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Abstract

This paper explores the gamma trading, timing and managerial skills of individual hedge funds
across categories. We replicate the non-linear payoffs of hedge funds with traded options, with
the option features being endogenously defined in our replication model. On top of providing a
flexible tool to create individual benchmarks for the payoff curvature of hedge fund, the model
helps assigning hedge fund styles into three categories: directional with market timing skills,
non-directional and market timers. Overall, our empirical results show that, on 30% of replicated
funds in our sample (10,958 funds), there is no evidence of the presence of selection skills once
a fund performance is adjusted with respect to the option-based benchmark and the traditional
option-based factors of Agarwal and Naik (2004). This research has an incremental potential to
stimulate additional research in the field of hedge funds performance replication through passive

strategies.
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Introduction

Because hedge funds display option-like payoffs (Fung and Hsieh 2001; Mitchell and Pulvino 2001;
Titman and Tiu 2011; Hiibner, Lambert, and Papageorgiou 2015), the literature has designed option-
based factors to capture the convex or concave nature of hedge funds’ trades (Agarwal and Naik
2004; Fung and Hsieh 2004; Jurek and Stafford 2015; Agarwal, Arisoy, and Naik 2017). Despite the
explanatory power provided by these factors, the methodologies used to construct these factors may
lack flexibility when choosing the right type of options to trade as a result of the highly opportunistic
nature of hedge fund trading. For example, among the most common option-based factors used in
the literature, Fung and Hsieh (2004) evaluate the performance of funds using look-back straddles on
bond, currency and commodity indices; however options on these indices are (1) not directly traded,
(2) only valid for European-style options and (3) mature in a fixed interval of 3 months. Agarwal
and Naik (2004) introduce option-based strategies that systematically buy on the first day of the
month a call or a put option with pre-defined moneyness (at-the-money (ATM) or out-of-the-money
(OTM)) and maturity (one month) on the S&P 500 index. Although widely accepted as explanatory
variables in the hedge fund industry, the technical features of these option-based risk factors might
not reflect an accurate replication of the dynamics of hedge fund strategies.!

Moreover, if a manager has free access to a complete traded derivatives market on the fund’s
benchmark, there are many ways in which she can distort the payoff of her portfolio and it is
important to provide an adjustment to it (see, Hiibner 2016; Ingersoll et al. 2007). Because option-
like strategies such as hedge funds’ exhibit a non-linear payoff, an evaluation of skills, which is
associated with the intercept of a regression model, may be artificial. Indeed, the alpha of exotic
investments with option-like payoffs from a typical linear regression is different from the alpha of a
traditional portfolio (e.g., equities, bonds). The role of skills in these exotic investments should thus
be contingently adjusted for the non-linearities in their payoffs. For instance, a quadratic model,
such as the Treynor and Mazuy (1966) model to assess market timing skills, shifts (by construction)

upward the alpha of a strategy that has a negative OLS coefficient on the quadratic term because

'For instance, as Jurek and Stafford (2015, p. 2198) note, “options selected by fizing moneyness have higher
systematic risk, as measured by delta or market beta, when implied volatility is high, and lower risk when implied
volatility is low”. DeRoon and Karehnke (2017, p. 7) add that because “these models effectively restrict additional
assets to be a fixed linear combination of non-linear returns, they are unable to account for general forms of mon-

linearities”.



the average squared market return is positive (DeRoon and Karehnke 2017). This is confirmed in
our data: funds with a positive OLS coefficient on the quadratic term deliver, on average, a negative
alpha (between -0.40% and -0.27% per month), while funds with a negative OLS coefficient on the
quadratic term show, on average, a positive alpha of between 0.60% and 0.95% per month. However,
these funds with a negative quadratic term have a payoff resembling that of a short put option and
appear to perform well in mean-variance frameworks because such frameworks fail to capture the
left-tail risks of portfolios with non-linear payoffs (Agarwal and Naik 2004). Additional empirical
studies (Coggin, Fabozzi, and Rahman (1993) and Jiang (2003)) also report evidence of an artificial
negative correlation between the intercept and the quadratic coefficients.

To address the first issue regarding the flexibility in option-like payoffs, this paper examines and
models the gamma trading of hedge funds. We evaluate cross-sectional timing skills among a large
sample of hedge funds (using the consolidated sample from the merger of Hedge Fund Research
(HFR) and Morningstar).

To address the second issue regarding the alpha biases, we provide an option-based adjustment
of the alpha for funds with an option-like payoff. We apply a flexible, passive, option-based model
that uses tradable options and serves as a benchmark to adjust the performance of a fund. This
approach provides better accuracy for inferences distinguishing between ”skilled” and ”dumb” alpha
— positive market timing versus shorting naked put options (Jurek and Stafford 2015). We show
that the convexity or concavity of hedge funds’ trades influences the assessment of fund managers’
skills, and after combining our replication with standard option-like factors used in the literature,
we observe almost no managerial skills for hedge funds during the sample period.

To achieve these objectives, we build on an option-based replication framework. This framework
defines the option features ("the Greeks”) that would match the non-linear payoffs captured by the
linear and quadratic coefficients of the Treynor and Mazuy (1966, TM) model. The model works
well because the Greeks of the option — i.e., Delta and Gamma — can be used to match the linear
and quadratic terms of the TM model —i.e. beta and lambda. The option-based replication strategy
is intended to be passive, such that the alpha from the strategy (the remaining Greek, Theta) can
be viewed as a benchmark for the replicated fund performance. The performance of the fund is
redefined as the outperformance with respect to this alpha.

To the best of our knowledge, this paper is the first to identify, at the individual level, a fund’s

option profile and the impact of the option profile on the fund’s alpha and to adjust this alpha



through a flexible option-based replication strategy. Our findings are twofold. First, our methodology
categorizes the payoffs of approximately 30% of our hedge fund samples into three main categories:
directional with market timing skills (long-short hedge funds), non directional/convergence bets
(relative value, market-neutral) and market timing (multi-strategy, CTAs). Second, we show the
impact of these non-linear payoffs on managerial skills. We find positive adjusted alpha for market
timing skills with directional bets (~ 0.40% per month) and non-directional bets (~ 1.25% per
month) but negative adjusted alpha for negative timing (short put, approximately -1.50% per month)
and convergence bets (top straddles, approximately -1.00% per month). The adjustments strongly
depend on the curvature of the payoff.

Although researchers may detect alpha when estimating multi-factor models, such findings could
be due to luck or model misspecification. The definition of luck is thus commonly assessed through
bootstrap analysis. Such bootstrapping methods circumvent small sample size issues by randomly
selecting historical funds returns to reconstruct an empirical distribution of alpha t-statistics. This
method enables us to test whether the actual alpha (or skill) generated by a fund is greater than
the artificial alphas that arise from random selections (or luck). While many studies have been
dedicated to developed bootstrapping methods to evaluate the persistence of performance in the
fund industry (Kosowski, Timmermann, and Wermers 2006; Chen and Liang 2007; Jiang, Yao, and
Yu 2007; Kosowski, Naik, and Teo 2007; Fama and French 2010; Cao et al. 2013), no prior work
focuses specifically on the nature of the gamma trading of hedge funds and the implications that it
has for evaluating their performance. In this paper, we employ Fama and French (2010)’s bootstrap
method to assess the performance in our hedge fund sample after adjusting the funds’ returns for the
embedded gamma trading of the funds’ trades (option-like profile). Our research has applications
in performance analysis, as we show that after adjusting funds’ returns for the non-linear payoffs
from options, the residual cross-sectional distribution of alphas does not show any significance in
our sample (see Figure 7f).

The rest of the paper is organized as follows. Section 1 extends the TM model under the option-
based replication framework. Section 2 describes the option and hedge fund data used to perform
the option-based replication of individual hedge fund returns. Section 3 presents the results in terms
of goodness-of-fit and alpha correction. Section 4 provides robustness tests of our framework (in
progress). Section 5 concludes on the different ways of constructing the option-based replication

strategy and their implications for performance measurement.



1 Model

1.1 The Treynor and Mazuy Model and its Extensions

The quadratic regression model of Treynor and Mazuy (1966) is one of the classical return-based
models to detect fund convexity from market timing skills. In this model, the timing skill of a fund
manager is captured by the loading on the squared market return (quadratic term), and it detects ex
post whether the manager participates, on average (although not systematically) in upward market
movement and mutes losses in downward market movement. If the model detects such participation,
then the fund’s payoff with respect to the benchmark is convex and the manager is accorded the

label "market timer”. The quadratic model takes the following form:

R; i = o + BRmy + "yRmf + e (1)

where v represents the coefficient of timing ability. A positive slope coefficient means that an
investor participates, perhaps not systematically but rather on average, in bullish market trends.
While this model is a classical approach to estimate the market timing skill of a fund manager, empir-
ical evidence shows that the TM model may deliver a poor picture of skills (Kryzanowski, Lalancette,
and To 1997; Becker et al. 1999; Bollen and Busse 2004; Comer, Larrymore, and Rodriguez 2009).

To improve the specification of the model, Chen and Liang (2007) integrate five lagged in-
struments that are conditional on the benchmark used in the TM model and control for ”public
information”. By public information, the authors mean macroeconomic variables that may provide
future information about the current economic conditions of the market (e.g., Ferson and Schadt
1996; Becker et al. 1999; Graham and Harvey 1996; Ferson and Siegel 2001; Jiang 2003). Indeed,
Avramov et al. (2011) highlight the need to use conditional information to evaluate managers’ mar-
ket timing skills. The variables to control for public information are the demeaned series (over the
analyzed fund period) of the three-month T-bill yield, the term spread between 10-year and three-
month Treasury bonds, the quality spread between Moody’s BAA- and AAA-rated corporate bonds,
and the dividend yield of the S&P 500 index and the VIX. All variables are lagged by one period.
The first four instruments are obtained from the Federal Reserve Bank of St. Louis, the dividend
yield is retrieved from OptionMetrics, and the VIX is from CBEO from WRDS. Using the same

notation as in Chen and Liang (2007), the model becomes
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Riy = arm + BRmy + yRmj + Z 0z10—1Rmy + ey (2)
1=1

with z; being the demeaned (over the fund period) series of the lagged instruments. It remains
unclear whether the intercept and the quadratic term (arys ++vRm?) should be regarded as different
sources of skills. Fama (1972) describe the former as the stock selection ability and the latter as
the market timing skills of a manager. However, if one believes that the quadratic term (yRm?)
can be passively replicated, then the only source of skill that can be counted as performance is the
intercept of the TM model (arys). We follow the idea of Hitbner (2016) and introduce an option-
based replication strategy that is intended to replicate the linear and quadratic terms of the TM
model, and we adjust the intercept using that of the passive option-based replication strategy. In
the next section, we describe in greater detail the framework used to replicate the curvatures of a

fund’s payoff.

1.2 Option Replication Strategy

Building on the framework of Treynor and Mazuy (1966), a growing stream of literature has
investigated the ability of hedge funds to anticipate the variations of market returns and other
variables such as liquidity and volatility (Cao et al. 2013) or even market returns and volatility
simultaneously (Chen and Liang 2007). These studies support that the ability to time these variables
can be identified as a source of superior hedge fund performance. Evidence also indicates that a
sub-sample of these funds exhibits such timing abilities even after accounting for option-based risk
factors. In contrast to traditional option-based risk factors cited in the recent literature, such as
Fung and Hsieh (2004), Agarwal and Naik (2004) and Jurek and Stafford (2015), the derivative-
based replication strategy offers a flexible choice of the option’s moneyness and maturity at each
observed period. The aim of the strategy is to select, in each month, the option that best replicates
the linear and quadratic terms of the TM model (or its extensions) at the individual fund level.

Because the option Greeks in the OptionMetrics database are not normalized according to the
underlying stock price and the price of the option, we first need to normalize the option Greeks
based on the Taylor expansion of the option value (V). The option can take the form of either a
call or a put option, such that our final equation resembles the equation in the TM model. From

the Taylor series expansion, the approximation of the option value (V) on a security with price S at



time ¢ is obtained by

ov . . 19%V ., OV

with g—g being the Delta of the option (A,), ?)QTZ being the Gamma of the option ('), and %—‘;
being the time decay of the option, named Theta (©,). The remaining term o(t) incorporates the
Vega, Rho, and higher moment effects on the change in the option value. We consider this term to
be close to zero for short periods of time, such that we make the assumptions that the volatility of
the underlying (02) and the interest rate (r) are constant. Moreover, controlling for the VIX and
the three-month T-bill in the conditional TM model leaves us fairly confident that setting aside the
Greeks vega and rho should not strongly impact the results of the replication model.

