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Abstract

This paper explores the gamma trading, timing and managerial skills of individual hedge funds

across categories. We replicate the non-linear payoffs of hedge funds with traded options, with

the option features being endogenously defined in our replication model. On top of providing a

flexible tool to create individual benchmarks for the payoff curvature of hedge fund, the model

helps assigning hedge fund styles into three categories: directional with market timing skills,

non-directional and market timers. Overall, our empirical results show that, on 30% of replicated

funds in our sample (10,958 funds), there is no evidence of the presence of selection skills once

a fund performance is adjusted with respect to the option-based benchmark and the traditional

option-based factors of Agarwal and Naik (2004). This research has an incremental potential to

stimulate additional research in the field of hedge funds performance replication through passive

strategies.
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a Research Associate at the EDHEC Risk Institute. Address: HEC Liège, Rue Louvrex 14, Bldg. N1, 4000 Liège,
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Introduction

Because hedge funds display option-like payoffs (Fung and Hsieh 2001; Mitchell and Pulvino 2001;

Titman and Tiu 2011; Hübner, Lambert, and Papageorgiou 2015), the literature has designed option-

based factors to capture the convex or concave nature of hedge funds’ trades (Agarwal and Naik

2004; Fung and Hsieh 2004; Jurek and Stafford 2015; Agarwal, Arisoy, and Naik 2017). Despite the

explanatory power provided by these factors, the methodologies used to construct these factors may

lack flexibility when choosing the right type of options to trade as a result of the highly opportunistic

nature of hedge fund trading. For example, among the most common option-based factors used in

the literature, Fung and Hsieh (2004) evaluate the performance of funds using look-back straddles on

bond, currency and commodity indices; however options on these indices are (1) not directly traded,

(2) only valid for European-style options and (3) mature in a fixed interval of 3 months. Agarwal

and Naik (2004) introduce option-based strategies that systematically buy on the first day of the

month a call or a put option with pre-defined moneyness (at-the-money (ATM) or out-of-the-money

(OTM)) and maturity (one month) on the S&P 500 index. Although widely accepted as explanatory

variables in the hedge fund industry, the technical features of these option-based risk factors might

not reflect an accurate replication of the dynamics of hedge fund strategies.1

Moreover, if a manager has free access to a complete traded derivatives market on the fund’s

benchmark, there are many ways in which she can distort the payoff of her portfolio and it is

important to provide an adjustment to it (see, Hübner 2016; Ingersoll et al. 2007). Because option-

like strategies such as hedge funds’ exhibit a non-linear payoff, an evaluation of skills, which is

associated with the intercept of a regression model, may be artificial. Indeed, the alpha of exotic

investments with option-like payoffs from a typical linear regression is different from the alpha of a

traditional portfolio (e.g., equities, bonds). The role of skills in these exotic investments should thus

be contingently adjusted for the non-linearities in their payoffs. For instance, a quadratic model,

such as the Treynor and Mazuy (1966) model to assess market timing skills, shifts (by construction)

upward the alpha of a strategy that has a negative OLS coefficient on the quadratic term because

1For instance, as Jurek and Stafford (2015, p. 2198) note, “options selected by fixing moneyness have higher

systematic risk, as measured by delta or market beta, when implied volatility is high, and lower risk when implied

volatility is low”. DeRoon and Karehnke (2017, p. 7) add that because “these models effectively restrict additional

assets to be a fixed linear combination of non-linear returns, they are unable to account for general forms of non-

linearities”.
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the average squared market return is positive (DeRoon and Karehnke 2017). This is confirmed in

our data: funds with a positive OLS coefficient on the quadratic term deliver, on average, a negative

alpha (between -0.40% and -0.27% per month), while funds with a negative OLS coefficient on the

quadratic term show, on average, a positive alpha of between 0.60% and 0.95% per month. However,

these funds with a negative quadratic term have a payoff resembling that of a short put option and

appear to perform well in mean-variance frameworks because such frameworks fail to capture the

left-tail risks of portfolios with non-linear payoffs (Agarwal and Naik 2004). Additional empirical

studies (Coggin, Fabozzi, and Rahman (1993) and Jiang (2003)) also report evidence of an artificial

negative correlation between the intercept and the quadratic coefficients.

To address the first issue regarding the flexibility in option-like payoffs, this paper examines and

models the gamma trading of hedge funds. We evaluate cross-sectional timing skills among a large

sample of hedge funds (using the consolidated sample from the merger of Hedge Fund Research

(HFR) and Morningstar).

To address the second issue regarding the alpha biases, we provide an option-based adjustment

of the alpha for funds with an option-like payoff. We apply a flexible, passive, option-based model

that uses tradable options and serves as a benchmark to adjust the performance of a fund. This

approach provides better accuracy for inferences distinguishing between ”skilled” and ”dumb” alpha

– positive market timing versus shorting naked put options (Jurek and Stafford 2015). We show

that the convexity or concavity of hedge funds’ trades influences the assessment of fund managers’

skills, and after combining our replication with standard option-like factors used in the literature,

we observe almost no managerial skills for hedge funds during the sample period.

To achieve these objectives, we build on an option-based replication framework. This framework

defines the option features (”the Greeks”) that would match the non-linear payoffs captured by the

linear and quadratic coefficients of the Treynor and Mazuy (1966, TM) model. The model works

well because the Greeks of the option – i.e., Delta and Gamma – can be used to match the linear

and quadratic terms of the TM model – i.e. beta and lambda. The option-based replication strategy

is intended to be passive, such that the alpha from the strategy (the remaining Greek, Theta) can

be viewed as a benchmark for the replicated fund performance. The performance of the fund is

redefined as the outperformance with respect to this alpha.

To the best of our knowledge, this paper is the first to identify, at the individual level, a fund’s

option profile and the impact of the option profile on the fund’s alpha and to adjust this alpha
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through a flexible option-based replication strategy. Our findings are twofold. First, our methodology

categorizes the payoffs of approximately 30% of our hedge fund samples into three main categories:

directional with market timing skills (long-short hedge funds), non directional/convergence bets

(relative value, market-neutral) and market timing (multi-strategy, CTAs). Second, we show the

impact of these non-linear payoffs on managerial skills. We find positive adjusted alpha for market

timing skills with directional bets (∼ 0.40% per month) and non-directional bets (∼ 1.25% per

month) but negative adjusted alpha for negative timing (short put, approximately -1.50% per month)

and convergence bets (top straddles, approximately -1.00% per month). The adjustments strongly

depend on the curvature of the payoff.

Although researchers may detect alpha when estimating multi-factor models, such findings could

be due to luck or model misspecification. The definition of luck is thus commonly assessed through

bootstrap analysis. Such bootstrapping methods circumvent small sample size issues by randomly

selecting historical funds returns to reconstruct an empirical distribution of alpha t-statistics. This

method enables us to test whether the actual alpha (or skill) generated by a fund is greater than

the artificial alphas that arise from random selections (or luck). While many studies have been

dedicated to developed bootstrapping methods to evaluate the persistence of performance in the

fund industry (Kosowski, Timmermann, and Wermers 2006; Chen and Liang 2007; Jiang, Yao, and

Yu 2007; Kosowski, Naik, and Teo 2007; Fama and French 2010; Cao et al. 2013), no prior work

focuses specifically on the nature of the gamma trading of hedge funds and the implications that it

has for evaluating their performance. In this paper, we employ Fama and French (2010)’s bootstrap

method to assess the performance in our hedge fund sample after adjusting the funds’ returns for the

embedded gamma trading of the funds’ trades (option-like profile). Our research has applications

in performance analysis, as we show that after adjusting funds’ returns for the non-linear payoffs

from options, the residual cross-sectional distribution of alphas does not show any significance in

our sample (see Figure 7f).

The rest of the paper is organized as follows. Section 1 extends the TM model under the option-

based replication framework. Section 2 describes the option and hedge fund data used to perform

the option-based replication of individual hedge fund returns. Section 3 presents the results in terms

of goodness-of-fit and alpha correction. Section 4 provides robustness tests of our framework (in

progress). Section 5 concludes on the different ways of constructing the option-based replication

strategy and their implications for performance measurement.
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1 Model

1.1 The Treynor and Mazuy Model and its Extensions

The quadratic regression model of Treynor and Mazuy (1966) is one of the classical return-based

models to detect fund convexity from market timing skills. In this model, the timing skill of a fund

manager is captured by the loading on the squared market return (quadratic term), and it detects ex

post whether the manager participates, on average (although not systematically) in upward market

movement and mutes losses in downward market movement. If the model detects such participation,

then the fund’s payoff with respect to the benchmark is convex and the manager is accorded the

label ”market timer”. The quadratic model takes the following form:

Ri,t = αTM + βRmt + γRm2
t + et (1)

where γ represents the coefficient of timing ability. A positive slope coefficient means that an

investor participates, perhaps not systematically but rather on average, in bullish market trends.

While this model is a classical approach to estimate the market timing skill of a fund manager, empir-

ical evidence shows that the TM model may deliver a poor picture of skills (Kryzanowski, Lalancette,

and To 1997; Becker et al. 1999; Bollen and Busse 2004; Comer, Larrymore, and Rodriguez 2009).

To improve the specification of the model, Chen and Liang (2007) integrate five lagged in-

struments that are conditional on the benchmark used in the TM model and control for ”public

information”. By public information, the authors mean macroeconomic variables that may provide

future information about the current economic conditions of the market (e.g., Ferson and Schadt

1996; Becker et al. 1999; Graham and Harvey 1996; Ferson and Siegel 2001; Jiang 2003). Indeed,

Avramov et al. (2011) highlight the need to use conditional information to evaluate managers’ mar-

ket timing skills. The variables to control for public information are the demeaned series (over the

analyzed fund period) of the three-month T-bill yield, the term spread between 10-year and three-

month Treasury bonds, the quality spread between Moody’s BAA- and AAA-rated corporate bonds,

and the dividend yield of the S&P 500 index and the VIX. All variables are lagged by one period.

