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Abstract 

We examine the performance of risk-optimization techniques on equity style portfolios. To 

form these portfolios, also called Strategic Beta factors by practitioners and data providers, we 

group stocks based on size, value and momentum characteristics through either independent or 

dependent sorting. Overall, performing risk-oriented strategies on style portfolios constructed with 

a dependent sort deliver greater abnormal returns. On average, we observe these strategies to 

significantly outperform 42% of the risk-oriented ETFs listed on US exchanges, compared to 31% 

when the risk-oriented strategies are performed on portfolios formed with an independent sort. We 

attribute the outperformance yielded by dependent sorting to the fact that it provides a better 

stratification of the set of stocks’ opportunity and diversification properties.  
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For more than fifty years, passive investors have considered capitalization-weighted (CW) indices 

to be a suitable proxy for the tangency portfolios, namely the Maximum Sharpe Ratio (MSR) 

portfolio. Although CW indices provide a simple, cost-effective and intuitive manner to allocate 

to stocks, they are also exposed to certain inherent weakness, notably their embedded momentum 

bias (see, for instance, Hsu and Kalesnik (2014)) and their exposure to greater idiosyncratic risks 

through their larger allocation to certain stocks.  

This evidence has incentivized the investors to seek alternative ways to construct equity 

portfolios. We observe a dual paradigm shift to so called "smart beta strategies" and "style 

investing" (also called "strategic beta factors"). On the one hand, smart beta strategies provide an 

alternative weighting scheme for stocks, i.e. alternative way to diversify risk. Although there is no 

consensus on whether smart beta strategies should be considered as passive or active management, 

we can all agree that they follow a systematic and rules-based process. Smart beta ranges from 

scientific diversification (such as the minimum variance portfolio or risk efficient indexing), risk-

based heuristic methods (maximum diversification index, diversity-weighted index or risk parity 

indexing) to fundamental indexing (e.g., using dividend yield as a proxy for asset market value). 

Recent debates have emerged between those who believe the term “smart beta” is simply 

marketing hype (Malkiel (2014), Podkaminer (2015)) and those who believe there is true value to 

these strategies (Amenc, Goltz and Lodh (2016)). On the other hand, strategic beta investing looks 

to allocate more efficiently to “style” portfolios to capture systemic sources of market risk 

premiums. This technique has however existed for decades and firms such as Dimensional Fund 

Analysis have successfully marketed these strategies since the 1980s. But over the last few years, 

a number of market developments have led to a variety of new and innovative products being 
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offered to investors by asset managers and banks. New investment vehicles such as ETFs, greater 

market liquidity, lower transaction costs, and increasingly sophisticated investors have all led to a 

proliferation of these new investment strategies. Yet, the border between smart and strategic beta 

is not always clear, leading to many sweeping generalities both for and against alternative portfolio 

construction techniques.  

The recent literature categorizes these new investment schemes and analyze the potential 

performance of Smart Beta strategies (reviewed in Section I). These strategies have been 

implemented at the individual stock level as the equity building block to construct portfolios that 

aim to satisfy specific investor objectives or gain exposure to specific systematic risk factors (see 

for instance, Clarke, Silva and Thorley (2013), Arnott, Hsu, Kalesnik, and Tindall (2013)).  

Although most of the research and product has focused on establishing stock level 

characteristics to form style portfolios and stock level optimization/weighting schemes, investors 

can also find benefits in performing strategic beta allocations at the portfolio level (Boudt and 

Benedict (2013)) or even at the asset class level (Ardia et al. (2016)). In fact, Froot and Teo (2008) 

observe that institutional investors tend to reallocate their funds across style groupings which 

suggest that our objective to perform Smart Beta strategies on investment style portfolios may be 

in line with this reallocation practice of institutional investors. In fact, recent studies have 

recognized the use of asset or factor portfolios as the new opportunity set (Izorek and Kowara 

(2013), Roncalli and Weisang (2016)). To the best of our knowledge, the value-added of working 

at the equity portfolio level (rather than asset classes or individual assets) when implementing risk-

based optimizations and the importance of the sorting method used to construct those portfolios 

have not been deeply studied. Our paper addresses this gap. We demonstrate that there is a potential 
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to performance improvement when performing strategic optimizations on "smart" characteristic-

sorted equity portfolios and we then decompose this outperformance.  