Substituting the Greek annotations into equation (3) we have,

1
dV ~ A,dS + §Fv(dS)2 + O,dt + ot) (4)

Writing equation (4) in discrete time yields

1
Vi — Vicar = Ay(St — Se—ar) + §Fv(5t — Si_a0)? 4+ 0,AL (5)

where V; is the price of the option for the underlying S;, and At is the time interval and is
equal to one month (1/12). Finally, the normalization of the option return and its Greeks takes the

following form when the underlying stock S; is substituted by the market M;:

My-a¢ 1 My > O,
R} = A Rm; + = T Rmj; + At 6
: Viear 2 Vear t Vi-at ()
—_——— ——
(1) Normalized Delta (2) Normalized Gamma (3) Normalized Theta

with RY = (Vi — Vi—ae)/Viear and Rmy = (My — My_a¢)/Mi—ar . We have (1) the normalized
Delta, (2) the normalized Gamma, and (3) the normalized Theta of the option.? For the sake
of clarity, we refer, in the remainder of the paper, to the normalized Delta as A, the normalized
Gamma as I', and the normalized Theta as ©. The approximation of the option return using the

Taylor expansion is written as follows:

2 According to Ivy Option Metric’s reference manual (version 3.1 1/11/2017, p. 22), “the theta of an option indicates
the change in option premium as time passes, in terms of dollars per year”. In our analysis, the annualized theta is

thus multiplied by 1/12 (At) to scale the value to a monthly basis.



1
RY = AyRmy + §rva§ + O, At (7)

with R} being the return of the option over the interval At (1-month), A,, Iy, O, being the
normalized Delta, Gamma and Theta of the option, respectively, and Rm; being the return of the

underlying stock index (S&P 500) at time ¢.

1.3 Replication with One Option

The process to achieve the option-based replication strategy can be described in two steps. The
first step consists in finding, in each period, the option that best fits the linear and quadratic terms
of the TM model by filtering the options list and finding the option with the closest match to the
ratios 2A; /T . = (/7.

The closest match attributes one option with maturity (7) and moneyness (k) to each monthly
return observation of a fund. Compared to classic option-based factors, our model does not pre-define
the choice of the maturity and moneyness of the option.

The second step is to solve for the weight (w) that satisfies the following conditions:

B = wAT,H
(8)

v =w3lrx
The replication strategy also has budget constraints that are satisfied by solving for the exposure
w to the selected option and allocating a proportion (1 — w) to the risk-free rate. To replicate the
payoff of a fund manager with a directional bet (8) and a non-directional bet (7), the model takes

the following form:

1
Ry = w(A; cRmy + §FT7,{Rm% +0,,) + (1 —w)Rf + o(At) 9)

where A, ., I's, and O, are the normalized Delta, Gamma and Theta of an option with
maturity (7) and moneyness (k), Rm; is the return of the underlying stock index (S&P 500) at
time ¢, and w is the weight allocated to the selected option. The intercept (hereafter, alpha) of the

passive strategies composed of a single option is given by

a™ =wO,, + (1 —w)Rf: (10)



Because this alpha comes from a purely passive strategy, its value can be used to adjust fund
performance by subtracting a™" from the traditional alpha of the TM model:

T,K K

! T
7T :OZT]M—Oé7

= apy — w6, . + (1 — w)Rf,

with agy, = aran + (1 — B)Rf.

Depending on the sign and significance level® of the parameters (3 and ), the replication strategy
will either be long (w > 0) or short (w < 0) one type of option, i.e., a call or a put. For instance,
a positive exposure to both the market, 5 > 0, and convexity, v > 0, forces the strategy to be a
long position (w > 0) in single call option on the benchmark index (here, the S&P 500) and the
remainder of the portfolio (1 — w) to be invested in the risk-free asset (Rf — the one-month T-Bill
from Ibbotson). Conversely, a negative exposure to the market, 5 < 0, and a positive convexity,
~ > 0, entails a long position (w > 0) in single put option. A short position in a call (put) is triggered
when the exposure to the market is positive (negative) and the convexity is negative, v < 0. To
better visualize the payoffs of these strategies, we display in Figure 1 the quadratic fit function of
the average fund performance with a payoff identified as a long or short call option (left plots). Plots
on the right display the average curvature of the fund replicated by either a long or short put option

with respect to the market return.

1.4 Replication with Two Options

Thus far, we have described the method to replicate the payoffs of funds with a significant
directional bet (8 # 0). However, some hedge fund strategies may seek to have no directional
bet. The most well-known hedge fund strategy intended to achieve this objective is known as the
market-neutral strategy. We identify the replication of strategies with a neutral directional bet and a
positive and significant non-directional bet as a long (bottom) straddle and as a short (top) straddle
when the non-directional bet is negative and significant. The situation of a market neutral fund
cannot be replicated by a simple strategy involving just one call or one put. To create an option
portfolio with a zero (or very low) Delta and positive or negative Gamma, the appropriate strategy

is the bottom or the top straddle. The bottom (top) straddle consists of going simultaneously long

3Note that in our applications, we use the Newey-West adjustment for standard errors and apply a lag of t=3.



Figure 1: Call and Put Payoffs

The figure represents the average curvatures of hedge funds with a 8 > 0 or § < 0 and v > 0 or v < 0.
For illustrative purposes, we report the payoff functions of a long call and put in the upper left and right
plots, respectively. We report the payoff functions of a short call and put in the lower left and right plots,
respectively. We estimate the quadratic fit function of an average fund’s performance (blue line) by averaging
the coefficients of the Treynor and Mazuy model over the funds with significant coefficients. The convexity is
then reconstructed with respect to the market returns (from -20% to 20%). The figures are illustrated with

respect to the market returns.
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(short) on a call and a put with the same strike and maturity. To activate the straddle, the portfolio
beta, which is close to zero, is separated into two parts: a long part 37 > 0 and a short part 3~ < 0.
To ensure the identical convexity of each option, we set v = v 4+ v~, where 87 /4T = -7 /7.
Using the same subscripts as the original author for the Greeks of the call option (4) and the put

option (-), the performance of this non-directional fund is given by

. 1
RP"™ =wh (AT Rmy + -T'f Rmi + ©],)

o Tk
+ wy (A7 Rmy + %F;anf +0;,) (12)
+ (1 —wf, —wy)Rf + o(At)

The first step to filter the options list is modified from that in the last subsection, and we
should now find the call and put options with the closest match to the following ratio: A}, /It =
—A7/To

The second step attributes one call and one put option with the same maturity (7) and moneyness

(k) to each monthly return observation of a fund. The weights (w* and w™) are then solved to find

— ot + - -
B - wT,K,AT,K + wT,fiAT,Fi

(13)
Y= %(w;’jmrim + w‘IT,I{P;K)
Alternatively,
v w‘fJ'r,/iF;r,n + w;,nr;,n
The alpha of the passive strategies composed of a call and put option is given by
o™ =wl Of +w, 00 +(1—wh —w, )RS, (15)

The adjustment from the passive strategy is done by adjusting the fund performance by sub-
tracting a™" from the original alpha of the TM model. In Figure 2, we illustrate the quadratic
function of the average fund performance with a payoff identified as a short (long) position in both
a call and a put option in the left (right) plot.

Another reason that the replication of a fund payoff with a single option may not be sufficient

is that some funds are categorized as single call or put strategies only because the model or the

10



Figure 2: Straddle Payoffs

The figure represents the average curvature for hedge funds with an insignificant 5 =0 and v > 0 or v < 0.
For illustrative purposes, we report in the left plot the payoff of the bottom straddle strategy (long call and
long put), while the right plot displays the payoff of the top straddle strategy (short call and short put). We
estimate the quadratic fit function of an average fund’s performance (blue line) by averaging the coefficients
of the TM model over the funds with significant quadratic coefficients. The convexity is then reconstructed

with respect to the market returns (from -20% to 20%).

20 20
184 Straddle Long (P & C)
Top Straddle 184
16 16 -
144 14
Short Call Short Put
124 124
~ 104 104
R 84 ‘.""-' l ;\; 8
£ N N USRS c h
Z 6 \ 4 = 6
= c
2 "M 4 5 41
5 2
& 27 & 2
7 04
£ £ o
S -2 S 24
w o
g 4 o 4 . R
© -6 g 6 A "-.‘. ..... 2 .
¢ 8 o il\
z > -8 o
4104 < | |
10 <10
-12 4 124 Long Call LongPut
-14 -14 4
-16 -16
18- 16 Bottom Straddle
50 Straddif Short (P & C) 181
20, T T T T T T T T T : 20, . . . ; ! ; ; S ;
20 -6 -12 8 -4 0 4 8 12 16 2 20 -16 -12 8 -4 O 4 8 12 16 20
Market Return (in %) Market Return (in %)

11



Figure 3: Payoff Curvatures

The figure represents the curvature of a hypothetical fund with a 3 of 1 and a ranges of different ratios 5/7.
For illustrative purposes, we report in the left plot the payoff when the sign of the § is positive and in the
right plot the payoff when the sign of the 8 is negative. In this case, both funds have positive market timing
skills (7 > 0). The convexity is reconstructed with respect to the market returns (from -20% to 20%).
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benchmark is misspecified. Thus, we end up with a very high v and, hence, very low ratio (|5/7]).
However, the payoff estimated from a quadratic regression clearly resemble that of a straddle, as
displayed in Figure 3. At least, this is what the regression estimates tell us — regardless of the R? of
the model. In the first picture, we show that the payoff for a ratio lower than 0.2 tends to resemble
that of a bottom straddle. Note that this 0.2 cutoff works for realistic values of market returns (from
-20% to 20% on a monthly basis).

To identify a fund’s payoff, we impose the condition that if a fund has a ratio |3/v| lower than
0.20, then its payoff should be replicated through a straddle strategy. Although this threshold seems
arbitrary, it nevertheless visually appears to be a natural cutoff for identifying a fund’s payoff as a
straddle.

In Table 1, we report a summary of the model procedures to replicate a fund’s payoff according
to both the loading of the parameters and the significance threshold of the parameters’ p-values.

In the next section, we describe the consolidated data obtained (1) from OptionMetrics (WRDS)
for the options and their Greeks and (2) from the merger of HFR and Morningstar databases for

our hedge funds sample.

12



Table 1: Option Replication Strategies

This table summarizes the types of strategies involving options that replicate all possible patterns of the TM
regression. In our applications, we use a significance level of 10% for the p-values of the linear and quadratic

parameters. This table presents the payoff identifications to apply the option-based replication strategies.

Quadratic Exposure
Directional exposure v >0 v <0
B >0 and |B/'y’ > 0.2 Long call Short put
B~ 0 or ‘B/’y‘ < 0.2 Bottom straddle Top straddle
8 <0 and !B/v‘ > 0.2 Long put Short call

2 Data

2.1 Options and Greeks

OptionMetrics provides data on the historical price, implied volatility and Greeks for the US
equity and index options markets. We restrict our use of OptionMetrics data to the Standard and
Poor’s (S&P) 500 composite index (ID 108105) and retrieve options with a standard settlement date,
that is, where the special settlement flag (ss_flag) is equal to 0, with positive bid and ask prices,
and the options expire on the Saturday following the third Friday of the month (Agarwal and Naik
2004).* We only retain observations from the first day of each month for which the open interest
(volume) is greater than zero and that have valid implied volatility and Delta. Our sample period

ranges from January 1996 to December 2015.
2.2 Hedge Funds

2.2.1 Merger of the databases

In this paper, we employ a sample of hedge funds from the merger of the HFR and Morningstar
databases. To carry out the merger, we follow the procedures of Joenvaarid, Kosowski, and Tolo-

nen (2016). Because merging multiple databases is not an exact science, in addition to the phrase

“The restrictions are identical to those used in the replication of the option risk factors of Agarwal and Naik (2004)

developed by WRDS.
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matching® used by the authors, we extend the identification of duplicate funds with a similar level
of the smoothing index following the procedure of Getmansky, Lo, and Makarov (2004). The com-
bination of a close match from the smoothing index and the phrase matching procedure gives fairly
good results to identify duplicates in our databases. Indeed, this combination allows us to work
simultaneously on the name and the returns of a fund (see Section 2.2.2 for further details). In the
appendix of this paper, we describe the treatments applied prior to constructing our consolidated

sample of hedge funds.
Figure 4: Illustration of the Database Coverage

This figure illustrates the coverage of hedge funds in our consolidated database after treatments. The diagram

displays the overlap -— by database — of the share classes as of December 2015.

