

University of Liège Faculty of Applied Sciences Aerospace and Mechanical Department

Contributions to handle maximum size constraints in density-based topology optimization

ECCOMAS Young Investigators Conference 2017

<u>Eduardo Fernández</u>*, Maxime Collet*, Simon Bauduin*, Etienne Lemaire\$, Pierre Duysinx*

* University of Liège, Aerospace and Mechanical Engineering Department, Liège, Belgium.

\$ Samtech – Siemens, Liège, Belgium.

Maximum size in the design process

Indirect desired properties

Optimized Cantilever beam under local damage scenarios, Jansen et al (2014).

Cantilever beam with maximum size and minimum gap control.

Aesthetic reasons

Design domain

Minimum size

Maximum size

Guest's approach (2009)

Maximum size formulation

Local Constraint:

$$g_e = \varepsilon - \frac{\sum_{k \in \Omega_e} v_k (1 - \tilde{\rho}_k)^q}{V_{\Omega_e}} \le 0$$

Compliance minimization with maximum size constraints

$$egin{aligned} \mathbf{min} & oldsymbol{f}^\intercal oldsymbol{u} \ \mathbf{s.t.} : & \mathbf{K}(
ho) oldsymbol{u} = oldsymbol{f} \ & \sum_e v_e \, ilde{
ho}_e \leq V^* \ & \sum_e g_1 \leq 0 \ & g_2 \leq 0 \ & g_3 \leq 0 \ & \vdots \ & \vdots \ & \vdots \ & g_N \leq 0 \ \end{pmatrix} Max. \, size \ & \vdots \ & 0 \leq
ho \leq 1 \end{aligned}$$

Compliance minimization with maximum size constraints

Do not change during the optimization

$$\varepsilon - \frac{\sum_{k \in \Omega_e} v_k (1 - \tilde{\rho}_k)^q}{V_{\Omega_e}} \le 0$$

Matrix with neighbors information

$$D_{II(e,j)} = \begin{cases} \frac{v_j}{V_{\Omega^e}} & if \quad x_j \in \Omega^e \\ 0 & if \quad x_j \notin \Omega^e \end{cases}$$

Voids vector with penalization

$$\delta_e = (1 - \tilde{\rho}_e)^q$$

Constraints distribution and aggregation

Eduardo FERNANDEZ - ULG YIC 2017 Sept. 14, 2017 6 / 1

&

p-norm

$$P_m = \left(\frac{1}{N} \sum_{e=1}^{N} (s^e)^p\right)^{\frac{1}{p}}$$

$$P_n = \left(\sum_{e=1}^N (s^e)^p\right)^{\frac{1}{p}}$$

Eduardo FERNANDEZ - ULG YIC 2017 Sept. 14, 2017 7 / 1

&

p-norm

$$P_m = \left(\frac{1}{N} \sum_{e=1}^{N} (s^e)^p\right)^{\frac{1}{p}}$$

$$P_n = \left(\sum_{e=1}^N (s^e)^p\right)^{\frac{1}{p}}$$

Aggregation of maximum size constraints

$$ho \stackrel{ ext{Filter}}{\longrightarrow} \check{
ho} \stackrel{ ext{Voids}}{\longrightarrow} \delta \stackrel{ ext{Const.}}{\longrightarrow} g \stackrel{ ext{Feature}}{\longrightarrow} s \stackrel{ ext{Aggreg.}}{\longrightarrow} A_{gg} -$$

$$\frac{dG_{ms}}{d\boldsymbol{\rho}} = \frac{d\boldsymbol{\check{\rho}}}{d\boldsymbol{\rho}} \ \frac{d\boldsymbol{\check{\rho}}}{d\boldsymbol{\check{\rho}}} \ \frac{d\boldsymbol{\delta}}{d\boldsymbol{\check{\rho}}} \ \frac{d\boldsymbol{g}}{d\boldsymbol{\delta}} \left(\frac{d\boldsymbol{s}}{d\boldsymbol{g}} \right) \frac{dAgg}{d\boldsymbol{s}} \ \frac{dG_{ms}}{dAgg}$$

 $egin{aligned} \mathbf{min} & & oldsymbol{f}^\intercal \, oldsymbol{u} \ & \mathbf{s.t.}: & \mathbf{K}(
ho) \, oldsymbol{u} = oldsymbol{f} \ & \sum_e v_e \, ilde{
ho}_e \leq V^* \ & g \longrightarrow G_{ms} \leq 0 \ & 0 \leq
ho \leq 1 \end{aligned}$

Eduardo FERNANDEZ - ULG YIC 2017 Sept. 14, 2017 9 / 1

Aggregation of maximum size constraints

Modification of the sensitivities to improve convergence

Eduardo FERNANDEZ - ULG YIC 2017 Sept. 14, 2017 10 / 1

Addressed problems in linear elasticity

Compliance Minimization

Heat conduction problem

$$egin{array}{ll} \min_{
ho} & oldsymbol{t}^\intercal oldsymbol{u} \ s.t.: & \mathbf{K}(
ho) oldsymbol{u} = oldsymbol{f} \ & \sum_{i} v_i \, ar{
ho}_i \leq V^* \ & G_{ms} \leq 0 \ & 0 \leq
ho \leq 1 \end{array}$$

Compliant Mechanism

MBB-beam with different mesh sizes

New test region

New test region

Compliance minimization with maximum size

$$egin{aligned} \mathbf{min} & & oldsymbol{f}^\intercal \, oldsymbol{u} \ & \mathbf{s.t.}: & \mathbf{K}(
ho) \, oldsymbol{u} = oldsymbol{f} \ & \sum_e v_e \, ilde{
ho}_e \leq V^* \ & oldsymbol{G_{ms}} \leq 0 \ & 0 \leq
ho \leq 1 \end{aligned}$$

SIMP

$$\mathbf{K}_e = (E_{min} + \tilde{\rho}_e^{\eta} (E_0 - E_{min})) \mathbf{K}_0$$

Continuation procedure:

$$\eta = 1 : 0.25 : 3.5$$

$$\beta = 2^{\eta} - 1$$

$$iter = 20_{iter} \times 11_{steps} = 220$$

Time/Iter = Ref.

Time/Iter = **+12%**

Eduardo FERNANDEZ - ULG YIC 2017 Sept. 14, 2017 15 / 17

Concluding remarks

- Maximum size constraints where aggregated using p-mean and p-norm functions.
- With p-norm is not possible to get meshindepent solutions.
- The ring-shaped region reduces the amount of holes in the design
- The aggregation reduces the computation time compared to a highly constrained problem and allows to solve 3D problems in a reasonable time.

Acknowledgement

This work was supported by the **AERO+** project funded by the **Plan Marshall 4.0** and the **Walloon Region of Belgium**.