Our theoretical framework builds on the research of Barberis and Shleifer (2003), who 

demonstrate the natural tendency of investors to allocate funds according to asset categories, and 

of Berk (2000), who explains that forming groups of stocks into style indices circumvents the 

burden of estimating large covariance matrix of returns.  

Our research contributions to the literature are twofold. First, we contribute to the literature 

about Smart Beta by reconstructing a proxy for tangent/well-diversified (US equity) market 

portfolios by applying risk-based strategies to characteristic-sorted equity portfolios (i.e., an 

opportunity set sorted by market capitalization, book-to-market ratio and momentum 

characteristics). This method ensures style neutrality of the investment solution and simplifies the 

allocation by reducing the errors in the covariance matrix of returns.  

Second, we contribute to the literature regarding style investing (Strategic Beta) and 

provide guidelines for how these style indices (portfolios) should be constructed to improve the 

potential of any type of optimization strategy. To this end, we contrast the empirical results of an 

independent sort, as in Fama and French (1993), with those of a dependent sort (Lambert and 

Hübner (2013), Lambert, Fays and Hübner (2016)). The construction method used by Fama and 

French (1993) sets a standard but many of the methodological choices (e.g., breakpoints or 

asymetrical sort) that the authors use are not intended to produce portfolios with the highest Sharpe 

ratio for each level of fundamentals. By using the Fama-French methodology, Lambert et al. 

(2016) uncover that sorting stocks independently based on correlated variables (e.g., the negative 

correlation between firms’ market equity and book-to-market equity) might lead to very unequal 

numbers of securities in portfolios and hence to poor diversification in sorted portfolios. To control 
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for the impact of correlated variables on the classifications assigned to firms’ characteristics as 

well as ensuring a good balance between portfolios, the authors use a dependent sort. This simple 

but fundamental methodological change enables proper stratification of the US equity opportunity 

set. Other researchers have also used dependent sorting to group stocks into portfolios. Among 

others, Daniel, Grinblatt, Titman and Wermers (1997) perform a triple dependent sort on the size, 

value and momentum characteristics of a stock to construct benchmarks to test the performance of 

mutual funds, whereas Novy-Marx (2013) briefly review the positive effect of sorting stocks 

depending on their value and profitability characteristics, and Wahal and Yavuz (2013) apply a 

dependent sort as a robustness test to construct portfolios according to stocks’ comovement and 

their past returns. These last authors also motivate the choice of applying a dependent rather than 

independent sort to control for correlation between the variables to sort.  

Our research focuses on stock level US data, allowing us to construct and test strategies 

using a variety of protocols and thereby draw robust conclusions as to the benefits of investing in 

portfolios that do not simply rely on market capitalization as an input. We demonstrate that a 

dependent sorting methodology also helps to deliver a significantly higher Sharpe ratio for 

Strategic Beta strategies. We claim that performing asset allocation on well diversified portfolios 

is key to avoid exposure to the idiosyncratic risks as often pointed out by the literature for factor 

investing. Our stratificiation of the equity market allows us to achieve this goal.We decompose the 

source of the outperformance of Strategic Beta strategies according to four value drivers: the 

choices of stock classifications (dependent vs independent), the rebalancing frequency, the number 

of portfolios that stratify the US equity market, and the risk-oriented optimizations used to form a 

Strategic Beta strategy. 
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The rest of the paper is organized as follows. Section I presents a literature review regarding 

risk-based and heuristic assets allocation techniques. Section II describes the opportunity set, i.e. 

the data and methodology used to construct the characteristic-based portfolios. Section III review 

the procedure to estimate the covariance matrix implemented in our risk-based optimizations and 

the methodology used to account for transaction costs. Section IV reports the results of mean-

variance spanning tests to evaluate the efficiency of the risk-based strategies across the differnt 

sorting methodologies. Section V presents implications of the sorting methodologies in term of 

portfolio diversification. Section VI concludes. 

1 Literature Review 

The seminal work of Markowitz (1952) on Modern Portfolio Theory (MPT) has pioneered 

the industry of portfolio management regarding the construction of passive portfolios. Under 

several assumptions1, the MPT describes how the optimal asset allocation can be reached by 

minimizing the risk-return tradeoff of a portfolio and being tangent to the efficient frontier. 