HFR Morningstar
(9,867) R (5,368)
— "'“-,._\_H\\\
4229
’ B
AN
. \\\'.
\_.\.‘I
1,139 }
J
_ //,
P
L
HFR Active funds ( Live: HFR (397) — MS (72) ' MS Active funds

Dead: HFR (734) — MS (204)

We illustrate in Figure 4 that the number of active and dead funds that are specific to each
database after treatments is equal to 6,872 and 2,995 for HFR and to 4,229 and 1,139 for Morningstar,
respectively. Concerning the duplicates, the Venn diagram shows that there is a total of 1,407
duplicates between HFR and Morningstar, of which 397 active funds are attributed to HFR, 72
active funds are attributed to Morningstar, 734 dead funds are attributed to HFR, and 204 dead
funds are attributed to Morningstar. To choose whether a fund should belong to one database or
the other, we select the fund from the provider that reports the most observations — generally HFR

in our sample.

®The Jarko-Wink procedure matches funds that achieve a high correlation percentage (99%) in the name of their

funds.
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Because each database reports different hedge funds classifications, Joenvaara, Kosowski, and
Tolonen (2016) propose categorizing hedge funds into twelve primary strategies. We also follow
their approach, such that our results can be easily replicated using other providers’ data. Table 2
shows the categories documented in this paper and the table that Joenvaira, Kosowski, and Tolonen
(2016) use to construct these primary strategies can be found in the appendix of this paper. Our
final sample contains 10,958 of the 15,235 unique funds that we identified in our databases. The
sample period ranges from January 1996 to December 2015. Of the full sample, 3,805 are funds of
funds and 4,357 are equity-oriented funds. Finally, 4,282 remained alive as of December 31, 2015,
and 11,227 became defunct during the sample period.

2.2.2 Unsmoothed return

Hedge funds are prone to performance manipulations (Ingersoll et al. 2007). Specifically, Get-
mansky, Lo, and Makarov (2004) focus on the issue of ”performance smoothing,” which is a common
practice in the hedge fund industry to artificially reduce fund volatility by reporting only a fraction
(X%) of the gains in a month and retaining the other fraction (1-X%) to compensate for potential
future losses.® This practice tends to smooth the performance of a fund and makes mean-variance
risk measures, such as the Sharpe ratio, appear more attractive. To address this misleading smooth-
ing phenomenon, it is common practice to first ”unsmooth” observed returns and then conduct
performance evaluation on the resulting adjusted returns (Kosowski, Naik, and Teo 2007; Aragon
2007; Titman and Tiu 2011; DeRoon and Karehnke 2017). Getmansky, Lo, and Makarov (2004)

proposed the following model of return smoothing;:

R? =0gR; + 01 Ri_1 + ... + O, Ry, (16)

where RY is the observed return, R; is the true return of a fund and 6}, is the loading on the kth

lag of the realized return. In the model, 6 values are constrained to fall within an interval from zero

SFor instance, Agarwal, Bakshi, and Huij (2009) reveal that hedge funds tend to manage returns and earn higher
fees by retaining gains in early parts of the year and reporting them in December. Huang, Liechty, and Rossi (2012)
demonstrate how retaining gains to offset future losses increases a fund’s alpha by reducing its beta coefficients. In
other words, reducing return volatility (smoothing returns) turns risk (8) into performance («). Finally, Asness,
Krail, and Liew (2001) show that lagged market returns are often significant explanatory variables for the returns of

supposedly market-neutral hedge funds.
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Table 2: Funds Coverage across Primary Strategies

This table reports the number of funds that fall into the primary strategies as defined by Joenvéaéra, Kosowski,

and Tolonen (2016) after applying the treatments used in their paper.

We report the number of funds

conditional on the original database, that is, Hedge Fund Research (HFR) or Morningstar (MS). The last

column indicates whether the category is included in our empirical analysis.

HFR HFR MS

MS

(Dead) (Live) (Dead) (Live)

Total Included (Y/N)

CTA 537 197 310 122 1166 Yes
FEmerging Markets 121 22 143 No
Event Driven 480 240 133 51 904 Yes
Fund of Funds 1631 574 1354 246 3805 No
Global Macro 37 27 206 54 324 Yes
Long Only 67 83 150 No
Long/Short 1867 872 1234 384 4357 Yes
Market-Neutral 348 88 133 19 588 Yes
Multi-Strategy 932 518 193 59 1702 Yes
Relative Value 697 373 206 59 1335 Yes
Sector 302 104 406 Yes
Short Bias 41 2 99 34 176 Yes
Undefined 173 6 179 No
Total 6872 2995 4229 1139 15235

Total Selected 5241 2421 2514 782 10958
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to one and to sum to one. In common application, k is set to 2 such that smoothing takes place only
over the current quarter (i.e., the current month and the previous two months), and the observed
return is a weighted average of the fund’s true returns over the most recent three months (k+1),
including the current period. This averaging process captures the essence of smoothed returns in
several respects. The true unsmoothed return is then obtained by inverting the previous equation
as follows:

R, = RY — GyR; — 9}}21 — . — Oy Ry, an

0

The procedure is applied through a moving average (MA) process using maximum likelihood

estimation for the parameters. The model also imposes two additional restrictions: (1) the process
should be applied on demeaned returns and (2) be invertible. In the rest of our analysis, we use
unsmoothed returns for the principal reason that return-smoothing behavior yields a more consistent
set of returns over time with lower volatility and, therefore, a higher Sharpe ratio. Similar to DeRoon
and Karehnke (2017), we note that the adjustment for smoothing does increase the average volatility
from 3.58% to 4.49% in our sample, which leads to a decrease in the average fund’s Sharpe ratio
from 0.23 to 0.15 per month. However, it leaves the mean returns fairly unchanged, i.e., average
raw returns (0.54%) and average unsmoothed returns (0.51%). Finally, we also use the measure of
smoothing index to filter the duplicates in our database (as described in the previous section). The

smoothing index is computed as follows:

k
=Y 07€0,1] (18)
j=0

where 6; are the parameters from the MA process estimated in equation (16). The smoothing
index is often compared to the Herfindhal index, as it gives an estimate from 0 to 100% of the
smoothing behavior of a fund. An index value of zero implies substantial smoothing behavior in a

fund’s returns, while an index of one suggests no smoothing.

2.3 Instrumental variables

In Table 3, we report the descriptive statistics of the variables used in the empirical part of this
paper. Panel A displays the average return, standard deviation, and the minimum and maximum

of the S&P 500 index over the sample period ranging from January 1996 to December 2015. We
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also report the first-order auto-correlation estimate and its respective p-value as in Chen and Liang
(2007). In Panel B, we report the option-based factors using the same notations as in the original
work of Agarwal and Naik (2004) and Fung and Hsieh (2004).

For the option-based factors developed in Agarwal and Naik (2004), the ATM call option on the
S&P 500 index is denoted SPCa, SPPa represents the ATM put option, SPCo represents the OTM
call option, and SPPo denotes the OTM put option strategy. These option-based risk factors are
based on a strategy that buys on the first day of the month an option (call or put) with a fixed
moneyness of ATM or OTM on the S&P 500 and a maturity of one month. The option is then sold
on the first day of the next month, and a new option with the same moneyness and maturity is
bought back to continue the process of the strategy. The option-based factors from Fung and Hsieh
(2004) are the return of a portfolio of lookback straddles on bond futures (PTFSBD), on currency
(foreign exchange) futures (PTFSFX), on commodity futures (PTFSCOM), on short term interest
rate (PTFSIR) and on the stock market (PTFSSTK).” Panel C reports the instrumental variables
defined in Section 1.1, that is, the three-month T-bill yield (TB3MS), the term spread between 10-
year and three-month Treasury bonds (T10Y3M), the quality spread between Moody’s BAA- and
AAA-rated corporate bonds (Quality spread), and the dividend yield (Rate) of the S&P 500 index
and the end-of-the-month VIX divided by /12 to form the monthly estimate of market volatility as
in Chen and Liang (2007).

Before determining whether the adjustment of the intercept is valid, it is important to assess the
efficiency of the replication fit for the linear and quadratic terms of the TM model. Section 3.1 is

devoted to this evaluation.

3 Hedge Funds’ Gammas and Corrected Alphas

To determine whether the robustness of the identification of the funds’ payoff provides a plausible
alpha adjustment. We first analyze the fit of the parameters from the option-based replication
strategy. We then review the characteristics of the selected options of the strategies, i.e., the average
moneyness and maturity of the options. We finally test the degree of intercept correction delivered

by the strategy on the funds’ alpha through a bootstrap test similar to Fama and French (2010).

7All the information is available on David Hsieh’s website.
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Table 3: Variables: Descriptive Statistics

This table reports the descriptive statistics of the variables used to explain hedge funds’ returns. We display,
from Panels A to C, the average return, standard deviation, minimum and maximum of and the first order
auto-correlation with its respective p-value for the following list of variables: the S&P 500 index, the ATM
call option on the S&P 500 (SPCa), the ATM put option on the S&P 500 (SPPa), the OTM call option on the
S&P 500 (SPCo), the OTM put option strategy on the S&P 500 (SPPo), the return of a portfolio of lookback
straddles on bond futures (PTFSBD), on currency (foreign exchange) futures (PTFSFX), on commodity
futures (PTFSCOM), on short term interest rate (PTFSIR) and on the stock market (PTFSSTK), the three-
month T-bill yield (TB3MS), the term spread between 10-year and three-month Treasury bonds (T10Y3M),
the quality spread between Moody’s BAA- and AAA-rated corporate bonds (Quality spread), and the dividend
yield (Rate) of the S&P 500 index and the end-of-the-month VIX divided by /12, which forms the monthly
estimate of market volatility (VIX m). The sample period ranges from January 1996 to December 2015.

Mean STD Min. Max. p1 p-value

Panel A: Benchmark
S&P 500 0.006 0.044 -0.169 0.108  0.069 0.980
Panel B: Option-based Factors

SPCa -0.025 0.821 -0.996 2.417 -0.034 1.000
SPCo -0.036 0.874 -0.995 3.000 -0.041 0.999
SPPa -0.218 0.858 -0.966 3.332  0.119 0.756
SPPo -0.247 0.875 -0.971 3.459  0.129 0.677
PTFSBD -0.018 0.149 -0.266 0.689  0.108 0.832
PTFSFX -0.005 0.186 -0.300 0.692  0.042 0.999
PTFSCOM 0.001 0.145 -0.247 0.648 -0.033 1.000
PTFSIR -0.013 0.264 -0.351 2.219  0.216 0.080
PTFSSTK -0.049 0.145 -0.302 0.666  0.139 0.590

Panel C: Instruments

TB3MS 0.024 0.022 0.000 0.062  0.991 0.000
T10Y3M 0.017 0.012 -0.008 0.038  0.963 0.000
Rate 0.018 0.005 0.000 0.028 0.872 0.000
Quality_spread 0.010 0.004 0.006 0.034 0.960 0.000
VIX.m 6.101 2.270 3.008 17.289 0.829 0.000
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3.1 Fit of the Replication Strategies

There are many potential choices of measures to assess the quality of fit of a replication strategy.
Amenc et al. (2010) argue that natural and straightforward measures are the correlation coefficient
and the beta of the clone strategy with the fund’s returns. However, the authors emphasize that
despite being natural candidates to evaluate a clone strategy, these directional measures also present
some shortcomings. For instance, they only concentrate on the volatility rather than the returns
of the strategy. Thus, Amenc et al. (2010) suggest complementing the information from the cor-
relation/beta with measures that better track the errors of fit of the clone strategy, namely the
annualized root mean squared error (RMSE) and the annualized geometric average excess return
(AER). According to all of these measures, the results suggest that the fit of our replications is
statistically acceptable, for instance, if we assess the quality of fit through the beta of the replication

strategy with respect to the initial fund’s return. We can express the OLS regression as follows:

RIM — BROB ¢, (19)

RI'M = BRmy; + yRm? are the linear and quadratic parameters of the TM model, and

where
R? B — wA,Rm: + w%Fvatz are the equivalent parameters estimated from the option-based strat-
egy. The null hypothesis of the t-test is simply Hy: 5 —1 = 0.

This approach tests whether the replication strategies perform well at replicating the convex-
ity /concavity of a fund that exhibits a significant quadratic coefficient in the TM model. If the beta
is not statistically different from one, then we can conclude that the quality of the fit is good because
the linear and quadratic terms of the replication strategy are statistically similar to the linear and
quadratic terms of the fund.