The first four instruments are obtained from the Federal Reserve Bank of St. Louis, the dividend

yield is retrieved from OptionMetrics, and the VIX is from CBEO from WRDS. Using the same

notation as in Chen and Liang (2007), the model becomes

4



Ri,t = αTM + βRmt + γRm2
t +

L∑
l=1

δlzl,t−1Rmt + et (2)

with zl being the demeaned (over the fund period) series of the lagged instruments. It remains

unclear whether the intercept and the quadratic term (αTM +γRm2
t ) should be regarded as different

sources of skills. Fama (1972) describe the former as the stock selection ability and the latter as

the market timing skills of a manager. However, if one believes that the quadratic term (γRm2
t )

can be passively replicated, then the only source of skill that can be counted as performance is the

intercept of the TM model (αTM ). We follow the idea of Hübner (2016) and introduce an option-

based replication strategy that is intended to replicate the linear and quadratic terms of the TM

model, and we adjust the intercept using that of the passive option-based replication strategy. In

the next section, we describe in greater detail the framework used to replicate the curvatures of a

fund’s payoff.

1.2 Option Replication Strategy

Building on the framework of Treynor and Mazuy (1966), a growing stream of literature has

investigated the ability of hedge funds to anticipate the variations of market returns and other

variables such as liquidity and volatility (Cao et al. 2013) or even market returns and volatility

simultaneously (Chen and Liang 2007). These studies support that the ability to time these variables

can be identified as a source of superior hedge fund performance. Evidence also indicates that a

sub-sample of these funds exhibits such timing abilities even after accounting for option-based risk

factors. In contrast to traditional option-based risk factors cited in the recent literature, such as

Fung and Hsieh (2004), Agarwal and Naik (2004) and Jurek and Stafford (2015), the derivative-

based replication strategy offers a flexible choice of the option’s moneyness and maturity at each

observed period. The aim of the strategy is to select, in each month, the option that best replicates

the linear and quadratic terms of the TM model (or its extensions) at the individual fund level.

Because the option Greeks in the OptionMetrics database are not normalized according to the

underlying stock price and the price of the option, we first need to normalize the option Greeks

based on the Taylor expansion of the option value (V ). The option can take the form of either a

call or a put option, such that our final equation resembles the equation in the TM model. From

the Taylor series expansion, the approximation of the option value (V ) on a security with price S at
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time t is obtained by

dV ≈ ∂V

∂S
dS +

1

2

∂2V

∂S2
(dS)2 +

∂V

∂t
dt+ o(t) (3)

with ∂V
∂S being the Delta of the option (∆v),

∂2V
∂S2 being the Gamma of the option (Γv), and ∂V

∂t

being the time decay of the option, named Theta (Θv). The remaining term o(t) incorporates the

Vega, Rho, and higher moment effects on the change in the option value. We consider this term to

be close to zero for short periods of time, such that we make the assumptions that the volatility of

the underlying (σ2) and the interest rate (r) are constant. Moreover, controlling for the VIX and

the three-month T-bill in the conditional TM model leaves us fairly confident that setting aside the

Greeks vega and rho should not strongly impact the results of the replication model.

Substituting the Greek annotations into equation (3) we have,

dV ≈ ∆vdS +
1

2
Γv(dS)2 + Θvdt+ o(t) (4)

Writing equation (4) in discrete time yields

Vt − Vt−∆t = ∆v(St − St−∆t) +
1

2
Γv(St − St−∆t)

2 + Θv∆t (5)

where Vt is the price of the option for the underlying St, and ∆t is the time interval and is

equal to one month (1/12). Finally, the normalization of the option return and its Greeks takes the

following form when the underlying stock St is substituted by the market Mt:

Rvt =
Mt−∆t

Vt−∆t
∆v︸ ︷︷ ︸

(1) Normalized Delta

Rmt +
1

2

M2
t−∆t

Vt−∆t
Γv︸ ︷︷ ︸

(2) Normalized Gamma

Rm2
t +

Θv

Vt−∆t︸ ︷︷ ︸
(3) Normalized Theta

∆t (6)

with Rvt = (Vt − Vt−∆t)/Vt−∆t and Rmt = (Mt −Mt−∆t)/Mt−∆t . We have (1) the normalized

Delta, (2) the normalized Gamma, and (3) the normalized Theta of the option.2 For the sake

of clarity, we refer, in the remainder of the paper, to the normalized Delta as ∆, the normalized

Gamma as Γ, and the normalized Theta as Θ. The approximation of the option return using the

Taylor expansion is written as follows:

2According to Ivy Option Metric’s reference manual (version 3.1 1/11/2017, p. 22), “the theta of an option indicates

the change in option premium as time passes, in terms of dollars per year”. In our analysis, the annualized theta is

thus multiplied by 1/12 (∆t) to scale the value to a monthly basis.
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Rvt = ∆vRmt +
1

2
ΓvRm

2
t + Θv∆t (7)

with Rvt being the return of the option over the interval ∆t (1-month), ∆v, Γv, Θv being the

normalized Delta, Gamma and Theta of the option, respectively, and Rmt being the return of the

underlying stock index (S&P 500) at time t.

1.3 Replication with One Option

The process to achieve the option-based replication strategy can be described in two steps. The

first step consists in finding, in each period, the option that best fits the linear and quadratic terms

of the TM model by filtering the options list and finding the option with the closest match to the

ratios 2∆τ,κ/Γτ,κ = β/γ.

The closest match attributes one option with maturity (τ) and moneyness (κ) to each monthly

return observation of a fund. Compared to classic option-based factors, our model does not pre-define

the choice of the maturity and moneyness of the option.

The second step is to solve for the weight (w) that satisfies the following conditions:


β = w∆τ,κ

γ = w 1
2Γτ,κ

(8)

The replication strategy also has budget constraints that are satisfied by solving for the exposure

w to the selected option and allocating a proportion (1 − w) to the risk-free rate. To replicate the

payoff of a fund manager with a directional bet (β) and a non-directional bet (γ), the model takes

the following form:

Rτ,κt = w(∆τ,κRmt +
1

2
Γτ,κRm

2
t + Θτ,κ) + (1− w)Rft + o(∆t) (9)

where ∆τ,κ, Γτ,κ, and Θτ,κ are the normalized Delta, Gamma and Theta of an option with

maturity (τ) and moneyness (κ), Rmt is the return of the underlying stock index (S&P 500) at

time t, and w is the weight allocated to the selected option. The intercept (hereafter, alpha) of the

passive strategies composed of a single option is given by

ατ,κ = wΘτ,κ + (1− w)Rft (10)
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Because this alpha comes from a purely passive strategy, its value can be used to adjust fund

performance by subtracting ατ,κ from the traditional alpha of the TM model:

πτ,κ = α
′
TM − ατ,κ

= α
′
TM − wΘτ,κ + (1− w)Rft

(11)

with α
′
TM = αTM + (1− β)Rft.

Depending on the sign and significance level3 of the parameters (β and γ), the replication strategy

will either be long (w > 0) or short (w < 0) one type of option, i.e., a call or a put. For instance,

a positive exposure to both the market, β > 0, and convexity, γ > 0, forces the strategy to be a

long position (w > 0) in single call option on the benchmark index (here, the S&P 500) and the

remainder of the portfolio (1 − w) to be invested in the risk-free asset (Rf – the one-month T-Bill

from Ibbotson). Conversely, a negative exposure to the market, β < 0, and a positive convexity,

γ > 0, entails a long position (w > 0) in single put option. A short position in a call (put) is triggered

when the exposure to the market is positive (negative) and the convexity is negative, γ < 0. To

better visualize the payoffs of these strategies, we display in Figure 1 the quadratic fit function of

the average fund performance with a payoff identified as a long or short call option (left plots). Plots

on the right display the average curvature of the fund replicated by either a long or short put option

with respect to the market return.

1.4 Replication with Two Options

Thus far, we have described the method to replicate the payoffs of funds with a significant

directional bet (β 6= 0). However, some hedge fund strategies may seek to have no directional

bet. The most well-known hedge fund strategy intended to achieve this objective is known as the

market-neutral strategy. We identify the replication of strategies with a neutral directional bet and a

positive and significant non-directional bet as a long (bottom) straddle and as a short (top) straddle

when the non-directional bet is negative and significant. The situation of a market neutral fund

cannot be replicated by a simple strategy involving just one call or one put. To create an option

portfolio with a zero (or very low) Delta and positive or negative Gamma, the appropriate strategy

is the bottom or the top straddle. The bottom (top) straddle consists of going simultaneously long

3Note that in our applications, we use the Newey-West adjustment for standard errors and apply a lag of t=3.
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Figure 1: Call and Put Payoffs

The figure represents the average curvatures of hedge funds with a β > 0 or β < 0 and γ > 0 or γ < 0.

For illustrative purposes, we report the payoff functions of a long call and put in the upper left and right

plots, respectively. We report the payoff functions of a short call and put in the lower left and right plots,

respectively. We estimate the quadratic fit function of an average fund’s performance (blue line) by averaging

the coefficients of the Treynor and Mazuy model over the funds with significant coefficients. The convexity is

then reconstructed with respect to the market returns (from -20% to 20%). The figures are illustrated with

respect to the market returns.
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(short) on a call and a put with the same strike and maturity. To activate the straddle, the portfolio

beta, which is close to zero, is separated into two parts: a long part β+ > 0 and a short part β− < 0.

To ensure the identical convexity of each option, we set γ = γ+ + γ−, where β+/γ+ = −β−/γ−.