Popularized by the introduction of Capital Asset Pricing Model (CAPM) and the principle of 

market’s prices efficiency (Sharpe (1964), Lintner (1965), Mossin (1966)), the “market” portfolio, 

which weighs assets relative to their market capitalization, is considered as the optimal mean-

variance portfolio. However, a plethora of papers have recently fueled the debate on the sub-

optimality of CW allocations when the assumptions of price efficiency is disregarded (see for 

                                                        
1 The main assumptions refer to unlimited risk-free borrowing and short selling, homogenous preferences, 

expectations and horizons, no frictions (taxes, transaction costs) and non-tradable assets (social security claims, 

housing, human capital). Thus, under real-world conditions, the market portfolio may not be efficient according to 

Sharpe (1991) and Markowitz (2005). 
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instance Arnott, Hsu and Moore (2005, p. 85), Hsu (2006)). The recent literature has thus proposed 

non-capitilization-weighted strategies to circumvent the drawbacks of CW allocation schemes.  

For instance, Amenc, Goltz, Lodh and Martellini (2014) indicate that traditional CW 

allocations suffer from poor diversification (mainly invested in large capitalization stocks) and 

from exposure to uncontrolled sources of risk. One simple way to ensure good diversification and 

low idiosyncratic risk is to equal weight all of the N constituents of the portfolio. An Equal-

Weighted scheme, referred to as “1/N”, is a heuristic2 that approximates a mean-variance 

optimality only when the assets have the same expected return and covariances (Chaves et al. 

(2012)). This naïve weighting scheme has increased in popularity since DeMiguel et al. (2009) 

demonstrated that none of the “optimal” allocation schemes the authors put under review 

(Bayesian methods as well as the CW portfolio) significantly outperform out-of-sample the “1/N” 

portfolio in terms of the Sharpe ratio, and certainty equivalent value. The only advantage that the 

CW portfolio has is the zero turnover of its buy-and-hold policy, i.e. the investor does not need to 

trade any assets, compared to the 1/N policy. Moreover, Plyakha, Uppal and Vilkov (2015) 

decompose the sources of outperformance between CW and 1/N portfolios and suggest that the 

equal-weighted strategy produces additional returns from the rebalancing frequencies and the 

embedded reversal strategy it captures. For the simplicity of the strategy, DeMiguel et al. (2009) 

claim that the 1/N should be defined as a benchmark to evaluate alternative weighting schemes. 

Another debated issue around the mean-variance optimality of the CW portfolio concerns 

the price as a measure of fair value, if one believes that the stock prices do not fully reflect firm 

                                                        
2 A heuristic method is by definition a method that requires resources with lower complexity to obtain a solution that 

is sufficient but does not guarantee optimality. 
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fundamentals, then the CW portfolio is sub-optimal because it over- (under) weighs over- (under) 

priced stocks (Hsu (2006)). To integrate this matter, Fundamental indexing has led to the creation 

of characteristics-based indices that weight stocks according to their economic footprints (such as 

revenues, book values, and earnings). According to Arnott, Hsu and Moore (2005), this new 

heuristic scheme provides consistently superior mean-variance performance compared to 

traditional CW indices. Hsu and Kalesnik (2014) demonstrate that among four allocation strategies 

(i.e., fundamental weight, minimum variance, CW and 1/N), the traditional CW index is the only 

allocation scheme that produces a negative measure of “skill”. In theory, skill in portfolio 

management is related to alpha, and by definition, broad indices should not produce any form of 

abnormal return. However CW portfolios exhibit (by construction) a drag in their expected returns 

because the strategy involves buying stocks when prices are high and selling stocks when prices 

are low. Overall, Graham (2011) and Perold (2007) conclude that if there is some evidence that 

CW indices can underperform fundamental indices in some time periods, there is no evidence that 

because of this return drag, they systematically underperform regardless of the period. In reality, 

Fundamental indexing is another method to implement style investing: it produces a significant 

bias toward distressed stocks (Jun and Malkiel (2007), Perold (2007)). This method therefore has 

exactly the same risk of concentration as traditional CW portfolios. 