If, however, we are interested in assessing the fit by tracking error measures, Amenc et al. (2010)
propose using the annualized root mean squared error (RMSE) and the annualized geometric average

excess return (AER). The authors explain that the first risk measure can be considered the tracking

error of the clone strategy and defined formally as

T
12
RMSE = | — ; (ROB — RTM)2 (20)
where RIM and RY® are the returns from the linear and quadratic terms of the TM model and

20



the option-based replication strategy, respectively. T is the fund’s total number of observations.
Concerning the second measure (AER), Booth and Fama (1992) explain that the geometric average
return is an useful performance measure because it represents the growth rate that an investor would
have earned if she had held a portfolio since day one. Thus, in addition to yielding information on
the portfolio’s arithmetic average return (u), it also captures the variation of the portfolio’s returns
(volatility, o). Motivated by the characteristics of the traditional geometric average return, Amenc
et al. (2010) extend the measure to a geometric AER to capture the both the first- and second-order
moments in the measurement of the replication strategy. They annualize the metric to provide a
more economically sensible interpretation of the results. The annualized geometric AER is thus
defined as
T
AER= |[[ (1 +RP® - RIM)7 | —1 (21)
t=1

where a low (high) RMSE tells us that the quality of fit of the replication is good (bad), and
the AER is an indicator of under- or over-performance of the replication strategy compared to the
actual hedge fund return.

We first report in Table 4 a similar test to that in Glosten and Jagannathan (1994) to analyze the
cross-sectional distribution of the t-statistics. The table displays the distribution of the t¢-statistics
using the Bonferroni correction for the p-values. The results suggest that there is no evidence that
the model poorly replicates the funds’ payoffs. Indeed, the Bonferroni p-values for the minimum and
maximum t-statistics are always higher than 10%. This suggests that we cannot statically reject the
hypothesis that the payoff replication strategy is different from the fund’s payoff. Interpretations
are similar if we replace the Bonferroni correction with FDR (false discovery rate) methods.® Note
further that some funds’ payoff being identified as a ”straddle payoff” might be false discoveries
because of benchmark or variable misspecification or low R? values that lead to a high v. However,
at a minimum, the results suggest that we can correctly replicate funds’ payoffs with the single
call and put strategies. Moreover, we need not be particularly concerned about finding the perfect
model that explains the cross-section of hedge fund returns to have the correct 8 and ~ estimates.
The rationale is that we know that false (or poor) identifications will be more likely identified as

a straddle payoff because of a low ratio (|8/v|), and our model is nevertheless able to accurately

8These results are, however, not reported for the sake of brevity.
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replicate the payoffs of such strategies. The correction of the intercept is thus conditional on the

payoff identification and provides a benchmark for those false identifications.”

Table 4: Distribution of the Replication Fit

This table report the cross-sectional distribution of the ¢-statistics. We report the number of hedge funds that
fall within a payoff identification and provide their respective proportion in the sample. An examination of
the minimum and maximum t-statistics are displayed with a Bonferroni correction of the p-values. A p-value
higher than 10% suggests that we cannot statically reject the hypothesis that the payoff replication strategy
is different from a fund’s payoff at the 90% confidence level.

Long Short Long Short Long Short

Single Call Single Put Straddle (Call & Put)
# Fund (497)  (19) (7) (324) (1,204) (1,227)
Proportion 15.20% 0.60% 0.20% 9.90%  36.70% 37.40%
Min ¢ -2.446 -1.377 -0.874 -2.529 -3.877 -2.682
Bonferroni p 1.000 1.000 1.000 1.000 0.504 1.000
Average t 0.009 0.286 -0.007 0.077  -0.014 -0.062
Max ¢ 2.938 2.627  1.229 2.710 2.727 3.004
Bonferroni p 1.000 0.218 1.000 1.000 1.000 1.000
Number with t-stat
t <-2.326 4 0 0 1 8 11
-2.326< t <-1.96 8 0 0 6 15 15
-1.96< t <-1.645 20 0 0 7 35 24
-1.645< t <0 220 6 3 130 552 595
0< t <1.645 210 11 4 163 547 534
1.645< t <1.96 21 0 0 13 29 37
1.96< t <2.326 8 1 0 3 13 9
2.326< t 6 1 0 1 5 2

To obtain further details in the assessment of the primary strategies’ fit, we report in Table 5 the
results for the categories defined in Joenvéard, Kosowski, and Tolonen (2016) of the average RMSE
(eq. (20)) and AER (eq. (21)) in Panels A and B, respectively. Both measures suggest that our
model produces, on average, a good quality of fit — the RMSE and AER are close to zero. We also
report in Panel C the number of funds that falls in each primary strategy and option replication

strategies. In total, we have 3,278 that have significant quadratic coefficients at the 10% confidence

9To mitigate the likelihood of false payoff discoveries, one could complement the model with traditional equity
risk-factors, i.e., the factors of Fama and French (1993) (SMB, HML) or Carhart (1997) (UMD), to improve the R* of
the model as in Fung and Hsieh (2011). However, due to the low degrees of freedom available in hedge fund samples,

researchers generally seek to keep their models parsimonious. We did not include these factors for the same reason.
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level, which represents approximately 30% of our sample (10,098 funds). A substantial number of
hedge funds that exhibit a payoff resembling a short position in a put option on the market index
are identified as Event Driven or Long/Short hedge funds. We report in the appendix the result
of Table 5 when the option risk factors are added to regression model. Results and interpretations
goes in the same direction.

Mitchell and Pulvino (2001) document that merger arbitrage strategies, a sub-category of Event
Driven, indeed have a payoff resembling that of a short put option because this strategy takes a
long position in the stock of the target company in the merger and a short position in the acquiring
company. In bad economic conditions, this type of strategy will be more likely to fail and thus
exhibit losses. In fact, writing put options may appear effective in a mean-variance framework, but
this strategy performs poorly when we consider moments higher than the second order (DeRoon and
Karehnke 2017). These types of strategies bear significant tail risks because writing a put option
on the market index may severely impact fund performance when strong bearish trends affect the
equity market (Agarwal and Naik 2004). Table 6 shows that funds with short put option payoffs
have, on average, a negative skewness (-0.677) and positive kurtosis (6.596). Because these (extreme)
returns are mostly captured by the third and fourth moments and may be ignored in traditional
mean-variance frameworks, these last authors highlight that non-linear risk returns in hedge funds
translate into significant loadings on the risk factor using the OTM put option.

Overall, the assessment of funds’ identification payoffs seems in line with previous studies. We
present our evidence by primary categories and attribute one option payoff to the highest proportion

of funds that correspond to that option strategy.

CTA: Long straddle payoff, i.e., exhibits a trivial directional bet and has a similar payoff to straddle
strategies (Fung and Hsieh 2004);

Event Driven: Short put or straddle payoff, i.e., strategies that are more likely to fail and exhibit

consequent losses (Mitchell and Pulvino 2001).

Global Macro: Straddle payoff, i.e., market timers with a neutral bet on the benchmark (Fung
and Hsieh 2001).

Long/Short: Single call payoff, i.e., a directional bet with timing abilities.
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Market-Neutral: Short straddle payoff, i.e., a neutral bet on the market with the objective of

profiting from mispricing and not from market timing (Chen and Liang 2007).

Multi-Strategy: Long straddle payoff, i.e., a neutral bet on the market with the objective of

smoothing return volatility from strategy diversification.

Relative Value: Short straddle payoft, i.e., uncorrelated with the market, employing a convergence
strategy on mispriced securities and likely to face strong fixed-income exposures during a

market decline (Gatev, Goetzmann, and Rouwenhorst 2006; Chen and Liang 2007).

Sector: Mixed payoffs, i.e., this category is specific to HFR data and regroups a combination of

directional and non-directional bets.

Short Bias: Short call, put or straddle, i.e., sell short overvalued securities and face substantial

risk during good market conditions (Agarwal and Naik 2004).

3.2 Replication Strategies’ Characteristics

In this section, we review the main characteristics of the selected options in the replication strate-
gies. Table 7 displays the average values of the selected options to replicate a fund’s performance.
For instance, a fund with positive market timing skills (positive linear and quadratic terms) can be
replicated by investing, on average, 11% of the strategy’s capital in a call option with a moneyness of
1.07 and a maturity of 275 days (~ 9 months). While the moneyness of the selected options is fairly
stable across the strategies, i.e., OTM call and put for single-instrument replications and ATM call
and put for the straddle strategies, the maturity of the options are more flexible for single-instrument
strategies, i.e., a larger standard deviation. For the straddle strategies, the selection of ATM options
is consistent with the idea that the Gamma of the straddle is the highest for ATM options. Further-
more, our model forms straddle strategies by selecting a maturity of approximately 5 months (~ 150
days) and appears stable whether the strategies are long or short in the straddle. The five-month
maturity is close to the quarterly expiration date for the options used in the look-back straddles of
Fung and Hsieh (2001).

Market timers were originally identified as having a similar payoff as a long straddle strategy
(Merton 1981). Fung and Hsieh (2004) use ATM options to construct the straddle. Although

Siegmann and Lucas (2003) instead suggest using OTM options, the choice of moneyness for the
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Table 6: Option-like Payoff Strategies: Descriptive Statistics

This table summarizes the descriptive statistics of the funds that are identified according to their option

payoffs. The results are averaged for each payoff category. We report in Panel A the number of funds, the

number of non-missing monthly observations, the mean, the standard deviation (STD), the skewness, the

kurtosis and the Jarque-Bera coefficient to test the normality of returns. The significance of the parameter

estimates are reported as performed: *, ** and *** and indicate statistical significance at the 0.1, 0.05 and

0.01 levels, respectively. The distribution of the returns is briefly reported with the minimum, 25th percentile

(Q1), median, 75th percentile (Q3) and maximum. In Panel B, we display the descriptive statistics of the

regression coefficients, that is, the alpha, beta and lambda. We also report the average ratio (beta/lambda),

the adjusted R?, the maximum drawdown (Max DD) and the level of the smoothing index of the funds.

Panel A: Descriptive Statistics of the Returns

# Funds # Monthly Obs Mean STD Skew. Kurt. JB Min. Q1 Median Q3 Max.
Long Call 497 110 0.075 0.189 -0.054 4.909 77H** -0.157 -0.025 0.007 0.037 0.171
Long Put 7 130 0.013 0.196 0.446 4.623 25%** -0.161 -0.032 -0.001 0.031 0.206
Short Call 19 85 0.001 0.2 0.093 4.51 24%** -0.155 -0.034 0.001 0.029 0.155
Short Put 324 115 0.085 0.197 -0.677 6.596 180*** -0.203 -0.021 0.01 0.039 0.166
Bottom Straddle 1204 94 0.081 0.166 0.31 6.163 169*** -0.124 -0.021 0.005 0.031 0.169
Top Straddle 1227 82 0.066 0.173 -0.787 10.151 915*** -0.187 -0.017 0.007 0.029 0.147
Unreplicated 7678 91 0.074 0.171 -0.13 6.515 293*** -0.15 -0.02 0.006 0.032 0.158

Panel B: Descriptive Statistics of the Regressions

# Funds Alpha Beta Lambda Ratio Adj R? Max DD Smoothing
Long Call 497 -0.004 0.875 2.665 0.366  0.474 -0.358 0.675
Long Put 7 0.002 -0.736 2.603 -0.336  0.427 -0.462 0.855
Short Call 19 0.01 -0.854 -2.549 0.383  0.426 -0.44 0.746
Short Put 324 0.006 0.827 -2.756 -0.336  0.492 -0.395 0.675
Bottom Straddle 1204 -0.003 0.259 5.404 0.075  0.201 -0.247 0.716
Top Straddle 1227 0.009 0.395 -6.18 -0.083  0.293 -0.31 0.652
Unreplicated 7678 0.003 0.463 -0.03 -8.002  0.244 -0.299 0.671
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Table 7: Selected Options: Descriptive Statistics

This table summarizes the average weight invested in the option-based strategy, the normalized Greeks (Delta,

Gamma and Theta), and the moneyness and maturity according to the types of strategy involving options that

replicate all possible patterns of the TM regression. Standard deviations of the average values are reported

in parentheses.