Using the same subscripts as the original author for the Greeks of the call option (+) and the put

option (-), the performance of this non-directional fund is given by

Rτ,κt = w+
τ,κ(∆+

τ,κRmt +
1

2
Γ+
τ,κRm

2
t + Θ+

τ,κ)

+ w−
τ,κ(∆−

τ,κRmt +
1

2
Γ−
τ,κRm

2
t + Θ−

τ,κ)

+ (1− w+
τ,κ − w−

τ,κ)Rft + o(∆t)

(12)

The first step to filter the options list is modified from that in the last subsection, and we

should now find the call and put options with the closest match to the following ratio: ∆+
τ,κ/Γ

+
τ,κ =

−∆−
τ,κ/Γ

−
τ,κ.

The second step attributes one call and one put option with the same maturity (τ) and moneyness

(κ) to each monthly return observation of a fund. The weights (w+ and w−) are then solved to find


β = w+

τ,κ∆+
τ,κ + w−

τ,κ∆−
τ,κ

γ = 1
2(w+

τ,κΓ+
τ,κ + w−

τ,κΓ−
τ,κ)

(13)

Alternatively,

β

γ
=

2(w+
τ,κ∆+

τ,κ + w−
τ,κ∆−

τ,κ)

w+
τ,κΓ+

τ,κ + w−
τ,κΓ−

τ,κ
(14)

The alpha of the passive strategies composed of a call and put option is given by

ατ,κ = w+
τ,κΘ+

τ,κ + w−
τ,κΘ−

τ,κ + (1− w+
τ,κ − w−

τ,κ)Rft (15)

The adjustment from the passive strategy is done by adjusting the fund performance by sub-

tracting ατ,κ from the original alpha of the TM model. In Figure 2, we illustrate the quadratic

function of the average fund performance with a payoff identified as a short (long) position in both

a call and a put option in the left (right) plot.

Another reason that the replication of a fund payoff with a single option may not be sufficient

is that some funds are categorized as single call or put strategies only because the model or the
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Figure 2: Straddle Payoffs

The figure represents the average curvature for hedge funds with an insignificant β = 0 and γ > 0 or γ < 0.

For illustrative purposes, we report in the left plot the payoff of the bottom straddle strategy (long call and

long put), while the right plot displays the payoff of the top straddle strategy (short call and short put). We

estimate the quadratic fit function of an average fund’s performance (blue line) by averaging the coefficients

of the TM model over the funds with significant quadratic coefficients. The convexity is then reconstructed

with respect to the market returns (from -20% to 20%).
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Figure 3: Payoff Curvatures

The figure represents the curvature of a hypothetical fund with a β of 1 and a ranges of different ratios β/γ.

For illustrative purposes, we report in the left plot the payoff when the sign of the β is positive and in the

right plot the payoff when the sign of the β is negative. In this case, both funds have positive market timing

skills (γ > 0). The convexity is reconstructed with respect to the market returns (from -20% to 20%).

benchmark is misspecified. Thus, we end up with a very high γ and, hence, very low ratio (|β/γ|).

However, the payoff estimated from a quadratic regression clearly resemble that of a straddle, as

displayed in Figure 3. At least, this is what the regression estimates tell us – regardless of the R2 of

the model. In the first picture, we show that the payoff for a ratio lower than 0.2 tends to resemble

that of a bottom straddle. Note that this 0.2 cutoff works for realistic values of market returns (from

-20% to 20% on a monthly basis).

To identify a fund’s payoff, we impose the condition that if a fund has a ratio |β/γ| lower than

0.20, then its payoff should be replicated through a straddle strategy. Although this threshold seems

arbitrary, it nevertheless visually appears to be a natural cutoff for identifying a fund’s payoff as a

straddle.

In Table 1, we report a summary of the model procedures to replicate a fund’s payoff according

to both the loading of the parameters and the significance threshold of the parameters’ p-values.

In the next section, we describe the consolidated data obtained (1) from OptionMetrics (WRDS)

for the options and their Greeks and (2) from the merger of HFR and Morningstar databases for

our hedge funds sample.
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Table 1: Option Replication Strategies

This table summarizes the types of strategies involving options that replicate all possible patterns of the TM

regression. In our applications, we use a significance level of 10% for the p-values of the linear and quadratic

parameters. This table presents the payoff identifications to apply the option-based replication strategies.

Quadratic Exposure

Directional exposure γ > 0 γ < 0

β > 0 and
∣∣β/γ∣∣ > 0.2 Long call Short put

β ≈ 0 or
∣∣β/γ∣∣ < 0.2 Bottom straddle Top straddle

β < 0 and
∣∣β/γ∣∣ > 0.2 Long put Short call

2 Data

2.1 Options and Greeks

OptionMetrics provides data on the historical price, implied volatility and Greeks for the US

equity and index options markets. We restrict our use of OptionMetrics data to the Standard and

Poor’s (S&P) 500 composite index (ID 108105) and retrieve options with a standard settlement date,

that is, where the special settlement flag (ss flag) is equal to 0, with positive bid and ask prices,

and the options expire on the Saturday following the third Friday of the month (Agarwal and Naik

2004).4 We only retain observations from the first day of each month for which the open interest

(volume) is greater than zero and that have valid implied volatility and Delta. Our sample period

ranges from January 1996 to December 2015.

2.2 Hedge Funds

2.2.1 Merger of the databases

In this paper, we employ a sample of hedge funds from the merger of the HFR and Morningstar

databases. To carry out the merger, we follow the procedures of Joenväärä, Kosowski, and Tolo-

nen (2016). Because merging multiple databases is not an exact science, in addition to the phrase

4The restrictions are identical to those used in the replication of the option risk factors of Agarwal and Naik (2004)

developed by WRDS.
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matching5 used by the authors, we extend the identification of duplicate funds with a similar level

of the smoothing index following the procedure of Getmansky, Lo, and Makarov (2004). The com-

bination of a close match from the smoothing index and the phrase matching procedure gives fairly

good results to identify duplicates in our databases. Indeed, this combination allows us to work

simultaneously on the name and the returns of a fund (see Section 2.2.2 for further details). In the

appendix of this paper, we describe the treatments applied prior to constructing our consolidated

sample of hedge funds.

Figure 4: Illustration of the Database Coverage

This figure illustrates the coverage of hedge funds in our consolidated database after treatments. The diagram

displays the overlap -– by database — of the share classes as of December 2015.

We illustrate in Figure 4 that the number of active and dead funds that are specific to each

database after treatments is equal to 6,872 and 2,995 for HFR and to 4,229 and 1,139 for Morningstar,

respectively. Concerning the duplicates, the Venn diagram shows that there is a total of 1,407

duplicates between HFR and Morningstar, of which 397 active funds are attributed to HFR, 72

active funds are attributed to Morningstar, 734 dead funds are attributed to HFR, and 204 dead

funds are attributed to Morningstar. To choose whether a fund should belong to one database or

the other, we select the fund from the provider that reports the most observations – generally HFR

in our sample.

5The Jarko-Wink procedure matches funds that achieve a high correlation percentage (99%) in the name of their

funds.
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Because each database reports different hedge funds classifications, Joenväärä, Kosowski, and

Tolonen (2016) propose categorizing hedge funds into twelve primary strategies. We also follow

their approach, such that our results can be easily replicated using other providers’ data. Table 2

shows the categories documented in this paper and the table that Joenväärä, Kosowski, and Tolonen

(2016) use to construct these primary strategies can be found in the appendix of this paper. Our

final sample contains 10,958 of the 15,235 unique funds that we identified in our databases. The

sample period ranges from January 1996 to December 2015. Of the full sample, 3,805 are funds of

funds and 4,357 are equity-oriented funds. Finally, 4,282 remained alive as of December 31, 2015,

and 11,227 became defunct during the sample period.

2.2.2 Unsmoothed return

Hedge funds are prone to performance manipulations (Ingersoll et al. 2007). Specifically, Get-

mansky, Lo, and Makarov (2004) focus on the issue of ”performance smoothing,” which is a common

practice in the hedge fund industry to artificially reduce fund volatility by reporting only a fraction

(X%) of the gains in a month and retaining the other fraction (1-X%) to compensate for potential

future losses.6 This practice tends to smooth the performance of a fund and makes mean-variance

risk measures, such as the Sharpe ratio, appear more attractive. To address this misleading smooth-

ing phenomenon, it is common practice to first ”unsmooth” observed returns and then conduct

performance evaluation on the resulting adjusted returns (Kosowski, Naik, and Teo 2007; Aragon

2007; Titman and Tiu 2011; DeRoon and Karehnke 2017). Getmansky, Lo, and Makarov (2004)

proposed the following model of return smoothing:

R0
t = θ0Rt + θ1Rt−1 + ...+ θkRt−k (16)

where R0
t is the observed return, Rt is the true return of a fund and θk is the loading on the kth

lag of the realized return. In the model, θk values are constrained to fall within an interval from zero

6For instance, Agarwal, Bakshi, and Huij (2009) reveal that hedge funds tend to manage returns and earn higher

fees by retaining gains in early parts of the year and reporting them in December. Huang, Liechty, and Rossi (2012)

demonstrate how retaining gains to offset future losses increases a fund’s alpha by reducing its beta coefficients. In

other words, reducing return volatility (smoothing returns) turns risk (β) into performance (α). Finally, Asness,

Krail, and Liew (2001) show that lagged market returns are often significant explanatory variables for the returns of

supposedly market-neutral hedge funds.
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Table 2: Funds Coverage across Primary Strategies

This table reports the number of funds that fall into the primary strategies as defined by Joenväärä, Kosowski,

and Tolonen (2016) after applying the treatments used in their paper. We report the number of funds

conditional on the original database, that is, Hedge Fund Research (HFR) or Morningstar (MS). The last

column indicates whether the category is included in our empirical analysis.