Instead of looking at heuristic methods, academics and practitioners have explored risk-

based optimization techniques which simplify the mean-variance estimation process by 

disregarding (or subistuting) the expected returns of an asset by its volatility (risk). In other words, 

the techniques assume that the expected return of an asset increases proportionally to its risks. 

Clarke, Silva and Thorley (2013), Amenc, Goltz and Martellini (2013), Frazzini and Pedersen 

(2014) have shown evidence that these techniques exploit a recently discovered market anomaly: 
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the low-beta anomaly. The low beta anomaly contradicts the MPT theory in the sense that stocks 

with high-volatility (high beta) should earn higher returns than low-volatility (low beta) stocks. 

However, the low beta anomaly shows the opposite is true on many international markets: low risk 

stocks outperforms high risk stocks (Baker, Bradley and Taliaferro (2014)). Exploiting this market 

anomaly may thus deliver higher Sharpe ratios than the traditional CW. There are among the risk-

based optimizations three common techniques that disregard (or subistut) the expected return by 

the volatility of an asset and are shown to exploit the low-beta anomaly. 

First, the minimum variance portfolio discards the estimation of the expected return and 

simply focuses on finding the portfolio with the lowest risk. One of its advantages lies in the 

simplicity of the parameter estimation. Indeed, the objective function of a minimum variance 

portfolio only requires the estimation of the assets covariance matrix to attribute weights to the 

portfolio constituents.  

Second, the maximum diversification portfolio substitutes the expected returns from the 

Sharpe ratio by the volatility (risk) of the assets posing the assumptions that the expected return of 

an asset increases proportionally to its risk (Choueifaty and Coignard (2008)) - here, the standard 

deviation is a proxy for expected return. Under this hypothesis, the maximum diversification 

portfolio is the portfolio that is tangent to the efficient frontier (the MSR portfolio).  

Third, the risk parity is the most widely adopted and touted risk-based portfolio allocation. 

Risk parity aims to equalize the marginal contribution of each asset to the global portfolio risk 

(Maillard, Roncalli and Teïletche (2010)). Asness, Frazzini and Pedersen (2012) provide a 

theoretical foundation for risk parity portfolios: in the presence of leverage-averse investors, safer 

assets should outperform riskier ones on a risk-adjusted basis. Risk parity overweighs safer assets 

to achieve an equal risk contribution between asset classes. For example,if we consider a 
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stock/bond portfolio,  risk parity will overweigh the allocation to bonds, because it it is the asset 

class with the lower volatility. Such a strategy would obviously benefit greatly from a decreasing 

interest rate environment,  as has been the case for the last 30 years (Chaves, Hsu, Li and Shakernia 

(2011), Fisher, Maymin and Maymin (2015)). Nevertheless, traditional risk parity strategies do 

not come without risk, as risk parity implies not only a low concentration in asset holdings but also 

a low concentration in risk contributions (Steiner (2012)). It can therefore be a low diversified 

portfolio in the MPT sense.  

Table 1 recalls the analytical forms of the heuristic and risk-based allocations that will 

serve as a practical base in our empirical analysis, namely minimum variance, risk parity, 

maximum diversification and equal weighting. 

[Table 1 near here] 

Overall, all these common risk-based optimization techniques aim at substituting the 

traditional CW allocation to find the optimal mean-variance portfolio. While claiming that one 

strategy is able to rule them all remains fairly optimistic, the objective of our paper is to 

demonstrate that the selection of the underlying assets is at least as much as important as the 

selection of the allocation technique to reach a mean-variance optimality.  

2 Investment Opportunity Set 

This section describes our opportunity set, i.e. the set of portfolios that constitute our test 

assets, by stratifying the US stocks universe in investment style portfolios. All allocation 

techniques will be performed on the two sorting methodologies. The first construction 

methodology is based on an independent sort of the stocks universe and has become a standard in 

the asset-pricing literature for constructing characteristic-sorted portfolios (Fama and French 
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(1993)). The databases used to form the construction of portfolios are based on the merge of the 

Center for Research in Security Prices (CRSP) and Compustat. CRSP database contains historical 

prices information, whereas Compustat provides accounting information on all stocks listed on the 

major US stock exchanges. The sample period ranges from July 19633 to December 2015 and 

comprises all stocks listed on NYSE, AMEX, and NASDAQ. For stocks listed on the NASDAQ, 

the data start in 1973. The analysis covers a total of 618 monthly observations. Following Fama 

and French (1993) to filter the database and construct cross-sectional portfolios, we keep stocks 

with a CRSP share4 code (SHRCD) of 10 or 11 at the beginning of month t, an exchange code 

(EXCHCD) of 1, 2 or 3, available shares (SHROUT) and price (PRC) data at the beginning of 

month t, available return (RET) data for month t, at least 2 years of listing on Compustat to avoid 

survival bias Fama and French (1993) and a positive book-equity value at the end of December of 

year y-1. 