Long Short Long Short Long Straddle Short Straddle
Characteristics Single Call Single Put Call Put Call Put
Weight (w) Mean 0.11 0.09 0.11 0.12 0.13 0.13 0.14 0.15
STD (0.07) (0.08) (0.04) (0.08) (0.13) (0.15) (0.17) (0.19)
Delta (A) Mean 10.92 11.07 -7.64 -8.62 16.76 -15.07 16.66 -14.97
STD (2.45) (2.27) (0.93) (2.16) (2.21) (2.17) (2.55) (2.49)
Gamma (T) Mean 73.3 76.01 46.29 62 211.86 192.47 210.37 191.07
STD (37.3) (35.94) (12.43) (31.9) (52.76) (48.87) (59.73) (55.39)
Theta (©) Mean -0.11 -0.13 -0.15 -0.21 -0.21 -0.2 -0.21  -0.18
STD (0.05) (0.05) (0.04) (0.14) (0.02) (0.03) (0.02) (0.04)
Moneyness (k) Mean 1.07  1.09 0.82 0.85 1.01 1.01 1.01 1.01
STD (0.05) (0.06) (0.04) (0.08) (0.01) (0.01) (0.01) (0.01)
Maturity in days (1) Mean 275 269 328 291 153 153 158 158
STD (46)  (48) (52)  (113) (18) (18) (20) (20)
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Figure 5: Moneyness and Maturity of Options

This figure presents the distribution of the average maturity (in days) and moneyness of the selected options
according to the types of strategies that replicate all possible patterns in the TM regression. The box plots
for the call, put and straddle option strategies are depicted in black, gray and blue, respectively. The results
are presented in days for the maturity (a) and in percentages for the moneyness (b). The boxes show the
5th percentile and 95th percentile of the distribution of the variables on the y-axis, and the mean of the

distribution is represented by the dots inside the boxes. The dots outside the boxes are the outliers of the

distribution.
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Fung and Hsieh factors is clearly in line with our results. The danger with OTM options is that they
rely on betting that the market will be volatile to make profits. If the market movement does not
move in the same direction as the bet, than the time decay of the options (Theta, ©) will quickly
and strongly impact the intercept of the replication strategy, and in our model, the impact will be
approximately 1.5 to 2 times stronger for replication strategies using a put rather than a call option.
Figure 5 illustrates the distribution of the average maturity and moneyness of the selected options

with respect to the strategy that the model attempts to replicate.
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3.3 Alpha Adjustment

Managerial skill is by definition the part of the return in excess of any systematic sources of risk
and attributed to the alpha of a multi-factor regression analysis (Agarwal, Mullally, and Naik 2015,
p. 16). However, it is conceptually unclear whether the quadratic term of the TM model should be
considered a systematic source of risk. The term can be viewed as a statistical artifact to measure
the manager’s exposure to the market movements. According to Fama (1972), who defined a fund
manager’s skills as consisting of both market timing and stock selection ability, it is clear that the
combination of the intercept and the quadratic term (agps + yRm?) should naturally be regarded
as skills. But, if we believe that the quadratic term (yRm?) could easily be replicated by a passive
strategy, then the only source of skill left in the equation is the intercept of the TM model (arps). As
the replication model of Hiibner (2016) satisfies the condition of passively replicating the linear and
quadratic term of the TM model, the adjustment of the intercept (azps) should reflect a manager’s
true skill at security selection relative to a passive benchmark.

We illustrate in Figure 6 the distribution of the raw and adjusted alpha estimates from the
original TM model with respect to the type of strategy the replication model attempts to replicate.
Plot (a) displays the raw alphas, while Plot (b) displays the distribution of the adjusted alphas. In
Plot (a), we see that a fund that times the market, namely, one with a positive quadratic term that
is replicated by being long in a single call option, delivers, on average, a negative "naive” alpha (~
-0.40% per month). Conversely, a fund that resembles being in short a single put option delivers
a positive "naive” alpha (~ 0.60% per month). However, while writing put options may appear
successful in a mean-variance framework, it performs poorly when we consider moments higher than
the second order (DeRoon and Karehnke 2017). In Plot (b), having the same alpha but adjusting
the intercept from option-based replication strategy substantially changes the overall picture; the
"dumb” alpha from writing put options shrinks from ~ 0.60% to roughly -1.50% per month, while
the alpha of a market timer is now raised from -0.40% to 0.40% per month.

A more granular analysis across hedge funds’ primary strategies is provided in Table 8. The
table presents, across strategies, the average raw alpha (Panel A) and the average alpha from the
option replication strategies (Panel B). The adjusted alpha is simply the difference between Panel
A and Panel B. Panel C reports the average adjusted R? of the model, and Panel D presents the
average ratio ‘6 / fy‘ of the funds. We report in the appendix the results in Table 8 when the option
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Figure 6: Raw and Adjusted Alphas

This figure shows the distribution of the raw (a) and adjusted (b) alpha estimates of hedge funds, az,, and
w™* from eq (11), respectively. The regression model used in this analysis includes the TM variables and the
instrumental variables that control for public information. The results are reported according to the types
of strategies involving options that replicate all possible patterns of the regression model. The box plots for
the call, put and straddle option strategies are depicted in black, gray and blue, respectively. The results are
presented in percentages and on a monthly basis. The boxes show the 5th percentile and 95th percentile of
the distribution of the variables on the y-axis, and the mean of the distribution is reported by the dots inside

the boxes. The dots outside the boxes are the outliers of the distribution.
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risk factors are added to regression model. The interpretations remain similar.

Kosowski, Naik, and Teo (2007) demonstrate, however, that assessing the performance of a fund
based solely on the alpha coefficient of a regression model is misleading because the errors of the
estimation are not considered in the performance evaluation. These errors lead to spurious outliers,
which may be identified as good or bad performers, by chance. As a result, recent performance
evaluations have been performed based on the normalization of the coefficient through the t-statistics
(t(«)) of the alpha and bootstrap methods. We explain in the next subsection Fama and French
(2010)’s bootstrap test, in which the ¢(a) of a fund is considered to judge whether its performance

is persistent or simply driven by luck.

3.3.1 Bootstrap Evaluation of Skills

This section evaluates the abnormal return for the actual funds and identifies whether the alpha
correction from the option-based replication plays a significant role in understanding fund managers’
skills. To perform this exercise, we employ the bootstrap procedure proposed by Fama and French
(2010) to check whether the distribution of well and poorly performing funds remains the same
before and after our alpha adjustment.'” Fama and French (2010) compare the actual cross-section
of mutual funds’ alphas to a simulated cross-section of bootstrapped alpha in a world of zero true
alpha (no timing or selection abilities). In this section, we transpose the procedure to our sample of
hedge fund returns using the extensions of the TM regression models described in the prior sections.

Kosowski, Naik, and Teo (2007) emphasize two difficulties in evaluating the performance of
hedge funds: first the difficulty of benchmarking dynamic hedge fund strategies and, second, the
fact that adding alternative risk factors might reduce misspecifications in the model. Concerning
the benchmark issue, we know that although the S&P 500 is probably not the most appropriate
benchmark for evaluating the cross-section of hedge funds, it is nevertheless the most frequently
used benchmark in literature. The interpretation of our results should thus not diverge from other
studies based on the choice of this benchmark. Regarding the model specification, we complement the
quadratic regression model of TM with option-based risk factors. Note that when a model of option
risk factors is added to the TM model, we also re-estimate the linear and quadratic coefficients from

equation (2) and re-identify the payoffs. In addition to improving the estimation of the regression

0ur bootstrap procedure is similar to that of Kosowski, Timmermann, and Wermers (2006), Chen and Liang

(2007), Jiang, Yao, and Yu (2007), Kosowski, Naik, and Teo (2007), and Cao et al. (2013).
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coefficients (Goetzmann, Ingersoll, and Ivkovi¢ 2000), this method enables us to adapt the alpha
correction for the option-like profiles of a fund. The alternative standard models include the option-
based factors of Agarwal and Naik (2004) and the look-back straddle factors of Fung and Hsieh
(2004). These models are standard asset pricing models used in the hedge fund industry that allow
us to determine whether the alpha adjustment from our option-based replication strategy is either
subsumed by or complementary to these widely accepted option risk factors. The rationale behind
this test is that if our alpha correction is simply an alternative exposure to different risk-factors,
then the correction should be captured by one of these models. Our evidence suggests, however,
that the alpha adjustment is not composed of ”exotic risk exposures” (Agarwal and Naik 2004) but
is an isolated component (that arises from the flexibility of our model) that explains the skills of a
fund manager. We describe the bootstrap procedure in the four following steps.

The first step consists in estimating the actual alphas of the hedge funds using a multi-factor
model. In our application, we use the TM model augmented with conditional lagged instruments
described in Section 2.3 and/or the option-based risk factors of Fung and Hsieh (2004) or Agarwal
and Naik (2004):

L K
R! — Rf; = o' + f"Rm; + v'Rm? + Z Siz14—1 Rmy + Z BLOFy + ¢! (22)
=1 k=1

where R! stands for the i*" hedge fund’s return, and Rf; is the risk-free rate (the one month
T-bill from Ken French’s website) at time t. z;;_; denotes for the conditional lagged instruments,
and OF}, stands for the option-based factors of Fung and Hsieh (2004) or of Agarwal and Naik
(2004). We still consider the S&P 500 as a proxy for the market return (Rm;). We also assume that
et ~ N(0,02).

In the second step, we subtract the estimated a’ of each of the individual funds from its return
(RY) to construct a time series of zero-alpha returns, i.e., (R — a'). As Cao et al. (2013, p. 499)
note, this step ensures that the procedure generates “hypothetical funds that, by construction, have
the same factor loadings as the actual funds but have no timing ability”. In other words, the beta
parameters remain unchanged. However, in our case, as the market timing ability is already captured
by the quadratic terms, the only ability left in the model is the manager’s skill at picking well

performing stocks (security selection).
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In the third step, we jointly'! resample the zero-alpha returns with the factor returns (Rm; and
Rm?). The joint resampling ensures that we capture the cross-sectional correlation between the fund
returns in our sample and the explanatory variables. One run of the bootstrap works as follows:
we randomly select a date from our sample of 239 monthly observations (from February 1996 to
December 2015) and draw a selection, with replacement, of date observations of the same size as
our original time frame (239 monthly observations). The time series is equivalent for the whole
funds universe. We retain only funds with more than 36 observations in this run. As explained in
Fama and French (2010), this procedure preserves the cross-sectional and time-series dependence
across funds and explanatory variables. The bootstrap is composed of 1,000 runs (denoted b for
bootstrapped) and estimates the alpha and ¢-statistic for each fund in a world in which the true

alpha is zero:

L K
(R} — ay)p = &Z’O + BLRmy + ALRm? + Z O p21,e—1 Rmy + Z BipOFy + epy (23)
=1 k=1

In the fourth step, we average, across the 1,000 simulations, the alphas and their ¢-statistic (¢(«))
estimates at the same percentile to construct an empirical cumulative density function (CDF) of the
cross-sectional zero alphas (dz’o). Fama and French (2010) use the t-statistics of funds instead of
their raw alphas to remove the influence of funds with short sample periods or high idiosyncratic
risk — these funds being more likely to have alpha by chance. Thus far, the alpha corrections
from our option-based strategies have not been integrated into the bootstrap. Because option-like
strategies such as hedge funds exhibit non-linear payoffs, the evaluation of skills, which is associated
with the intercept of a regression model, may be artificial. Indeed, the alpha of exotic investments
with option-like payoffs from a typical linear regression is different from the traditional alpha of
vanilla strategies (e.g., equities, bonds). The effect of skills for these exotic investments should
thus be contingently adjusted for the non-linearities in their returns. Such adjustment is necessary
because a quadratic model, such as the TM model, shifts (by construction) upward the alpha of
a strategy that has a negative OLS coefficient on the quadratic term because the average squared
market return is positive (DeRoon and Karehnke 2017). This is in line with the empirical studies

of Coggin, Fabozzi, and Rahman (1993) and Jiang (2003), which report evidence of an artificial

"The bootstrap procedure is a random selection of monthly observations of all funds with replacement. The
conditional resampling is performed to capture the cross-sectional correlation between portfolio returns constituting our

sample. As in Harvey and Liu (2016), for example, the bootstrap preserves cross-sectional and time-series dependence.
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negative correlation between the intercept and the quadratic coefficients. To do this, we repeat the

operation from step one to step four and adjust the funds’ returns by subtracting the alpha of our

(T,K))

), that is, we replace R! in equation (22) with (R} — a(T’H)).

option-based replication strategies (« i

Figure 7 illustrates the comparison of the simulated CDF's of ¢(«) for the raw and adjusted alpha
frameworks (blue lines) and the CDF's of the actual ¢(«) estimates of funds (red dotted lines). The
plots on the left are for the CDF of raw alpha and the plots on the right are for the CDF of the
adjusted alpha.

Plots (a) and (b) are for the comparison the TM model complemented only with the conditional
lagged instrumental variables. The CDF of the raw alphas presents a skewed ¢(«)-distribution to
the right, whereas the adjusted CDF has been shifted to the left. The consequence is that, under
the adjusted framework, a larger proportion of alphas are found outside the 90% confidence interval
(vertical gray dotted lines). Extreme and significant positive and negative alphas are more likely
to be found under the adjusted model, as shown by comparing the left-hand and right-hand blue
areas, which supports the evidence of fatter tails in the adjusted framework density. The results
support that the adjustment from the passive option-based replication strategies identifies a larger
proportion of poor performers in our sample and goes from approximately 5% to 15%. The alpha
adjustment also tend to centralized the distribution near zero.