HFR HFR MS MS
Total Included (Y/N)

(Dead) (Live) (Dead) (Live)

CTA 537 197 310 122 1166 Yes

Emerging Markets 121 22 143 No

Event Driven 480 240 133 51 904 Yes

Fund of Funds 1631 574 1354 246 3805 No

Global Macro 37 27 206 54 324 Yes

Long Only 67 83 150 No

Long/Short 1867 872 1234 384 4357 Yes

Market-Neutral 348 88 133 19 588 Yes

Multi-Strategy 932 518 193 59 1702 Yes

Relative Value 697 373 206 59 1335 Yes

Sector 302 104 406 Yes

Short Bias 41 2 99 34 176 Yes

Undefined 173 6 179 No

Total 6872 2995 4229 1139 15235

Total Selected 5241 2421 2514 782 10958
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to one and to sum to one. In common application, k is set to 2 such that smoothing takes place only

over the current quarter (i.e., the current month and the previous two months), and the observed

return is a weighted average of the fund’s true returns over the most recent three months (k+1),

including the current period. This averaging process captures the essence of smoothed returns in

several respects. The true unsmoothed return is then obtained by inverting the previous equation

as follows:

Rt =
R0
t − θ̂0Rt − θ̂1Rt−1 − ...− θ̂kRt−k

θ̂0

(17)

The procedure is applied through a moving average (MA) process using maximum likelihood

estimation for the parameters. The model also imposes two additional restrictions: (1) the process

should be applied on demeaned returns and (2) be invertible. In the rest of our analysis, we use

unsmoothed returns for the principal reason that return-smoothing behavior yields a more consistent

set of returns over time with lower volatility and, therefore, a higher Sharpe ratio. Similar to DeRoon

and Karehnke (2017), we note that the adjustment for smoothing does increase the average volatility

from 3.58% to 4.49% in our sample, which leads to a decrease in the average fund’s Sharpe ratio

from 0.23 to 0.15 per month. However, it leaves the mean returns fairly unchanged, i.e., average

raw returns (0.54%) and average unsmoothed returns (0.51%). Finally, we also use the measure of

smoothing index to filter the duplicates in our database (as described in the previous section). The

smoothing index is computed as follows:

ξ =

k∑
j=0

θ2
j ∈ [0, 1] (18)

where θj are the parameters from the MA process estimated in equation (16). The smoothing

index is often compared to the Herfindhal index, as it gives an estimate from 0 to 100% of the

smoothing behavior of a fund. An index value of zero implies substantial smoothing behavior in a

fund’s returns, while an index of one suggests no smoothing.

2.3 Instrumental variables

In Table 3, we report the descriptive statistics of the variables used in the empirical part of this

paper. Panel A displays the average return, standard deviation, and the minimum and maximum

of the S&P 500 index over the sample period ranging from January 1996 to December 2015. We
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also report the first-order auto-correlation estimate and its respective p-value as in Chen and Liang

(2007). In Panel B, we report the option-based factors using the same notations as in the original

work of Agarwal and Naik (2004) and Fung and Hsieh (2004).

For the option-based factors developed in Agarwal and Naik (2004), the ATM call option on the

S&P 500 index is denoted SPCa, SPPa represents the ATM put option, SPCo represents the OTM

call option, and SPPo denotes the OTM put option strategy. These option-based risk factors are

based on a strategy that buys on the first day of the month an option (call or put) with a fixed

moneyness of ATM or OTM on the S&P 500 and a maturity of one month. The option is then sold

on the first day of the next month, and a new option with the same moneyness and maturity is

bought back to continue the process of the strategy. The option-based factors from Fung and Hsieh

(2004) are the return of a portfolio of lookback straddles on bond futures (PTFSBD), on currency

(foreign exchange) futures (PTFSFX), on commodity futures (PTFSCOM), on short term interest

rate (PTFSIR) and on the stock market (PTFSSTK).7 Panel C reports the instrumental variables

defined in Section 1.1, that is, the three-month T-bill yield (TB3MS), the term spread between 10-

year and three-month Treasury bonds (T10Y3M), the quality spread between Moody’s BAA- and

AAA-rated corporate bonds (Quality spread), and the dividend yield (Rate) of the S&P 500 index

and the end-of-the-month VIX divided by
√

12 to form the monthly estimate of market volatility as

in Chen and Liang (2007).

Before determining whether the adjustment of the intercept is valid, it is important to assess the

efficiency of the replication fit for the linear and quadratic terms of the TM model. Section 3.1 is

devoted to this evaluation.

3 Hedge Funds’ Gammas and Corrected Alphas

To determine whether the robustness of the identification of the funds’ payoff provides a plausible

alpha adjustment. We first analyze the fit of the parameters from the option-based replication

strategy. We then review the characteristics of the selected options of the strategies, i.e., the average

moneyness and maturity of the options. We finally test the degree of intercept correction delivered

by the strategy on the funds’ alpha through a bootstrap test similar to Fama and French (2010).

7All the information is available on David Hsieh’s website.
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Table 3: Variables: Descriptive Statistics

This table reports the descriptive statistics of the variables used to explain hedge funds’ returns. We display,

from Panels A to C, the average return, standard deviation, minimum and maximum of and the first order

auto-correlation with its respective p-value for the following list of variables: the S&P 500 index, the ATM

call option on the S&P 500 (SPCa), the ATM put option on the S&P 500 (SPPa), the OTM call option on the

S&P 500 (SPCo), the OTM put option strategy on the S&P 500 (SPPo), the return of a portfolio of lookback

straddles on bond futures (PTFSBD), on currency (foreign exchange) futures (PTFSFX), on commodity

futures (PTFSCOM), on short term interest rate (PTFSIR) and on the stock market (PTFSSTK), the three-

month T-bill yield (TB3MS), the term spread between 10-year and three-month Treasury bonds (T10Y3M),

the quality spread between Moody’s BAA- and AAA-rated corporate bonds (Quality spread), and the dividend

yield (Rate) of the S&P 500 index and the end-of-the-month VIX divided by
√

12, which forms the monthly

estimate of market volatility (VIX m). The sample period ranges from January 1996 to December 2015.

Mean STD Min. Max. ρ1 p-value

Panel A: Benchmark

S&P 500 0.006 0.044 -0.169 0.108 0.069 0.980

Panel B: Option-based Factors

SPCa -0.025 0.821 -0.996 2.417 -0.034 1.000

SPCo -0.036 0.874 -0.995 3.000 -0.041 0.999

SPPa -0.218 0.858 -0.966 3.332 0.119 0.756

SPPo -0.247 0.875 -0.971 3.459 0.129 0.677

PTFSBD -0.018 0.149 -0.266 0.689 0.108 0.832

PTFSFX -0.005 0.186 -0.300 0.692 0.042 0.999

PTFSCOM 0.001 0.145 -0.247 0.648 -0.033 1.000

PTFSIR -0.013 0.264 -0.351 2.219 0.216 0.080

PTFSSTK -0.049 0.145 -0.302 0.666 0.139 0.590

Panel C: Instruments

TB3MS 0.024 0.022 0.000 0.062 0.991 0.000

T10Y3M 0.017 0.012 -0.008 0.038 0.963 0.000

Rate 0.018 0.005 0.000 0.028 0.872 0.000

Quality spread 0.010 0.004 0.006 0.034 0.960 0.000

VIX m 6.101 2.270 3.008 17.289 0.829 0.000
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3.1 Fit of the Replication Strategies

There are many potential choices of measures to assess the quality of fit of a replication strategy.

Amenc et al. (2010) argue that natural and straightforward measures are the correlation coefficient

and the beta of the clone strategy with the fund’s returns. However, the authors emphasize that

despite being natural candidates to evaluate a clone strategy, these directional measures also present

some shortcomings. For instance, they only concentrate on the volatility rather than the returns

of the strategy. Thus, Amenc et al. (2010) suggest complementing the information from the cor-

relation/beta with measures that better track the errors of fit of the clone strategy, namely the

annualized root mean squared error (RMSE) and the annualized geometric average excess return

(AER). According to all of these measures, the results suggest that the fit of our replications is

statistically acceptable, for instance, if we assess the quality of fit through the beta of the replication

strategy with respect to the initial fund’s return. We can express the OLS regression as follows:

RTMt = βROBt + et (19)

where RTMt = βRmt + γRm2
t are the linear and quadratic parameters of the TM model, and

ROBt = w∆vRmt +w 1
2ΓvRm

2
t are the equivalent parameters estimated from the option-based strat-

egy. The null hypothesis of the t-test is simply H0 : β − 1 = 0.

This approach tests whether the replication strategies perform well at replicating the convex-

ity/concavity of a fund that exhibits a significant quadratic coefficient in the TM model. If the beta

is not statistically different from one, then we can conclude that the quality of the fit is good because

the linear and quadratic terms of the replication strategy are statistically similar to the linear and

quadratic terms of the fund.

If, however, we are interested in assessing the fit by tracking error measures, Amenc et al. (2010)

propose using the annualized root mean squared error (RMSE) and the annualized geometric average

excess return (AER). The authors explain that the first risk measure can be considered the tracking

error of the clone strategy and defined formally as

RMSE =

√√√√12

T

T∑
t=1

(ROBt −RTMt )2 (20)

where RTMt and ROBt are the returns from the linear and quadratic terms of the TM model and
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the option-based replication strategy, respectively. T is the fund’s total number of observations.

Concerning the second measure (AER), Booth and Fama (1992) explain that the geometric average

return is an useful performance measure because it represents the growth rate that an investor would

have earned if she had held a portfolio since day one. Thus, in addition to yielding information on

the portfolio’s arithmetic average return (µ), it also captures the variation of the portfolio’s returns

(volatility, σ). Motivated by the characteristics of the traditional geometric average return, Amenc

et al. (2010) extend the measure to a geometric AER to capture the both the first- and second-order

moments in the measurement of the replication strategy. They annualize the metric to provide a

more economically sensible interpretation of the results. The annualized geometric AER is thus

defined as

AER =

 T∏
t=1

(1 +ROBt −RTMt )
12
T

− 1 (21)

where a low (high) RMSE tells us that the quality of fit of the replication is good (bad), and

the AER is an indicator of under- or over-performance of the replication strategy compared to the

actual hedge fund return.