We defined the book value of equity as the Compustat book value of stockholders’ equity 

(SEQ) plus the balance-sheet deferred taxes and investment tax credit (TXDITC). If available, we 

decrease this amount by the book value of preferred stock (PSTK). If the book value of 

                                                        
3 Compustat and CRSP information are available from January 1950 and January 1926, respectively. However, after 

we correct for survival and backfill biases, our sample starts in July 1953 (Fama and French (1993) rebalancing date). 

Moreover, 60 daily observations are required to estimate the covariance matrix. We decided to start the sample at the 

same date as in Fama and French (1993): July 1963. 

4 In his paper, Hasbrouck (2009, p. 1455) explains this restriction as “restricted to ordinary common shares (CRSP 

share code 10 or 11) that had a valid price for the last trading day of the year, and had no changes of listing venue 

or large splits within the last 3 months of the year”. 
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stockholders’ equity (SEQ) plus the balance-sheet deferred taxes and investment tax credit 

(TXDITC) is not available, we use the firm’s total assets (AT) minus its total liabilities (LT). 

Book-to-market equity (B/M) is the ratio of the book value of equity for the fiscal year 

ending in calendar year y-1 divided by market equity. Market equity is defined as the price (PRC) 

of the stock times the number of shares outstanding (SHROUT) at the end of June y to construct 

the size characteristic and at the end of December of year y-1 to construct the B/M ratio. 

We also include the extension of the Fama and French's three-factor model by Carhart 

(1997) with a momentum factor (i.e., a t-2 until t-12 cumulative prior return) to add an additional 

dimension to our investment style portfolios. The momentum reflects the return differential 

between the highest and lowest prior-return portfolios. 

In the original Fama-French approach, portfolios are constructed using a 2x3 independent 

sorting procedure: two-way sorting (small and big) on market capitalization and three-way sorting 

(low, medium, high) on the book-to-market equity ratio. These style classifications are defined 

according to NYSE5 stocks exchange only and then applied to the whole sample (AMEX, 

NASDAQ and NYSE). Six portfolios are constructed at the intersection of the 2x3 classifications 

and rebalanced on a yearly basis at the end of June.  

The second sorting methodology apply a dependent sort following Lambert et al. (2016) 

who use a simple but fundamental change to the independent sorting methodology to form 

characteristic-sorted portfolios. The authors consider the whole sample rather than only the NYSE 

as breakpoints and motivate their choice to avoid the remark from Daniel et al. (1997, p. 1057): 

                                                        
5 The NYSE is represented by stocks that account for the largest capitalization in the CRSP database. The exchange 

codes 1, 2 and 3 are for the NYSE, NASDAQ and AMEX, respectively. 
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“size breakpoints are designed so that there will be an equal number of NYSE firms in each of the 

[five] portfolios”. Lambert et al. (2016) uncover that these NYSE breakpoints create an imbalance 

in the (total) number of stocks between small- and large-cap portfolios such that independent 

sorting leads to a higher number of stocks in small-value portfolios. Using independent sorting on 

negatively (or positively) correlated variables can induce, by design, a strong tilt toward the 

extreme categories of inverse ranks (low-high and high-low). From January 1963 to December 

2014, the market equity and book-to-market equity of a firm were on average negatively correlated 

(-5%). In Figure 1, we illustrate the implications of the choice of sorting methodology to stratify 

the US equity universe into (2x3) characteristic-sorted portfolios. The independent sorting 

methodology results in a large part of the universe falling into the small-value (28.1%) category, 

whereas dependent sorting delivers a well-balanced repartition of stocks in all portfolios (around 

16%). 