Plots (c¢) and (d) show the simulation results of the bootstrap methodology using the option-
based factors of Fung and Hsieh (2004). Plot (c) presents evidence that a quadratic model exhibits a
right-skewed distribution of the intercept. Adjusting the intercept for the degree of curvature in the
quadratic model is presented in Plot (d); we observe an incremental improvement similar with the
option-based factors of Fung and Hsieh (2004). This suggests that our alpha adjustment captures
part, but not all, the residual information from the traditional look-back straddle strategies.

Plots (e) and (f) show the results of the bootstrap methodology using the option-based factors of
Agarwal and Naik (2004). Overall, we see that the correction in our option-based replication model
is complementary to the Agarwal and Naik (2004) factors. While widely accepted as explanatory
variables in the hedge fund industry, one potential shortcoming of these option-based risk factors
involves the pre-condition on the moneyness and maturity of the option, i.e., ATM and OTM with
one-month maturity, which might not accurately reflect the dynamic nature of hedge funds’ option-
like trading strategies. To benchmark funds’ performance at the individual level, the model should

succeed at capturing the specific aspects of the manager’s operations (Glosten and Jagannathan
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Figure 7: Cumulative Density Function of ¢(«)

This figure illustrates the CDF of ¢(«) estimates on hedge funds with significant parameters from the TM
model. The simulated CDF of the t(«) estimates for zero-alpha funds is represented by the blue line. The
red dotted line is the CDF of the ¢(«) estimates for actual portfolios. The vertical gray dotted lines represent
t-statistics at the usual 90% confidence level. For visualization purposes, the areas above this confidence level
for the actual t-statistics are shaded. The aim of the figures is to compare the blue and red dotted lines at
these 90% confidence levels. The sample period is from January 1996 to December 2015. Graphs on the left
(right) show results for funds without (with) alpha correction from an option-based strategy. Plots (a) and
(b) use as the factors of the TM model and conditional lagged instruments from Chen and Liang (2007), while
Plots (c) and (d) complement this model with the option-based factors of Fung and Hsieh (2004, FH), and
Plots (e) and (f) use the option-based factors of Agarwal and Naik (2004, AN).
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1994). The model used in this paper is intended to fill this gap. Indeed, the distinction between the
simulated and the actual distribution of adjusted alpha in Plot (f) is almost null.

According to the first paragraph in Fama and French (2010, p. 1915), “active investment must
also be a zero sum game-aggregate o is zero before costs”; while hedge funds’ returns are net of fees,
the results suggest that our flexible adjustment of alpha based on the funds’ level of gamma trading
helps to better explain the selection skills of fund managers. From the last combination of factors
and alphas adjustment, we cannot conclude that selection skills are present in our sub-sample of
hedge funds. As Cochrane (2011, p. 1087) notes, “Most active management and performance evalu-
ation today just is not well described by the alpha—beta, information-systematic, selection-style split
anymore. There is no “alpha”. There is just beta you understand and beta you do not understand,
and beta you are positioned to buy versus beta you are already exposed to and should sell”. This may
suggest that the methodology used to construct the option factors of Agarwal and Naik (2004) should
be modified to match our aggregate selection of options in order to capture the residual significant
alphas from the cross-sectional distribution. Also, because we use net-of-fees returns, no significant
alphas in the cross-section of hedge may simply suggests that fees collected by good market timers
is compensation for their ability to anticipate market fluctuations.

In Table 9, we report these empirical distributions of the t(«) estimates for the simulated and
actual estimates. Panel A presents the results for the models using the factors from the TM model
and conditional lagged instruments from Chen and Liang (2007). Panels B and C complement the
model in Panel A with the option-based factors from Fung and Hsieh (2004) and the option-based
factors from Agarwal and Naik (2004), respectively. The last column of each panel is different from
the table in Fama and French. In their paper, the authors consider "% < Act”, which represents
the fraction of ¢(«) estimates from the 1,000 simulations for which the estimates are lower than the
actual t(«) for equivalent percentiles. In our paper, we are instead interested in "% < Sim”, which
we interpret as the fraction of ¢(«) estimates from the actual returns of the hedge fund sample that
are lower than the average of the 1,000 simulations at the indicated percentiles. In other words, we
examine how much of the funds have an alpha lower than the mean of the 1,000 simulated alphas at
the 1st percentile and so forth. From this column, we can infer how many funds have a t(«) lower
than some confidence level and whether our alpha correction helps to explain these residual alphas.
For instance, in Panel A, we have in the column ”% < Sim” of the raw alpha a value of 6.4% at the

5% confidence level and a value of 79.3% at the 95% confidence level. This suggests that the model
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leaves more than 10% of the funds with significant alphas (27.1% of the funds). For the adjusted
alpha, the values are 16% and 86.2% for the same confidence levels (29.8% of the funds). Thus
far, the alpha adjustment just seems to identify more funds with negative alphas. Panel B presents
similar results and suggests that the option factors of Fung and Hsieh (2004) bring little additional
information to our model. However, Panel C shows that the values for the raw alpha are 10.3%
and 85.6% (24.7% of the funds) and 6% and 95% (11% of the funds) for the adjusted alpha at the
5th and 95th confidence levels, respectively. While the option factors of Agarwal and Naik (2004)
centralized the distribution of #(«)-estimates around zero, it fails to explain the residual significant
alphas of the cross-sectional distribution of hedge funds. Our alpha adjustment fills this gap. We
are thus fairly confident that the adjustment in our model improves on and is not captured by other

standard, derivative-based risk factor models.

4 Robustness (Work in Progress)

4.1 Choice of Timing Ability Significance Levels

In this section, we review our results under different choices of significance levels for the linear
and quadratic terms of the TM model. In summary, we use a significance level of 20% and despite the
lower precision in the regression analysis and the larger number of funds considered, namely 4,626,

representing approximately 42% of our sample, the interpretation of the results remains similar.

4.2 Alternative Payoff Identification

We compare the option payoff identification obtained by using the classic option-based factors
of Agarwal and Naik (2004) with that of our quadratic model. The utility of the option risk factors
of Agarwal and Naik (2004) resides in the combination of four strategies that use only one type of
option and for which the direction of the trade (long or short) is endogenous to the sign of the option
risk factors’ loading from the OLS regression. However, Agarwal and Naik (2004) also note that the
identification of significant factors should be addressed through a stepwise regression. A stepwise
regression might be useful for ensuring model parsimony, but it also constrains the reproduction of
a similar bootstrap test to that of Fama and French (2010) because the test requires that all funds

have the same explanatory variables.
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In this paper, we use the following the regression model to identify a fund’s option-like payoff

using the factors of Agarwal and Naik (2004):

Ri — Rfi =o' + B'Rmy + s'SM By + h' HM Ly + m'MOM,
+ 6410Y; + 65CredSpr + 0L MSC 1, (24)
+ 6LSPCay + 6, SPPay + 0:SPCo; + 65SPPoy; + el

where Rmy is the excess return of the Value-Weighted US index from CRSP, and SMB, HML and
MOM are the equity risk factors of size, value and momentum obtained from Ken French’s website.
The 10Y is the month-end to month-end change in the US Federal Reserve’s 10-year constant-
maturity yield, CredSpr is the month-end to month-end change in the difference between Moody’s
Baa yield and the Federal Reserve’s 10-year constant maturity yield, and M SCI,,, is the Morgan
Stanley emerging market index, all three of which are obtained from David Hsieh’s website. The
option-based factors are written on the S&P 500 index with an ATM call option (SPCa), an ATM
put option (SPPa), an OTM call option (SPCo) and an OTM put option strategy (SPPo).

To identify a fund’s option payoff, we consider the sign and significance level of the loadings on
the option risk factors. For instance, a positive (negative) and significant (p-value of 10%) loading
on the call option strategies (05 and d7) will be classified as a ”"Long Call” (”Short Call”). The
approach is similar for a put option. If these call and put strategies are both significant and have
the same sign, then the payoff will be considered a ”Long Straddle” when the sign of the loadings
is positive and as a ”Short Straddle” when the sign of the loadings is negative. If more than three
strategies are significant, then we classify this as a ”Complex Payoff.”

Panel A of Table 10 presents the number of funds identified with one type of option payoff
when the regression involves a stepwise procedure to select dominant risk factors. We see that
approximately 3,000 funds fall into the same categories as ours. These results indicate that, with
this method, more funds are identified as using ”Short Call” and ”Long Put” strategies and suggest
that a larger proportion of funds would be used as a market insurance strategy. Moreover, strategies
designed to have a neutral bet on the market (Global Macro and Market-Neutral) appear to have a
directional bet on the market, which appears paradoxical. In Panel B, we report the number of funds
with significant alpha across the range of primary strategies and option payoff classifications. On

average, 34.51% of the funds have a significant intercept. The ”Long Straddle” classification (good
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market timers) have the highest number (68.75%) of funds with significant alphas.'? Panels C and
D report the same analysis when the regression involves a regular OLS procedure, i.e., no sequential
selection of the variables. Overall, we see that most of funds have a ”Complex Payoff,” such that
more than two option risk factors load significantly and make the identification process more difficult.
Only 302 funds have a simple payoff identification, and 2,117 funds are classified as complex. On
aggregate, the number of funds with option-like payoffs decreases from 3,428 to 2,419, as does the
proportion of funds with a significant alpha (from 34.51% to 26.46%). Although this last approach is
not suggested by Agarwal and Naik (2004) , proceeding with testing the cross-sectional distribution
of alphas among hedge funds will remain a complex exercise with a stepwise regression. We believe
that the risk factors of Agarwal and Naik (2004) are important control variables to capture the
non-linearities of hedge fund returns but that the identification of option payoffs is simpler with a

quadratic model and the relationship between the linear and quadratic term (the ratio |8/7]).

5 Conclusion

This paper establishes a benchmark to assess the timing skills of fund managers. Our model
is intended to adjust the fund managers’ returns by the alpha of a passive option-based strategy
that replicates the non-linearity in the fund returns. Fama (1972) defined a fund manager’s skills
as both market timing and stock selection ability, such that the combination of the intercept and
the quadratic term (agps + vb?) captures these skills. However, when assuming that the quadratic
term (76?) could be replicated by a passive strategy, the only source of skill left in the equation
is the intercept (arps), which thus represents the security selection skill of a manager. Our study
follows this assumption and employs the replication model of Hiibner (2016) to satisfy the condition
of passively replicating the linear and quadratic terms of the market timing model — the Treynor and
Mazuy (1966, TM) model. The ”cost” of the replication serves as a basis for adjusting the intercept
() of the TM model and should reflect the true skill that a manager demonstrates relative to a
passive benchmark with equivalent convexity /concavity.

After adjusting the alpha of the managers with that of the replication strategy, we simply assess

the systematic sources of fund returns through traditional multi-factor models. Overall, the alpha

2These alphas are, on average, positive (t-stat of 4.00). For parsimony, these results are not reported but are

available upon request.
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adjustment from our model delivers an interesting picture of the cross-sectional skills in our hedge
fund sample (a merged sample of HFR and Morningstar): the alpha of funds with a similar payoff as
a short put options strategy shrinks from approximately 0.60% to approximately -1.50% per month,
while the alpha from market timers increases from approximately -0.40% to 0.40% per month. After
combining the option-based factors of Agarwal and Naik (2004) with our alpha adjustments, we
cannot conclude that selection skills are present in our hedge fund sample. Our interpretations
are based on net-of-fees returns and might suggest that fees collected by good market timers are
compensation for their ability to anticipate market fluctuations.

This research contributes to the literature on the gamma trading in hedge funds’ trades and
their market timing skills because it first sets a benchmark for replicating the non-linear nature of
the performance of hedge funds, and it does so by applying a flexible approach that uses tradable
options from OptionMetrics. Second, the adjustment in our model improves on and is not captured
by other standard, derivative-based risk factors models. Third, the approach frees us to make
more accurate inferences in comparing non-linear strategies with ”skilled” versus ”dumb” alpha.
Indeed, the algebra behind a quadratic equation leaves a positive (negative) intercept when the
quadratic coefficient is negative (positive), such that a positive market timer will have, on average,
negative alpha while a strategy that shorts naked put options will have, on average, positive alpha
by construction (see, for instance, Jurek and Stafford 2015). Adjusting for this mechanical effect
leaves us with a more accurate evaluation of the skills available in the hedge fund industry. Overall,
we categorize the payoffs of approximately 30% of our hedge fund sample into three main categories:
directional with market timing skills (long-short hedge funds), non-directional with market timing
(multi-strategy, CTAs), and non-directional /convergence bets (relative value, market-neutral). We
find positive adjustments for market timers with directional bets and non-directional bets (long call
or straddle payoffs) but negative adjustments for negative timers with convergence bets (top straddle
payoffs). We demonstrate that the alpha adjustment is strongly dependent on the curvature of the
payoff — i.e., the ratio /7.