We first report in Table 4 a similar test to that in Glosten and Jagannathan (1994) to analyze the

cross-sectional distribution of the t-statistics. The table displays the distribution of the t-statistics

using the Bonferroni correction for the p-values. The results suggest that there is no evidence that

the model poorly replicates the funds’ payoffs. Indeed, the Bonferroni p-values for the minimum and

maximum t-statistics are always higher than 10%. This suggests that we cannot statically reject the

hypothesis that the payoff replication strategy is different from the fund’s payoff. Interpretations

are similar if we replace the Bonferroni correction with FDR (false discovery rate) methods.8 Note

further that some funds’ payoff being identified as a ”straddle payoff” might be false discoveries

because of benchmark or variable misspecification or low R2 values that lead to a high γ. However,

at a minimum, the results suggest that we can correctly replicate funds’ payoffs with the single

call and put strategies. Moreover, we need not be particularly concerned about finding the perfect

model that explains the cross-section of hedge fund returns to have the correct β and γ estimates.

The rationale is that we know that false (or poor) identifications will be more likely identified as

a straddle payoff because of a low ratio (|β/γ|), and our model is nevertheless able to accurately

8These results are, however, not reported for the sake of brevity.
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replicate the payoffs of such strategies. The correction of the intercept is thus conditional on the

payoff identification and provides a benchmark for those false identifications.9

Table 4: Distribution of the Replication Fit

This table report the cross-sectional distribution of the t-statistics. We report the number of hedge funds that

fall within a payoff identification and provide their respective proportion in the sample. An examination of

the minimum and maximum t-statistics are displayed with a Bonferroni correction of the p-values. A p-value

higher than 10% suggests that we cannot statically reject the hypothesis that the payoff replication strategy

is different from a fund’s payoff at the 90% confidence level.

Long Short Long Short Long Short

Single Call Single Put Straddle (Call & Put)

# Fund (497) (19) (7) (324) (1,204) (1,227)

Proportion 15.20% 0.60% 0.20% 9.90% 36.70% 37.40%

Min t -2.446 -1.377 -0.874 -2.529 -3.877 -2.682

Bonferroni p 1.000 1.000 1.000 1.000 0.504 1.000

Average t 0.009 0.286 -0.007 0.077 -0.014 -0.062

Max t 2.938 2.627 1.229 2.710 2.727 3.004

Bonferroni p 1.000 0.218 1.000 1.000 1.000 1.000

Number with t-stat

t <-2.326 4 0 0 1 8 11

-2.326< t <-1.96 8 0 0 6 15 15

-1.96< t <-1.645 20 0 0 7 35 24

-1.645< t <0 220 6 3 130 552 595

0< t <1.645 210 11 4 163 547 534

1.645< t <1.96 21 0 0 13 29 37

1.96< t <2.326 8 1 0 3 13 9

2.326< t 6 1 0 1 5 2

To obtain further details in the assessment of the primary strategies’ fit, we report in Table 5 the

results for the categories defined in Joenväärä, Kosowski, and Tolonen (2016) of the average RMSE

(eq. (20)) and AER (eq. (21)) in Panels A and B, respectively. Both measures suggest that our

model produces, on average, a good quality of fit – the RMSE and AER are close to zero. We also

report in Panel C the number of funds that falls in each primary strategy and option replication

strategies. In total, we have 3,278 that have significant quadratic coefficients at the 10% confidence

9To mitigate the likelihood of false payoff discoveries, one could complement the model with traditional equity

risk-factors, i.e., the factors of Fama and French (1993) (SMB, HML) or Carhart (1997) (UMD), to improve the R2 of

the model as in Fung and Hsieh (2011). However, due to the low degrees of freedom available in hedge fund samples,

researchers generally seek to keep their models parsimonious. We did not include these factors for the same reason.
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level, which represents approximately 30% of our sample (10,098 funds). A substantial number of

hedge funds that exhibit a payoff resembling a short position in a put option on the market index

are identified as Event Driven or Long/Short hedge funds. We report in the appendix the result

of Table 5 when the option risk factors are added to regression model. Results and interpretations

goes in the same direction.

Mitchell and Pulvino (2001) document that merger arbitrage strategies, a sub-category of Event

Driven, indeed have a payoff resembling that of a short put option because this strategy takes a

long position in the stock of the target company in the merger and a short position in the acquiring

company. In bad economic conditions, this type of strategy will be more likely to fail and thus

exhibit losses. In fact, writing put options may appear effective in a mean-variance framework, but

this strategy performs poorly when we consider moments higher than the second order (DeRoon and

Karehnke 2017). These types of strategies bear significant tail risks because writing a put option

on the market index may severely impact fund performance when strong bearish trends affect the

equity market (Agarwal and Naik 2004). Table 6 shows that funds with short put option payoffs

have, on average, a negative skewness (-0.677) and positive kurtosis (6.596). Because these (extreme)

returns are mostly captured by the third and fourth moments and may be ignored in traditional

mean-variance frameworks, these last authors highlight that non-linear risk returns in hedge funds

translate into significant loadings on the risk factor using the OTM put option.

Overall, the assessment of funds’ identification payoffs seems in line with previous studies. We

present our evidence by primary categories and attribute one option payoff to the highest proportion

of funds that correspond to that option strategy.

CTA: Long straddle payoff, i.e., exhibits a trivial directional bet and has a similar payoff to straddle

strategies (Fung and Hsieh 2004);

Event Driven: Short put or straddle payoff, i.e., strategies that are more likely to fail and exhibit

consequent losses (Mitchell and Pulvino 2001).

Global Macro: Straddle payoff, i.e., market timers with a neutral bet on the benchmark (Fung

and Hsieh 2001).

Long/Short: Single call payoff, i.e., a directional bet with timing abilities.
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Market-Neutral: Short straddle payoff, i.e., a neutral bet on the market with the objective of

profiting from mispricing and not from market timing (Chen and Liang 2007).

Multi-Strategy: Long straddle payoff, i.e., a neutral bet on the market with the objective of

smoothing return volatility from strategy diversification.

Relative Value: Short straddle payoff, i.e., uncorrelated with the market, employing a convergence

strategy on mispriced securities and likely to face strong fixed-income exposures during a

market decline (Gatev, Goetzmann, and Rouwenhorst 2006; Chen and Liang 2007).

Sector: Mixed payoffs, i.e., this category is specific to HFR data and regroups a combination of

directional and non-directional bets.

Short Bias: Short call, put or straddle, i.e., sell short overvalued securities and face substantial

risk during good market conditions (Agarwal and Naik 2004).

3.2 Replication Strategies’ Characteristics

In this section, we review the main characteristics of the selected options in the replication strate-

gies. Table 7 displays the average values of the selected options to replicate a fund’s performance.

For instance, a fund with positive market timing skills (positive linear and quadratic terms) can be

replicated by investing, on average, 11% of the strategy’s capital in a call option with a moneyness of

1.07 and a maturity of 275 days (∼ 9 months). While the moneyness of the selected options is fairly

stable across the strategies, i.e., OTM call and put for single-instrument replications and ATM call

and put for the straddle strategies, the maturity of the options are more flexible for single-instrument

strategies, i.e., a larger standard deviation. For the straddle strategies, the selection of ATM options

is consistent with the idea that the Gamma of the straddle is the highest for ATM options. Further-

more, our model forms straddle strategies by selecting a maturity of approximately 5 months (∼ 150

days) and appears stable whether the strategies are long or short in the straddle. The five-month

maturity is close to the quarterly expiration date for the options used in the look-back straddles of

Fung and Hsieh (2001).

Market timers were originally identified as having a similar payoff as a long straddle strategy

(Merton 1981). Fung and Hsieh (2004) use ATM options to construct the straddle. Although

Siegmann and Lucas (2003) instead suggest using OTM options, the choice of moneyness for the

25



Table 6: Option-like Payoff Strategies: Descriptive Statistics

This table summarizes the descriptive statistics of the funds that are identified according to their option

payoffs. The results are averaged for each payoff category. We report in Panel A the number of funds, the

number of non-missing monthly observations, the mean, the standard deviation (STD), the skewness, the

kurtosis and the Jarque-Bera coefficient to test the normality of returns. The significance of the parameter

estimates are reported as performed: *, **, and *** and indicate statistical significance at the 0.1, 0.05 and

0.01 levels, respectively. The distribution of the returns is briefly reported with the minimum, 25th percentile

(Q1), median, 75th percentile (Q3) and maximum. In Panel B, we display the descriptive statistics of the

regression coefficients, that is, the alpha, beta and lambda. We also report the average ratio (beta/lambda),

the adjusted R2, the maximum drawdown (Max DD) and the level of the smoothing index of the funds.

Panel A: Descriptive Statistics of the Returns

# Funds # Monthly Obs Mean STD Skew. Kurt. JB Min. Q1 Median Q3 Max.

Long Call 497 110 0.075 0.189 -0.054 4.909 77*** -0.157 -0.025 0.007 0.037 0.171

Long Put 7 130 0.013 0.196 0.446 4.623 25*** -0.161 -0.032 -0.001 0.031 0.206

Short Call 19 85 0.001 0.2 0.093 4.51 24*** -0.155 -0.034 0.001 0.029 0.155

Short Put 324 115 0.085 0.197 -0.677 6.596 180*** -0.203 -0.021 0.01 0.039 0.166

Bottom Straddle 1204 94 0.081 0.166 0.31 6.163 169*** -0.124 -0.021 0.005 0.031 0.169

Top Straddle 1227 82 0.066 0.173 -0.787 10.151 915*** -0.187 -0.017 0.007 0.029 0.147

Unreplicated 7678 91 0.074 0.171 -0.13 6.515 293*** -0.15 -0.02 0.006 0.032 0.158

Panel B: Descriptive Statistics of the Regressions

# Funds Alpha Beta Lambda Ratio Adj R2 Max DD Smoothing

Long Call 497 -0.004 0.875 2.665 0.366 0.474 -0.358 0.675

Long Put 7 0.002 -0.736 2.603 -0.336 0.427 -0.462 0.855

Short Call 19 0.01 -0.854 -2.549 0.383 0.426 -0.44 0.746

Short Put 324 0.006 0.827 -2.756 -0.336 0.492 -0.395 0.675

Bottom Straddle 1204 -0.003 0.259 5.404 0.075 0.201 -0.247 0.716

Top Straddle 1227 0.009 0.395 -6.18 -0.083 0.293 -0.31 0.652

Unreplicated 7678 0.003 0.463 -0.03 -8.002 0.244 -0.299 0.671
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Table 7: Selected Options: Descriptive Statistics

This table summarizes the average weight invested in the option-based strategy, the normalized Greeks (Delta,

Gamma and Theta), and the moneyness and maturity according to the types of strategy involving options that

replicate all possible patterns of the TM regression. Standard deviations of the average values are reported

in parentheses.

