 2b defines the maximum volume that can be
arbitraged by the storage device and serves as an upper bound
for the profits at each step in the trading horizon. The market
depth for the same products Q-1 to Q-6 at a different time
step of the trading horizon is presented in Figure 2c. Figure
2d illustrates that there is no arbitrage opportunity between
the products, since the aggregated curves do not intersect.

The need for a low-dimensional state space with constant
size and the equivalent representation of the order book with
aggregated curves motivate the use of descriptive statistics as
presented in Figures 2b and 2d. More precisely we define
as D1 the signed distance between the 75th percentile of
“buy” price and the 25th percentile of “sell” price and as
D2 the absolute distance between the mean value of “buy”
and “sell” volumes. Other measures used are the signed price
difference and absolute volume difference between percentiles
(25%, 50%, 75%) and the bid-ask spread. The new continuous
low-dimensional external state s′Et ∈ S′E = {D1,D2, ..,D10}
is used to categorize the observed order book based on its
profit potential. The state of the trading agent is redefined as
st ∈ S =

{
sI

t ,s
′E
t
}

.
VI. HIGH LEVEL ACTIONS

At every time-step t in the trading horizon the agent can
accept or not each of the available orders in the order book.
The total number of orders |N | contained in the order book is
not constant throughout the trading horizon. Thus, the size of
the action space A = {0,1}|N|×|X | is not constant. However,
in order to ensure the tractability of the problem, a small
and discrete action space is necessary [12]. Therefore, we
define an action space A′ composed of two high-level actions.
Each of these high-level actions is a mapping into the original
action space A. Following the first action, defined as “Idling”,
no transactions are executed and no adjustment is made to
the previously scheduled quantities. Under the second action,
defined as “Optimizing based on current knowledge”, the agent
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Fig. 2: Market depth per product and the corresponding
aggregated curves for profitable (a,b) and non-profitable (c,d)
order book.

trades based on the observed orders and the state of the storage

TABLE II: Optimizing based on current knowledge.

max
ai,x

X

∑
x=0

N

∑
i=0

ai,xvi,x pi,x (13)

s.t.
N

∑
i=0

ai,xvi,x +Y ID
x + pDIS

x = pCH
x ∀x ∈ X (14)

sB
x+1 = sB

x +η pCH
x − pDIS

x
η

∀x ∈ X (15)

SB,min ≤ sB
x ≤ SB,max ∀x ∈ X (16)

0≤ pCH
x ≤ kxPCH,max ∀x ∈ X (17)

0≤ pDIS
x ≤ (1− kx)PDIS,max ∀x ∈ X (18)

kx ∈ {0,1} ∀x ∈ X (19)
ai,x ∈ {0,1} ∀i,x ∈ N×X (20)

device at time-step t. The bid acceptance optimization model is
presented in Table II. The objective of this strategy formulated
in equation (13) is the maximization of the revenues arising
from trading, subject to the operational constraints of the
storage device. In equation (14) the energy purchased and
sold (∑N

i=0 ai,xvi,x), the past net energy trades (Y ID
x ) and the

energy discharged by the storage (pDIS
x ) must match the energy

charged by the storage (pCH
x ) for every time-slot x. The energy

balance of the storage device, presented in equation (15), is
responsible for the time-coupling and the arbitrage between
two products (time-slots). The technical limits of the storage
level and the charging and discharging process are described
in equations (16) to (18). The binary variable kx restricts the
operation of the unit in only one mode, either charging or
discharging.

At every time step t the agent can select between two high
level actions (a′t ∈ A′ = {0,1}). In case a′t = 1, the solution to
the bid acceptance optimization problem presented in Table II,
is the matrix at . In the case of “Idling” (a′t = 0), the matrix
at is a zero matrix. The optimal policy is drawn according to
equation (10).

The approach that we propose in this paper thereby allows
us to quantify the value that is associated to the decision
of the agent to wait at certain occasions. We compare this
approach to an alternative, which we refer to as the “rolling
intrinsic” policy, according to which the agent will trade at
every time step of the trading horizon based on the current
information [13]. In this alternative approach, the agent selects
a combination of orders that optimizes its operation and
profits. Instead, if the agent decides to wait, there might be a
better combination of orders appearing in the order book of
the next time step. Thus, by exploiting the experience gained
through the interaction with its environment, the agent is able
to learn the value of trading or waiting at every different state
that it may encounter [8].

VII. CASE STUDY

The proposed methodology is applied for a pumped-hydro
energy storage unit using the following parameters: SB,max =
500MWh, PCH,max = PDIS,max = 500 MW, η = 100%, X =
{Q − 1,Q − 2,Q − 3, ..,Q − 12}, ∆t = 5 min, γ = 1, and



α = 0.0005. In this paper we extend the results presented in
[8], by considering 12 quarterly products available for trading.
The trading horizon is assumed to be equal to two hours,
and the agent can decide on an action every five minutes.
Real data from the German CID market are used in order to
simulate the arrival of new orders. The neural network that is
used in this analysis is a feed-forward multilayer perceptron
with four hidden layers and 512 nodes per layer. We compare
the obtained policy with the “rolling intrinsic”[13]. According
to this policy, we apply the “Optimizing based on current
knowledge” at every time step of the horizon.

(a)

(b)

Fig. 3: The evolution of the learning process (a) and the Q-
values per action (b).

Preliminary results demonstrate that the agent is able to
converge to a policy on a much larger problem than the
one investigated in [8]. Figure 3a illustrates that after 3500
episodes the agent has been able to learn a policy that
corresponds to higher total revenues than that obtained by
the “rolling intrinsic”. It is important to note that the agent
converges to the policy that results in the maximum observed
total revenues.

The evolution of the Q-values for each action over the
trading horizon is presented in Figure 3b. In effect, the
Q-values obtained correspond to the expected value of the
returns of each state-action pair as indicated in equation
(8). For instance, the cumulative rewards of the episode are
successfully back-propagated to the first trading step and the
values for both actions decrease as the episode advances.
There are time-steps in the episode where idling instead of
trading results in higher total revenues and consequently has

a larger value. It is also important to note that for several
time-steps both actions take similar values because both lead
to the same (zero) instantaneous reward. We can identify
several points that the values slightly increase as the episode
progresses. This occurs due to the approximation error of the
Q-function and highlights the significance of a more adequate
state representation. Finally, the optimal policy is obtained by
following the sequence of actions that has the maximum Q-
value and results in the highest cumulative rewards.

VIII. CONCLUSION

The participation of a storage device in the CID market is
investigated. In this novel approach, the sequential decision
making problem is modeled as a POMDP and solved using
Deep-Q networks. Due to the variable size of the order book,
a new state representation and the use of high-level actions
were motivated. The main goal is the identification of the
opportunity cost faced by the trading agent between trading
and idling. The proposed methodology is applied to real ID
data from the German market. Preliminary results demonstrate
the ability of the agent to learn an optimal policy that results
in higher revenues than the “rolling intrinsic”.

In future work, the proposed methodology will be used
to train the agent with a larger dataset and to validate its
performance on unseen data. Moreover, a better representation
of the state will be able to minimize the numerical errors.
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