We hope this study can improve our understanding of the non-linearites in hedge fund returns
and contribute to the development of a new set of option-based risk factors that more accurately

capture the dynamic patterns of hedge funds, which is a topic we hope to pursue in future research.
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Appendices

A Hedge Fund Database Treatments

The treatments applied to merge our databases (Morningstar and HFR) regroup the following
conditions for both databases, which contain monthly net-of-fees returns and assets under manage-

ment for the period from January 1974 to December 2015;

1. We focus on the post-1994 period because prior to this date, the coverage of defunct funds
is incomplete. In our paper, we focus on 1996 onward to fit the condition imposed by the

OptionMetrics database, which only starts in January 1996.

2. In Joenvaara, Kosowski, and Tolonen (2016), the data for raw returns and AuM observations
are denominated in several different currencies and the authors convert returns and AuM
observations that are not denominated in USD to USD using end-of-month spot rates. In this
paper, however, we only use funds denominated in USD to be in line with the benchmark used

in our analysis (the S&P 500).
3. We include only funds that report net-of-fee returns on a monthly basis.

4. We remove very large or small returns to eliminate a possible source of error by truncating

returns between the limits of -90% and 300%.

5. We exclude the first twelve observations of each hedge fund to reduce the issues of backfill bias

(Fung and Hsieh 2001; Bali, Brown, and Caglayan 2014).

6. We exclude hedge funds with track records shorter than 36 months (to address survivorship

bias) as in (Bali, Brown, and Caglayan 2014; Patton and Ramadorai 2013).

B Hedge Fund Classifications

49



oystunyrodd() serg j0yg Aymby

199(] 104§ /Suog
“IPaI) 1OYG/SUOT BwWOdU] PIXIL

0g-06T Aymby
149(] PAYISIBAL( 1G9 PIssanSI(
a8e1)IqIy Xopuj Yoo1§

(W ‘stesepy
‘A8moug ‘emymoudy) Aypounuo))

serg 1104g Aymbgy

SOAJRTLIONY POIA ST [V,
T0SIAPY 1NN
[BINON J9TRIY 1TPRI1)

98pay Aymbgp
dp-wonog
a8e1)IqIy Xopu] 300)§ Xopuy }D0)g

98e11qry 198N

SN ] d1RWISAG -a)sAg

J0US pareatpa Aymbgy

Surpeay, L)119R[0A ‘s1899RIIG UOTY

-dQ xopuy 01§ ‘A8oreng suondQ

(spuog] 23 s3p01g) poouereg
JURSHEINEEY 8L 1

sergr-guory Aymbsgp
SALH

S9TRY 1SOINNU] [RIUSTIRPUN]

Xopu[ o[qeIseAu]

Sur T, pung

(edomyg] ‘sjexrely Sut

-Srowry “eury)) Lymby 1107g/Suoy

(orye

‘LreuonpIosy() Aouslmy)

serg 3101g

(£3010uTay, ‘VIRISH-[ROY ‘S90IN0S
-0y [RINJRN ‘SNOQUR[[PISIA ‘Sururjy
‘S[RIOIN ‘Upej-org  ‘Temueur ‘Sur
-uLre] ‘quouruolaug] ‘AStour] ‘ored
EOH  ‘S[RLOYRY OIseg]) 109098
(9yer0di0p) ‘uS0I0A08 “NIPOIY A[UQ
-8uor ‘serumoag peyuIT-eouRINSU]
‘pospoeg] 9BeSHOIN ‘PRIA YSIH POy
SISIAL(] ‘SPUOY 9[(I}I0AUO)) ‘SUOT}
-eS1q0 199 POA[EII[0) ‘SweoT]
[epdep

poYpRg-jessy  ‘omjoniig

“qo  ‘eSeniqly) ewoour  POXI
POYISIOAL(] OT}RTID)SAG

afRIIqIY [eOnISIIeIS

(dep rewg

SNSRI oyped/esy)
fymbyy  1107g/Suoy  “qa0yg/Suo
Aymbgp ‘sonmbyy  a0yg/Suo

spuny renynyy
Areuoronsiq

(enpep sanjeEy ‘YO ‘AS9reng
MY ONRweIsAg ‘0I0RIY YILAY
“Aymbgy  “399(T)

SOTILINDDG PISSATISI(T

spung jo pung

(reqorD

‘RO “eoltowry uneT  ‘Sro/odomgy
u)ses] ‘vIsy) sjoIely SurSieuryy
(soyey] 9sou] S[RIDN ‘s[RI
-weur] ‘AS10UF  POYISIOAI[ ‘Ul

-m)  remmousy) [ejuLurepunj

se1g] 410U payedIpaCt sere] 1107g

A3muy 101008 109998

Y ERUY
SIqIy 1paI) ‘98en)IqIy poyIsIOAl(]
‘afen)qry  ‘OBRNIIY  9[qIMPAUO)) aneA dATIRIOY
ABoreng-nmN ABoreng-nMmN

[eTmaN xRy Ajmbsy TRIIMDN - TR

a8pay Lymbgy 110Yg/Suoy 1107 /Suo

AmuQ Suo Lymbgy AuQ Suog

o1RY 010RIY [RqO[5)
spun, jo punj
SISIATIOY TOALI(] YUOAT]

syoIRTy SwSTotngy syoIRTy SwSTotgy

sy paSeury VLD

g A3ajeqyg

¥ £8eyeng

¢ £8eyeng

z A39jenyg

1 ASejea)g so139jea)g Arewrri g

sor10891e) Arewitld :T S[qeT,

‘s1opraoxd ejep punj o3pay

urew oY) usamjaq sdnoid o) azipIrepure)s 0} (9T()g) USUO[O], PUR ‘I{SMOSO}] ‘BRIRRAUSO[ Ul Pasn salioFojen a1y jo Surddew o) sjusserd a[qe) ST,

50



C Tables 5 and 8 with Fung and Hsieh (2004) Factors

o1



%666 9%6°¢€ %c0 %90 %LTT L61€ LLel 80T ove 9 02 sorsoyeng [V

%eTY %961 %e el %59 %6°01 %G9 g 61 6 L € g € setq 1o4s

%0°¢e %0°LT %0t %070 %070 %05 00T €€ L1 ac @ 103995

%0° 1S 9%L°9€ %0 %00 %@ 0 %TL 6V Ve 191 ¢4 1 1€ ONRA QALIR[IY

%L9T %962 9%ecs %9°¢ %070 %90 %0°Ct geg 841 08¢ 0€ € 79 ABoyeng-nmN

%es %ees %LVE %ee %070 %90 %6°¢ 0LT 76 69 9 1 01 [eIJON -JoN TR\

%eLe %L 9 %1°€C %€9T %10 %90 o%eee €61T 8€V GLG G61 1 9 8LC 101G /Buo

%0€e ARl %e Ty %01 %00 wre %€°6 L6 i o 1 € 6 ODRIN [PqO1D

%98 %6°9S %161 %I er %70 %00 %96 [@d 493 4 v 1 9¢ UDALI(] JUSAT

%80T %eee %61 ag %8¢ %¢E°0 %0 %0°L ave G1t1 16T el 1 1 ¥e VLD
ABoyeng Areurtig Aq spunyg jo uorpiodolrd :( [pued sqO # D Pued

000070 000070 000070 00000 200070~ 10000~ 000070 €000°0 000070 000070 €100°0 11000 600070 c100°0 sorgoreng M1y

000070 000070 000070 10000~ 90000~ 1000°0 ¢000°0 ¥000°0 000070 000070 9000°0 €100°0 G100°0 ¢100°0 selg Hous

000070 000070 000070 0000°0 1000°0 L0000 000070 000070 L100°0 €100°0 103908

000070 000070 000070 c000°0- 000070 1000°0~ 1000°0 000070 000070 €100°0 200070 600070 OU[BA OATR[Y

000070 000070 0000°0 1000°0 000070 000070 ¢000°0 000070 000070 9100°0 G000°0 01000 ASopenig-nmy

000070 000070 000070 <0000~ ¢000°0 1000°0~ 1000°0 000070 000070 ¢100°0 200070 9000°0 [BIMON -1 TR\

000070 000070 000070 000070 10000~ 10000~ 000070 60000 000070 000070 €100°0 01000 900070 ¥100°0 Moys/suor

000070 000070 000070 90000~ 60000~ 000070 1000°0 00000 00000 ¢100°0 Y1000 01000 OLRIN [RqOLD)

000070 000070 000070 0000°0 000070 000070 ¢000°0 000070 000070 8000°0 ¢000°0 8000°0 USALI(T JUSAH

000070 000070 000070 1000°0- 60000 10000~ 1000°0~ 1000°0 000070 000070 ¢100°0 G100°0 900070 010070 VLD
YAV g Pued HSINY *V Pued

. dIpprIIS Jppens myg my o) 5o . dIpprIIS dIpprng myg my 5o 1i5e) ASoyeng

et 107§ uorg 9[3uIg 110G o[duIg Suo o[duIg oyg o[sulg Juor] et ity 1107 Suorp 9[3uIg 110Ug o[duIg Suo o[dulg o0yg o[sulg uor] Areunti g

"A897e1)s Arewrtid yoes 01 Surprodoe spunjy osey) jo uorprodoid oYy sproder (] pued pue ‘AS9jer)s Arewrrd e Oul [[eJ JRY) SPUN] 83PaY
Jo Tequunu oY) syroder ) [pueg ‘A[earoedsar ‘g pue Y spued ul (1z) be woip Yy pue (07) be wory gSINY oSeiesr o) sjueserd o[qe) SIYT,

s1030%] (F00g) UoIsH pue Suny — £30je1)g Arewtrd £q 91 uorjeordoy] jo seansea]y :G S[qe],

52



IveTo 0280°0 1€80°0 00€€°0 €V0T°0 128¢€°0 €ELE0 G8ce0 0€92°0 9LV 0 6VIP0 09L7°0 980 sorgoreng M1y
L66T°0 €€L0°0 0110 VLLTO L6670 08190 91920 €T17°0 801€°0 €E8T'0 L8990 1¢TL°0 9¢er0 Sserq 4104s
¢90¢°0 266070 8¢IT0 €620 7680 021€°0 LT6T°0 G647°0 ar8e0 103208
126070 ¢890°0 465070 LIVE0 9¢LT0 187€°0 6S0€°0 €91€°0 00720 8470 GL19°0 €197°0 ON[BA SALR[OY
€9€T°0 87800 76L0°0 987€°0 €€9T°0 €CIv0 890€°0 280€°0 98¥¢0 002470 6L6E°0 289770 ABoyeng-nmy
0€60°0 8940°0 6€90°0 8¢IV'0 c0cc0 PILEO Gr6T°0 €99T°0 LE9T°0 0TTS0 096T°0 6570 [BIMON -1 TR
68020 a860°0 €80T°0 0L¥€°0 99170 creeo 98¢0 926€°0 L4¢€0 60€°0 8y L9L¥°0 G99¢€°0 9614°0 Hoyg/guoy
860T°0 G1L0°0 9990°0 c6ve0 TL6V0 0vre0 L6270 8V8C0 49020 S0Tr0 8LIV0 ¥9L2°0 ODRIN [RqOTD
G0ST'0 9060°0 Ge0To careo LL9T0 L0€€°0 €46e0 8€0€°0 08T€°0 91970 GLTT0 ¥29¢€°0 TOALL(T JUOAT
76070 9290°0 ¢el00 GeLT0 €¢1T0 €91€°0 121€°0 657¢°0 ¥8¢¢0 G910 L99€°0 6L9€°0 8€ET0 Pe87°0 VIO
|£/g ] omey :q oueg pasulpe-z37 ;) Pued
070070 861070 671070~ €1c0'0 99000~ 6800°0 LL00°0- 1€00°0 8600°0 6000~ 8900°0 8€00°0 8900°0 8€00°0- sorgoreng 1y
720070 Lv10°0 791070~ 9rc00 610070~ 1€10°0 9r10°0- 1700°0 960070 8700°0- 16000 G100°0 790070 98000~ Serq 1oYs
29100 8T10°0 ¢8¢0°0- 8€€0°0 060070~ 9,000 9€20°0 ¢L00°0- €110°0 €L00°0- 103995
¥400°0 0L10°0 0TT0°0- 87200 810070 890070~ 97000 €600°0 ¥000°0- €900°0 1€00°0 Lv00°0- ONBA PALR[IY
810070~ 1810°0 0v10°0- €e100 180070 G000~ 62000 €010°0 €100°0- 6€00°0 870070 €100°0- ASopeng-nmy
9€00°0 LT10°0 060070~ 0TT0°0 GL00°0 820070~ €€00°0 990070 02000~ €500°0 880070 010070 [BIION -} TR\
0900°0 6€20°0 88100~ 61200 6L00°0- 8¢00°0 L800°0~ 12000 76000 790070~ 6900°0 G910°0 1€00°0 L700°0- 101G /U0
910070 [qra] €610°0- 08100 T110°0 ¢900°0~ 70070 L010°0 9100°0~ ¢el00 cc100 G000~ ORI\ [BqO[D
1800°0 0910°0 Paro0- L910°0 €000°0- ¥r00°0- 09000 901070 L¥00°0- 290070 ¥000°0 700070~ USALI(T JUSAH
L100°0- 0L10°0 9€T0°0- 66100 65200~ 6,00°0 69000~ 610070 880070 120070~ 15000 11000 T0T0°0 020070~ VLD
uorar1o)) eydly 1 Pued eydly 1y pPURJ

oo [ a[ppens a[ppens mq my meD s oo [ a[ppens a[ppens mq my meD Tres JGEUEA Y
ERGIN Buory o[3uIg 1101g o[8ulg Suor] o[dulg JI0yg ddulg Juor] ERGIN Buory 9[3uIg 101G o[8ulg Suor] o[dulg JI0yg o[8ulg Juor] Arewi