Long Short Long Short Long Straddle Short Straddle

Characteristics Single Call Single Put Call Put Call Put

Weight (w) Mean 0.11 0.09 0.11 0.12 0.13 0.13 0.14 0.15

STD (0.07) (0.08) (0.04) (0.08) (0.13) (0.15) (0.17) (0.19)

Delta (∆) Mean 10.92 11.07 -7.64 -8.62 16.76 -15.07 16.66 -14.97

STD (2.45) (2.27) (0.93) (2.16) (2.21) (2.17) (2.55) (2.49)

Gamma (Γ) Mean 73.3 76.01 46.29 62 211.86 192.47 210.37 191.07

STD (37.3) (35.94) (12.43) (31.9) (52.76) (48.87) (59.73) (55.39)

Theta (Θ) Mean -0.11 -0.13 -0.15 -0.21 -0.21 -0.2 -0.21 -0.18

STD (0.05) (0.05) (0.04) (0.14) (0.02) (0.03) (0.02) (0.04)

Moneyness (κ) Mean 1.07 1.09 0.82 0.85 1.01 1.01 1.01 1.01

STD (0.05) (0.06) (0.04) (0.08) (0.01) (0.01) (0.01) (0.01)

Maturity in days (τ) Mean 275 269 328 291 153 153 158 158

STD (46) (48) (52) (113) (18) (18) (20) (20)
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Figure 5: Moneyness and Maturity of Options

This figure presents the distribution of the average maturity (in days) and moneyness of the selected options

according to the types of strategies that replicate all possible patterns in the TM regression. The box plots

for the call, put and straddle option strategies are depicted in black, gray and blue, respectively. The results

are presented in days for the maturity (a) and in percentages for the moneyness (b). The boxes show the

5th percentile and 95th percentile of the distribution of the variables on the y-axis, and the mean of the

distribution is represented by the dots inside the boxes. The dots outside the boxes are the outliers of the

distribution.

(a) Maturity (b) Moneyness

Fung and Hsieh factors is clearly in line with our results. The danger with OTM options is that they

rely on betting that the market will be volatile to make profits. If the market movement does not

move in the same direction as the bet, than the time decay of the options (Theta, Θ) will quickly

and strongly impact the intercept of the replication strategy, and in our model, the impact will be

approximately 1.5 to 2 times stronger for replication strategies using a put rather than a call option.

Figure 5 illustrates the distribution of the average maturity and moneyness of the selected options

with respect to the strategy that the model attempts to replicate.
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3.3 Alpha Adjustment

Managerial skill is by definition the part of the return in excess of any systematic sources of risk

and attributed to the alpha of a multi-factor regression analysis (Agarwal, Mullally, and Naik 2015,

p. 16). However, it is conceptually unclear whether the quadratic term of the TM model should be

considered a systematic source of risk. The term can be viewed as a statistical artifact to measure

the manager’s exposure to the market movements. According to Fama (1972), who defined a fund

manager’s skills as consisting of both market timing and stock selection ability, it is clear that the

combination of the intercept and the quadratic term (αTM + γRm2
t ) should naturally be regarded

as skills. But, if we believe that the quadratic term (γRm2
t ) could easily be replicated by a passive

strategy, then the only source of skill left in the equation is the intercept of the TM model (αTM ). As

the replication model of Hübner (2016) satisfies the condition of passively replicating the linear and

quadratic term of the TM model, the adjustment of the intercept (αTM ) should reflect a manager’s

true skill at security selection relative to a passive benchmark.

We illustrate in Figure 6 the distribution of the raw and adjusted alpha estimates from the

original TM model with respect to the type of strategy the replication model attempts to replicate.

Plot (a) displays the raw alphas, while Plot (b) displays the distribution of the adjusted alphas. In

Plot (a), we see that a fund that times the market, namely, one with a positive quadratic term that

is replicated by being long in a single call option, delivers, on average, a negative ”naive” alpha (∼

-0.40% per month). Conversely, a fund that resembles being in short a single put option delivers

a positive ”naive” alpha (∼ 0.60% per month). However, while writing put options may appear

successful in a mean-variance framework, it performs poorly when we consider moments higher than

the second order (DeRoon and Karehnke 2017). In Plot (b), having the same alpha but adjusting

the intercept from option-based replication strategy substantially changes the overall picture; the

”dumb” alpha from writing put options shrinks from ∼ 0.60% to roughly -1.50% per month, while

the alpha of a market timer is now raised from -0.40% to 0.40% per month.

A more granular analysis across hedge funds’ primary strategies is provided in Table 8. The

table presents, across strategies, the average raw alpha (Panel A) and the average alpha from the

option replication strategies (Panel B). The adjusted alpha is simply the difference between Panel

A and Panel B. Panel C reports the average adjusted R2 of the model, and Panel D presents the

average ratio
∣∣β/γ∣∣ of the funds. We report in the appendix the results in Table 8 when the option
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Figure 6: Raw and Adjusted Alphas

This figure shows the distribution of the raw (a) and adjusted (b) alpha estimates of hedge funds, α
′

TM and

πτ,κ from eq (11), respectively. The regression model used in this analysis includes the TM variables and the

instrumental variables that control for public information. The results are reported according to the types

of strategies involving options that replicate all possible patterns of the regression model. The box plots for

the call, put and straddle option strategies are depicted in black, gray and blue, respectively. The results are

presented in percentages and on a monthly basis. The boxes show the 5th percentile and 95th percentile of

the distribution of the variables on the y-axis, and the mean of the distribution is reported by the dots inside

the boxes. The dots outside the boxes are the outliers of the distribution.

(a) Raw Alphas (b) Adjusted Alphas
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risk factors are added to regression model. The interpretations remain similar.

Kosowski, Naik, and Teo (2007) demonstrate, however, that assessing the performance of a fund

based solely on the alpha coefficient of a regression model is misleading because the errors of the

estimation are not considered in the performance evaluation. These errors lead to spurious outliers,

which may be identified as good or bad performers, by chance. As a result, recent performance

evaluations have been performed based on the normalization of the coefficient through the t-statistics

(t(α)) of the alpha and bootstrap methods. We explain in the next subsection Fama and French

(2010)’s bootstrap test, in which the t(α) of a fund is considered to judge whether its performance

is persistent or simply driven by luck.

3.3.1 Bootstrap Evaluation of Skills

This section evaluates the abnormal return for the actual funds and identifies whether the alpha

correction from the option-based replication plays a significant role in understanding fund managers’

skills. To perform this exercise, we employ the bootstrap procedure proposed by Fama and French

(2010) to check whether the distribution of well and poorly performing funds remains the same

before and after our alpha adjustment.10 Fama and French (2010) compare the actual cross-section

of mutual funds’ alphas to a simulated cross-section of bootstrapped alpha in a world of zero true

alpha (no timing or selection abilities). In this section, we transpose the procedure to our sample of

hedge fund returns using the extensions of the TM regression models described in the prior sections.

Kosowski, Naik, and Teo (2007) emphasize two difficulties in evaluating the performance of

hedge funds: first the difficulty of benchmarking dynamic hedge fund strategies and, second, the

fact that adding alternative risk factors might reduce misspecifications in the model. Concerning

the benchmark issue, we know that although the S&P 500 is probably not the most appropriate

benchmark for evaluating the cross-section of hedge funds, it is nevertheless the most frequently

used benchmark in literature. The interpretation of our results should thus not diverge from other

studies based on the choice of this benchmark. Regarding the model specification, we complement the

quadratic regression model of TM with option-based risk factors. Note that when a model of option

risk factors is added to the TM model, we also re-estimate the linear and quadratic coefficients from

equation (2) and re-identify the payoffs. In addition to improving the estimation of the regression

10Our bootstrap procedure is similar to that of Kosowski, Timmermann, and Wermers (2006), Chen and Liang

(2007), Jiang, Yao, and Yu (2007), Kosowski, Naik, and Teo (2007), and Cao et al. (2013).
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coefficients (Goetzmann, Ingersoll, and Ivković 2000), this method enables us to adapt the alpha

correction for the option-like profiles of a fund. The alternative standard models include the option-

based factors of Agarwal and Naik (2004) and the look-back straddle factors of Fung and Hsieh

(2004). These models are standard asset pricing models used in the hedge fund industry that allow

us to determine whether the alpha adjustment from our option-based replication strategy is either

subsumed by or complementary to these widely accepted option risk factors. The rationale behind

this test is that if our alpha correction is simply an alternative exposure to different risk-factors,

then the correction should be captured by one of these models. Our evidence suggests, however,

that the alpha adjustment is not composed of ”exotic risk exposures” (Agarwal and Naik 2004) but

is an isolated component (that arises from the flexibility of our model) that explains the skills of a

fund manager. We describe the bootstrap procedure in the four following steps.

The first step consists in estimating the actual alphas of the hedge funds using a multi-factor

model. In our application, we use the TM model augmented with conditional lagged instruments

described in Section 2.3 and/or the option-based risk factors of Fung and Hsieh (2004) or Agarwal

and Naik (2004):

Rit −Rft = αi + βiRmt + γiRm2
t +

L∑
l=1

δilzl,t−1Rmt +
K∑
k=1

βikOFk + eit (22)

where Rit stands for the ith hedge fund’s return, and Rft is the risk-free rate (the one month

T-bill from Ken French’s website) at time t. zl,t−1 denotes for the conditional lagged instruments,

and OFk stands for the option-based factors of Fung and Hsieh (2004) or of Agarwal and Naik

(2004). We still consider the S&P 500 as a proxy for the market return (Rmt). We also assume that

eit ∼ N(0, σ2).

In the second step, we subtract the estimated αi of each of the individual funds from its return

(Rit) to construct a time series of zero-alpha returns, i.e., (Rit − αi). As Cao et al. (2013, p. 499)

note, this step ensures that the procedure generates “hypothetical funds that, by construction, have

the same factor loadings as the actual funds but have no timing ability”. In other words, the beta

parameters remain unchanged. However, in our case, as the market timing ability is already captured

by the quadratic terms, the only ability left in the model is the manager’s skill at picking well

performing stocks (security selection).
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In the third step, we jointly11 resample the zero-alpha returns with the factor returns (Rmt and

Rm2
t ). The joint resampling ensures that we capture the cross-sectional correlation between the fund

returns in our sample and the explanatory variables. One run of the bootstrap works as follows:

we randomly select a date from our sample of 239 monthly observations (from February 1996 to

December 2015) and draw a selection, with replacement, of date observations of the same size as

our original time frame (239 monthly observations). The time series is equivalent for the whole

funds universe. We retain only funds with more than 36 observations in this run. As explained in

Fama and French (2010), this procedure preserves the cross-sectional and time-series dependence

across funds and explanatory variables. The bootstrap is composed of 1,000 runs (denoted b for

bootstrapped) and estimates the alpha and t-statistic for each fund in a world in which the true

alpha is zero:

(Rit − αit)b = α̂i,0b + β̂ibRmt + γ̂ibRm
2
t +

L∑
l=1

δ̂il,bzl,t−1Rmt +

K∑
k=1

βik,bOFk + eit,b (23)

In the fourth step, we average, across the 1,000 simulations, the alphas and their t-statistic (t(α))

estimates at the same percentile to construct an empirical cumulative density function (CDF) of the

cross-sectional zero alphas (α̂i,0b ). Fama and French (2010) use the t-statistics of funds instead of

their raw alphas to remove the influence of funds with short sample periods or high idiosyncratic

risk – these funds being more likely to have alpha by chance. Thus far, the alpha corrections

from our option-based strategies have not been integrated into the bootstrap. Because option-like

strategies such as hedge funds exhibit non-linear payoffs, the evaluation of skills, which is associated

with the intercept of a regression model, may be artificial. Indeed, the alpha of exotic investments

with option-like payoffs from a typical linear regression is different from the traditional alpha of

vanilla strategies (e.g., equities, bonds). The effect of skills for these exotic investments should

thus be contingently adjusted for the non-linearities in their returns. Such adjustment is necessary

because a quadratic model, such as the TM model, shifts (by construction) upward the alpha of

a strategy that has a negative OLS coefficient on the quadratic term because the average squared

market return is positive (DeRoon and Karehnke 2017). This is in line with the empirical studies

of Coggin, Fabozzi, and Rahman (1993) and Jiang (2003), which report evidence of an artificial

11The bootstrap procedure is a random selection of monthly observations of all funds with replacement. The

conditional resampling is performed to capture the cross-sectional correlation between portfolio returns constituting our

sample. As in Harvey and Liu (2016), for example, the bootstrap preserves cross-sectional and time-series dependence.
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negative correlation between the intercept and the quadratic coefficients. To do this, we repeat the

operation from step one to step four and adjust the funds’ returns by subtracting the alpha of our

option-based replication strategies (α
(τ,κ)
i ), that is, we replace Rit in equation (22) with (Rit−α

(τ,κ)
i ).

Figure 7 illustrates the comparison of the simulated CDFs of t(α) for the raw and adjusted alpha

frameworks (blue lines) and the CDFs of the actual t(α) estimates of funds (red dotted lines). The

plots on the left are for the CDF of raw alpha and the plots on the right are for the CDF of the

adjusted alpha.

Plots (a) and (b) are for the comparison the TM model complemented only with the conditional

lagged instrumental variables. The CDF of the raw alphas presents a skewed t(α)-distribution to

the right, whereas the adjusted CDF has been shifted to the left. The consequence is that, under

the adjusted framework, a larger proportion of alphas are found outside the 90% confidence interval

(vertical gray dotted lines). Extreme and significant positive and negative alphas are more likely

to be found under the adjusted model, as shown by comparing the left-hand and right-hand blue

areas, which supports the evidence of fatter tails in the adjusted framework density. The results

support that the adjustment from the passive option-based replication strategies identifies a larger

proportion of poor performers in our sample and goes from approximately 5% to 15%. The alpha

adjustment also tend to centralized the distribution near zero.

Plots (c) and (d) show the simulation results of the bootstrap methodology using the option-

based factors of Fung and Hsieh (2004). Plot (c) presents evidence that a quadratic model exhibits a

right-skewed distribution of the intercept. Adjusting the intercept for the degree of curvature in the

quadratic model is presented in Plot (d); we observe an incremental improvement similar with the

option-based factors of Fung and Hsieh (2004). This suggests that our alpha adjustment captures

part, but not all, the residual information from the traditional look-back straddle strategies.

Plots (e) and (f) show the results of the bootstrap methodology using the option-based factors of

Agarwal and Naik (2004). Overall, we see that the correction in our option-based replication model

is complementary to the Agarwal and Naik (2004) factors. While widely accepted as explanatory

variables in the hedge fund industry, one potential shortcoming of these option-based risk factors

involves the pre-condition on the moneyness and maturity of the option, i.e., ATM and OTM with

one-month maturity, which might not accurately reflect the dynamic nature of hedge funds’ option-

like trading strategies. To benchmark funds’ performance at the individual level, the model should

succeed at capturing the specific aspects of the manager’s operations (Glosten and Jagannathan
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Figure 7: Cumulative Density Function of t(α)

This figure illustrates the CDF of t(α) estimates on hedge funds with significant parameters from the TM

model. The simulated CDF of the t(α) estimates for zero-alpha funds is represented by the blue line. The

red dotted line is the CDF of the t(α) estimates for actual portfolios. The vertical gray dotted lines represent

t-statistics at the usual 90% confidence level. For visualization purposes, the areas above this confidence level

for the actual t-statistics are shaded. The aim of the figures is to compare the blue and red dotted lines at

these 90% confidence levels. The sample period is from January 1996 to December 2015. Graphs on the left

(right) show results for funds without (with) alpha correction from an option-based strategy. Plots (a) and

(b) use as the factors of the TM model and conditional lagged instruments from Chen and Liang (2007), while

Plots (c) and (d) complement this model with the option-based factors of Fung and Hsieh (2004, FH), and

Plots (e) and (f) use the option-based factors of Agarwal and Naik (2004, AN).

(a) Raw Alphas (TM) (b) Adjusted Alphas (TM)
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(c) Raw Alphas (FH) (d) Adjusted Alphas (FH)

(e) Raw Alphas (AN) (f) Adjusted Alphas (AN)
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1994). The model used in this paper is intended to fill this gap. Indeed, the distinction between the

simulated and the actual distribution of adjusted alpha in Plot (f) is almost null.

According to the first paragraph in Fama and French (2010, p. 1915), “active investment must

also be a zero sum game-aggregate α is zero before costs”; while hedge funds’ returns are net of fees,

the results suggest that our flexible adjustment of alpha based on the funds’ level of gamma trading

helps to better explain the selection skills of fund managers. From the last combination of factors

and alphas adjustment, we cannot conclude that selection skills are present in our sub-sample of

hedge funds. As Cochrane (2011, p. 1087) notes, “Most active management and performance evalu-

ation today just is not well described by the alpha–beta, information-systematic, selection-style split

anymore. There is no “alpha”. There is just beta you understand and beta you do not understand,

and beta you are positioned to buy versus beta you are already exposed to and should sell”. This may

suggest that the methodology used to construct the option factors of Agarwal and Naik (2004) should

be modified to match our aggregate selection of options in order to capture the residual significant

alphas from the cross-sectional distribution. Also, because we use net-of-fees returns, no significant

alphas in the cross-section of hedge may simply suggests that fees collected by good market timers

is compensation for their ability to anticipate market fluctuations.

In Table 9, we report these empirical distributions of the t(α) estimates for the simulated and

actual estimates. Panel A presents the results for the models using the factors from the TM model

and conditional lagged instruments from Chen and Liang (2007). Panels B and C complement the

model in Panel A with the option-based factors from Fung and Hsieh (2004) and the option-based

factors from Agarwal and Naik (2004), respectively. The last column of each panel is different from

the table in Fama and French. In their paper, the authors consider ”% < Act”, which represents

the fraction of t(α) estimates from the 1,000 simulations for which the estimates are lower than the

actual t(α) for equivalent percentiles. In our paper, we are instead interested in ”% < Sim”, which

we interpret as the fraction of t(α) estimates from the actual returns of the hedge fund sample that

are lower than the average of the 1,000 simulations at the indicated percentiles. In other words, we

examine how much of the funds have an alpha lower than the mean of the 1,000 simulated alphas at

the 1st percentile and so forth. From this column, we can infer how many funds have a t(α) lower

than some confidence level and whether our alpha correction helps to explain these residual alphas.