“A3orens Areurtid pes ur |4 /g oryer afeoae oty syuosord
{ 1eue ‘Aqreurq -puny e jo goded uorpdo oy AJIyUopr 03 posi [OPOUL UOISSOISOI Y} JO i pojsulpe oFerose oy y10dot om ‘) [oued Ul g [PURJ
puR y [ouRJ Ueamiaq 2aousIoIp oy Ajduats st eydye pajsnlpe oy, A8sreris Arewrtd 1ad serdejer)s uorpeoridar uorydo oy wogy vyde ageraar o)

syuesard ¢ [oued o[iym ‘eyd[e mel ogeroar o) Y [oueJ ul 310der opy ‘ASejerys Arewrid 1od uo1)oer1100 eyde aFerosr o) sasodurodap s[qey) SIy [,

s10%0%] (F(0g) YoISH pue Sunyg — so1ysipe)s oarpduose uonoerio)) eydy g8 o[qe],

53



D Tables 5 and 8 with Agarwal and Naik (2004) Factors

54



%L'GE 9%L°8€ %0°L %c0 %60 %G LT 16¢e 64TT 69cT 6¢¢ g 6¢ 0LS sorsoyeng [V
%1es %8°0¢ %¢E9 »ie %91 pal g qc 01 € 1 L ¢ setq 1o4s
%6 %¥Le %8'Ge %<6 %00 %00 %Lt S6 9¢ 7e 6 9¢ 103995
%91y %1y %6 %G 0 %70 %89 L5V 061 90G L3 1 4 1€ ONRA QALIR[IY
%0791 8L %919 %E9 %070 %V0 %8€l Ics arl 692 €e 14 cL ABoyeng-nmN
%S %¥' LY %9°9¢ %re %070 WU'T T TT GLT €8 79 9 14 0z [eIJON -JoN TR\
%¢€°6¢ ey oece %L %10 %80 9%0°LT LLcT 17 [q8% 86 1 0T are 101G /Buo
%9°C %ver %r'e %e'1 %9°¢€ %09 €8 9¢ 9€ 14 1 € g ODRIN [PqO1D
%L8 %867 %L €T %ret %070 %00 AR €8¢ 1T L9 qe [0 UOALI(T JUOAY
%96 %LTe %919 %Tq %¢E°0 %0°T %€°6 ¢le a0t 191 91 1 € 66 VIO
ABoyeng Areurtig Aq spunyg jo uorpiodolrd :( [pued sqO # D Pued
000070 000070 000070 1000°0~ 200070~ 000070 000070 700070 000070 000070 F100°0 60000 410070 G100°0 sorgoreng M1y
1000°0 000070 000070 <0000~ 10000~ 200070 0T00°0 G000°0 000070 000070 0T00°0 €000°0 ¥200°0 ¥¢00°0 selg Hous
000070 000070 000070 €000°0- ¢000°0 800070 000070 000070 ¢100°0 €¢00°0 103908
000070 000070 000070 €000°0- 00000 10000~ 000070 1000°0 000070 000070 ¢100°0 90000 900070 0T100°0 OU[BA OATR[Y
000070 000070 0000°0 1000°0 1000°0 1000°0~ €000°0 000070 000070 ¢100°0 S000°0 1000 ASopenig-nmy
10000~ 000070 000070 410070~ G000°0- 1000°0 ¢000°0 000070 000070 ¢e000 0T00°0 8000°0 [BIMON -1 TR\
000070 000070 000070 000070 10000~ 700070~ 000070 90000 000070 000070 710070 800070 910070 910070 J10Ug/FuoT
000070 000070 000070 G000°0- 600070~ <0000 000070 100070 00000 00000 9000°0 Gg00°0 800070 ¢100°0 OLRIN [RqOLD)
000070 000070 000070 1000°0~ 1000°0 €000°0 000070 000070 01000 1100°0 USALI(T JUSAH
000070 000070 000070 1000°0~ 1000°0- 000070 000070 €000°0 000070 000070 G000 700070 800070 ¢100°0 VLD
YAV g Pued HSINY *V Pued
. dIpprIIS Jppens myg my o) 5o . dIpprIIS dIpprng myg my 5o 1i5e) ASoyeng
et 107§ uorg 9[3uIg 110G o[duIg Suo o[duIg oyg o[sulg Juor] et ity 1107 Suorp 9[3uIg 110Ug o[duIg Suo o[dulg o0yg o[sulg uor] Areunti g

55

"A897e1)s Arewrtid yoes 01 Surprodoe spunjy osey) jo uorprodoid oYy sproder (] pued pue ‘AS9jer)s Arewrrd e Oul [[eJ JRY) SPUN] 83PaY
Jo Tequunu oY) syroder ) [pueg ‘A[earoedsar ‘g pue Y spued ul (1z) be woip Yy pue (07) be wory gSINY oSeiesr o) sjueserd o[qe) SIYT,

s1030%] (F00g) YN pue [emredy — £3ojerg Arewtrd Aq 91 uoreordoy] jo seansea]y :G a[qe],



VEsTo €180°0 748070 9cre’0 807€°0 06£€°0 0€9¢°0 L0T€°0 L8620 964270 94110 8.8¢€°0 9907°0 cearo sa15erRNg IV
Gar1o 01200 GLL0°0 600€°0 647E°0 TE8E0 L0420 649270 G82E°0 11470 66€7°0 6V€5°0 19L9°0 G99¢°0 serd Hoys
9961°0 9560°0 0v01°0 1cer0 0LE€°0 @iz 80€¢°0 €96¢°0 108€°0 cE1vro 103995
8801°0 GLL0°0 6,200 610670 €60€°0 96¢¢°0 GETE0 Y1620 C9EE°0 61220 09€7°0 €15€°0 61LV°0 €6£€°0 OU[RA DALY
0TET0 ¥6L0°0 8G¢L0°0 6L62°0 €96¢°0 709€°0 1LLT°0 G9.2°0 12ec0 €8¢1°0 72620 6ETV0 ABoreng-nmy
01210 ¥rL0°0 G180°0 9657°0 €09¢°0 ¢aee’0 L261°0 6091°0 7941°0 ¢8LS0 29020 [ageat [BHTON BN
9161°0 1780°0 G960°0 299670 €V6€°0 G0TE0 ¢6LE0 G16€°0 19¢€°0 [q8za L88V°0 1WLY0 €96€°0 7100 Hoys/suor
0860°0 69200 €840°0 609¢°0 ¢08¢°0 €2CE0 69270 T66C°0 11L8°0 €010 610270 ¥4¢e 0 c0L1°0 16,270 ORI [PqO1D
€9¢1°0 L¥80°0 0L0T°0 €LEC0 06€6°0 €1re0 €60¢°0 901€°0 1667°0 66¢i0 UOALI(T oA,
08110 6080°0 18L0°0 81820 GrLE0 a891°0 Ireeo 1L61°0 PE81°0 GeL10 162270 ¢eee0 Grico Lvee0 VLD
|£/g ] omey :q oueg pasulpe-z37 ;) Pued
600070 £9¢0°0 Gce00- €200 €L10°0~ €e100 76000~ ¥100°0 9100 88000~ 6900°0 €500°0 9€10°0 6490070~ sa15arRNS IV
84000 08100 8¢€0°0- 94200 9010°0- 96100 622070~ 960070 ¢cl00 LE10°0- ¢010°0 €200°0- €910°0 86100~ Sere Hoys
€000°0- 60700 292070~ ¥120°0 €V10°0- 70000 38200 Gr10°0- G010°0 ¢110°0- 103908
L2000 Y700 L8100~ ¢6c00 Ly10°0- 70100 ¢900°0~ 62000 ¢e100 89000~ 0900°0 090070 L0T0°0 670070~ ONEA QALIRIOY
0€00°0- 9¢c0°0 £€¢20°0- 01200 £900°0 480070~ 6000°0- 9¢10°0 18000~ 65000 8¢10°0 470070~ ASoreng-nmpy
900070 ce100 L810°0- 1810°0 €010°0 760070~ 620070 €010°0 650070~ 7900°0 46000 ¥100°0- [BIMON IR
L1000 8€€0°0 44200~ ¥¢c00 160070~ €S10°0 c010°0~ 90000 L910°0 91100~ 8L00°0 29100 09100 290070~ 110g/Su0T
20000 cre00 L6200~ GL20°0 67€0°0- €800°0 06000~ ¢c000 81100 080070~ ¢L00°0 89000 88000 11000~ ODRIN [P9O1D
8L00°0 Y1200 LL10°0- 121070 650070~ 29000 ¢E10°0 6£00°0- 6900°0 720070~ UOALI(T JUOAY]
610070~ G¢20°0 76200~ ¥670°0 €LT0°0- G000 080070~ 07000 9¢10°0 840070~ L8000 1€00°0 160070 160070~ VLD
uorar1o)) eydly 1 Pued eydly 1y pPURJ

oo [ a[ppens a[ppens mJ mJ meD s oo [ a[ppens a[ppens mg mJ meD Tres JGEUEA Y
ERGIN Buory o[3uIg 1101g o[8ulg Suor] o[dulg JI0yg ddulg Juor] ERGIN Buory 9[3uIg 101G o[8ulg Suor] o[dulg JI0yg o[8ulg Juor] Arewi

“A3orens Areurtid pes ur |4 /g oryer afeoae oty syuosord
{ 1eue ‘Aqreurq -puny e jo goded uorpdo oy AJIyUopr 03 posi [OPOUL UOISSOISOI Y} JO i pojsulpe oFerose oy y10dot om ‘) [oued Ul g [PURJ
puR y [ouRJ Ueamiaq 2aousIoIp oy Ajduats st eydye pajsnlpe oy, A8sreris Arewrtd 1ad serdejer)s uorpeoridar uorydo oy wogy vyde ageraar o)

syuesard ¢ [oued o[iym ‘eyd[e mel ogeroar o) Y [oueJ ul 310der opy ‘ASejerys Arewrid 1od uo1)oer1100 eyde aFerosr o) sasodurodap s[qey) SIy [,

s10%0%] (F00g) NN pue [emIedy — so1)s1e)§ oA1dLInss(] uoroelio)) eyd[y :8 9[qe],

56



	Model
	The Treynor and Mazuy Model and its Extensions
	Option Replication Strategy
	Replication with One Option
	Replication with Two Options

	Data
	Options and Greeks
	Hedge Funds
	Merger of the databases
	Unsmoothed return

	Instrumental variables 

	Hedge Funds' Gammas and Corrected Alphas
	Fit of the Replication Strategies
	Replication Strategies' Characteristics
	Alpha Adjustment
	Bootstrap Evaluation of Skills


	Robustness (Work in Progress)
	Choice of Timing Ability Significance Levels
	Alternative Payoff Identification 

	Conclusion
	Hedge Fund Database Treatments
	Hedge Fund Classifications
	Tables 5 and 8 with Fung2004 Factors
	Tables 5 and 8 with Agarwal2004 Factors