For instance, in Panel A, we have in the column ”% < Sim” of the raw alpha a value of 6.4% at the

5% confidence level and a value of 79.3% at the 95% confidence level. This suggests that the model
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leaves more than 10% of the funds with significant alphas (27.1% of the funds). For the adjusted

alpha, the values are 16% and 86.2% for the same confidence levels (29.8% of the funds). Thus

far, the alpha adjustment just seems to identify more funds with negative alphas. Panel B presents

similar results and suggests that the option factors of Fung and Hsieh (2004) bring little additional

information to our model. However, Panel C shows that the values for the raw alpha are 10.3%

and 85.6% (24.7% of the funds) and 6% and 95% (11% of the funds) for the adjusted alpha at the

5th and 95th confidence levels, respectively. While the option factors of Agarwal and Naik (2004)

centralized the distribution of t(α)-estimates around zero, it fails to explain the residual significant

alphas of the cross-sectional distribution of hedge funds. Our alpha adjustment fills this gap. We

are thus fairly confident that the adjustment in our model improves on and is not captured by other

standard, derivative-based risk factor models.

4 Robustness (Work in Progress)

4.1 Choice of Timing Ability Significance Levels

In this section, we review our results under different choices of significance levels for the linear

and quadratic terms of the TM model. In summary, we use a significance level of 20% and despite the

lower precision in the regression analysis and the larger number of funds considered, namely 4,626,

representing approximately 42% of our sample, the interpretation of the results remains similar.

4.2 Alternative Payoff Identification

We compare the option payoff identification obtained by using the classic option-based factors

of Agarwal and Naik (2004) with that of our quadratic model. The utility of the option risk factors

of Agarwal and Naik (2004) resides in the combination of four strategies that use only one type of

option and for which the direction of the trade (long or short) is endogenous to the sign of the option

risk factors’ loading from the OLS regression. However, Agarwal and Naik (2004) also note that the

identification of significant factors should be addressed through a stepwise regression. A stepwise

regression might be useful for ensuring model parsimony, but it also constrains the reproduction of

a similar bootstrap test to that of Fama and French (2010) because the test requires that all funds

have the same explanatory variables.
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In this paper, we use the following the regression model to identify a fund’s option-like payoff

using the factors of Agarwal and Naik (2004):

Rit −Rft = αi + βiRmt + siSMBt + hiHMLt +miMOMt

+ δi110Yt + δi2CredSpr + δi4MSCIem

+ δi5SPCat + δi6SPPat + δi7SPCot + δi8SPPot + eit

(24)

where Rmt is the excess return of the Value-Weighted US index from CRSP, and SMB, HML and

MOM are the equity risk factors of size, value and momentum obtained from Ken French’s website.

The 10Y is the month-end to month-end change in the US Federal Reserve’s 10-year constant-

maturity yield, CredSpr is the month-end to month-end change in the difference between Moody’s

Baa yield and the Federal Reserve’s 10-year constant maturity yield, and MSCIem is the Morgan

Stanley emerging market index, all three of which are obtained from David Hsieh’s website. The

option-based factors are written on the S&P 500 index with an ATM call option (SPCa), an ATM

put option (SPPa), an OTM call option (SPCo) and an OTM put option strategy (SPPo).

To identify a fund’s option payoff, we consider the sign and significance level of the loadings on

the option risk factors. For instance, a positive (negative) and significant (p-value of 10%) loading

on the call option strategies (δ5 and δ7) will be classified as a ”Long Call” (”Short Call”). The

approach is similar for a put option. If these call and put strategies are both significant and have

the same sign, then the payoff will be considered a ”Long Straddle” when the sign of the loadings

is positive and as a ”Short Straddle” when the sign of the loadings is negative. If more than three

strategies are significant, then we classify this as a ”Complex Payoff.”

Panel A of Table 10 presents the number of funds identified with one type of option payoff

when the regression involves a stepwise procedure to select dominant risk factors. We see that

approximately 3,000 funds fall into the same categories as ours. These results indicate that, with

this method, more funds are identified as using ”Short Call” and ”Long Put” strategies and suggest

that a larger proportion of funds would be used as a market insurance strategy. Moreover, strategies

designed to have a neutral bet on the market (Global Macro and Market-Neutral) appear to have a

directional bet on the market, which appears paradoxical. In Panel B, we report the number of funds

with significant alpha across the range of primary strategies and option payoff classifications. On

average, 34.51% of the funds have a significant intercept. The ”Long Straddle” classification (good
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market timers) have the highest number (68.75%) of funds with significant alphas.12 Panels C and

D report the same analysis when the regression involves a regular OLS procedure, i.e., no sequential

selection of the variables. Overall, we see that most of funds have a ”Complex Payoff,” such that

more than two option risk factors load significantly and make the identification process more difficult.

Only 302 funds have a simple payoff identification, and 2,117 funds are classified as complex. On

aggregate, the number of funds with option-like payoffs decreases from 3,428 to 2,419, as does the

proportion of funds with a significant alpha (from 34.51% to 26.46%). Although this last approach is

not suggested by Agarwal and Naik (2004) , proceeding with testing the cross-sectional distribution

of alphas among hedge funds will remain a complex exercise with a stepwise regression. We believe

that the risk factors of Agarwal and Naik (2004) are important control variables to capture the

non-linearities of hedge fund returns but that the identification of option payoffs is simpler with a

quadratic model and the relationship between the linear and quadratic term (the ratio |β/γ|).

5 Conclusion

This paper establishes a benchmark to assess the timing skills of fund managers. Our model

is intended to adjust the fund managers’ returns by the alpha of a passive option-based strategy

that replicates the non-linearity in the fund returns. Fama (1972) defined a fund manager’s skills

as both market timing and stock selection ability, such that the combination of the intercept and

the quadratic term (αTM + γb2) captures these skills. However, when assuming that the quadratic

term (γb2) could be replicated by a passive strategy, the only source of skill left in the equation

is the intercept (αTM ), which thus represents the security selection skill of a manager. Our study

follows this assumption and employs the replication model of Hübner (2016) to satisfy the condition

of passively replicating the linear and quadratic terms of the market timing model – the Treynor and

Mazuy (1966, TM) model. The ”cost” of the replication serves as a basis for adjusting the intercept

(α) of the TM model and should reflect the true skill that a manager demonstrates relative to a

passive benchmark with equivalent convexity/concavity.

After adjusting the alpha of the managers with that of the replication strategy, we simply assess

the systematic sources of fund returns through traditional multi-factor models. Overall, the alpha

12These alphas are, on average, positive (t-stat of 4.00). For parsimony, these results are not reported but are

available upon request.
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adjustment from our model delivers an interesting picture of the cross-sectional skills in our hedge

fund sample (a merged sample of HFR and Morningstar): the alpha of funds with a similar payoff as

a short put options strategy shrinks from approximately 0.60% to approximately -1.50% per month,

while the alpha from market timers increases from approximately -0.40% to 0.40% per month. After

combining the option-based factors of Agarwal and Naik (2004) with our alpha adjustments, we

cannot conclude that selection skills are present in our hedge fund sample. Our interpretations

are based on net-of-fees returns and might suggest that fees collected by good market timers are

compensation for their ability to anticipate market fluctuations.

This research contributes to the literature on the gamma trading in hedge funds’ trades and

their market timing skills because it first sets a benchmark for replicating the non-linear nature of

the performance of hedge funds, and it does so by applying a flexible approach that uses tradable

options from OptionMetrics. Second, the adjustment in our model improves on and is not captured

by other standard, derivative-based risk factors models. Third, the approach frees us to make

more accurate inferences in comparing non-linear strategies with ”skilled” versus ”dumb” alpha.

Indeed, the algebra behind a quadratic equation leaves a positive (negative) intercept when the

quadratic coefficient is negative (positive), such that a positive market timer will have, on average,

negative alpha while a strategy that shorts naked put options will have, on average, positive alpha

by construction (see, for instance, Jurek and Stafford 2015). Adjusting for this mechanical effect

leaves us with a more accurate evaluation of the skills available in the hedge fund industry. Overall,

we categorize the payoffs of approximately 30% of our hedge fund sample into three main categories:

directional with market timing skills (long-short hedge funds), non-directional with market timing

(multi-strategy, CTAs), and non-directional/convergence bets (relative value, market-neutral). We

find positive adjustments for market timers with directional bets and non-directional bets (long call

or straddle payoffs) but negative adjustments for negative timers with convergence bets (top straddle

payoffs). We demonstrate that the alpha adjustment is strongly dependent on the curvature of the

payoff – i.e., the ratio β/γ.

We hope this study can improve our understanding of the non-linearites in hedge fund returns

and contribute to the development of a new set of option-based risk factors that more accurately

capture the dynamic patterns of hedge funds, which is a topic we hope to pursue in future research.
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Appendices

A Hedge Fund Database Treatments

The treatments applied to merge our databases (Morningstar and HFR) regroup the following

conditions for both databases, which contain monthly net-of-fees returns and assets under manage-

ment for the period from January 1974 to December 2015;

1. We focus on the post-1994 period because prior to this date, the coverage of defunct funds

is incomplete. In our paper, we focus on 1996 onward to fit the condition imposed by the

OptionMetrics database, which only starts in January 1996.

2. In Joenväärä, Kosowski, and Tolonen (2016), the data for raw returns and AuM observations

are denominated in several different currencies and the authors convert returns and AuM

observations that are not denominated in USD to USD using end-of-month spot rates. In this

paper, however, we only use funds denominated in USD to be in line with the benchmark used

in our analysis (the S&P 500).

3. We include only funds that report net-of-fee returns on a monthly basis.

4. We remove very large or small returns to eliminate a possible source of error by truncating

returns between the limits of -90% and 300%.

5. We exclude the first twelve observations of each hedge fund to reduce the issues of backfill bias

(Fung and Hsieh 2001; Bali, Brown, and Caglayan 2014).

6. We exclude hedge funds with track records shorter than 36 months (to address survivorship

bias) as in (Bali, Brown, and Caglayan 2014; Patton and Ramadorai 2013).

B Hedge Fund Classifications

49
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