[Figure 1 near here] 

Each of these methods for constructing investment styles portfolios will serve as testing 

assets in this paper. In Figure 2, we present the relation between the risk and return of the portfolios 

sorted with an independent and dependent methodology in red and blue, respectively. We illustrate 

the construction of portfolios by splitting the US stocks universe into six (2x3), nine (3x3) or 

twenty-seven (3x3x3) groups. The 3x3x3 splits is constructed on the size, value and momentum 

characteristics of a firm. For illustration purposes, portfolios displayed in Figure 2 are rebalanced 

and reallocated annually.  

[Figure 2 near here] 
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3 Implementation of Strategic Beta Strategies 

Our research focuses on stock level US retrieved from CRSP and Compustat databases, 

allowing us to construct and test strategies using a variety of protocols and thereby draw robust 

conclusions as to the benefits of investing in portfolios that do not simply rely on market 

capitalization as an input. More precisely, in addition to the choice of the two sorting 

methodologies to construct portfolios, we control for three other parameters when constructing our 

style indices. 

First, the number of characteristic-based portfolios is set to either six (2x3), nine (3x3), or 

twenty-seven (3x3x3) and constitute the underlying securities of the final “market” portfolio of 

our studies. For a large number of securities in a portfolio, the estimation of the covariance matrix 

requires sophisticated techniques because an estimation solely based on a sample period can be 

fraught with considerable errors (see, e.g., Ledoit and Wolf (2004)). Referring to the covariance 

matrix, Berk (2000, p. 420) states that “[g]iven a typical sample of 2000 stocks, this matrix has 

more than 2 million elements. With only 70 years of data, there is an obvious specification 

problem”. He thus suggests grouping stocks to reduce this specification problem. However, this 

approach does not entirely resolve the issue because the sample covariance matrix has to estimate 

n(n-1)/2 pair-wise correlations. Increasing the number of groups of stocks can lead to strong 

sample dependency and consequently noisy estimates. Given that we form 6, 9, and 27 investment 

style portfolios and use 60 daily returns to estimate the covariance matrix. In the most extreme 

case (27 portfolios), we are left with 0.17 data points per parameter, which might present a 

potential issue if we only consider the sample covariance matrix in our optimizations. This problem 

is also referred to as sampling error. We use, in our applications, the shrinkage methodology from 
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Ledoit and Wolf (2004) to estimate the covariance with lower sampling errors. Further details on 

the shrinkage method can be found in the Appendix 1. 

Second, the allocation scheme intra portfolio is either capitalization-weighted or equal-

weighted. We do this because each allocation scheme has been set as standard throughout the 

years. For instance, the portfolios found on Ken French’s website are either CW or 1/N. 

And third, we control for different rebalancing frequency, i.e. monthly, quarterly, semi-

annually, and annually. In their paper on the taxonomy of market equity anomalies, Novy-Marx 

and Velikov (2016) explain that the recent popularity of equal-weighted portfolios might be 

misleading after considering transaction costs because a naïve diversification allocation (1/N) 

places more weights on small-cap stocks, i.e. the most illiquid and expensive stocks to trade. 

Moreover, a higher rebalancing frequency may cannibalize a large part of the performance of a 

strategy on net returns (after transactions costs). To consider transaction costs, Plyakha et al. 

(2015) implement a decreasing function of transaction costs from 1% in 1978 to 0.5% in 1993 for 

their S&P500 sample. However, in our paper, we trade stocks on NYSE-NASDAQ-AMEX 

exchanges and consequently have to differentiate transactions costs for small and large-cap stocks. 

We thus follow an approach similar to that of Novy-Marx and Velikov (2016) and use the 

individual stocks estimates from the Gibbs sampling developed in Hasbrouck (2009). Further 

details on this method can be found in the Appendix 2. 

In Figure 3, we show the annual box-and-whisker plot for the CRSP/Gibbs estimates of 

transaction costs (variable c from equation (5)) from 1963 to 2015.  

[Figure 3 near here] 

Novy-Marx and Velikov (2016) uncover a minor drawback to Hasbrouck’s estimation 

technique, which requires relatively long series of daily prices to perform the estimation (250 
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days). This results in a number of missing observations for which Novy-Marx and Velikov (2016) 

perform a non-parametric matching method and attribute equivalent transaction costs to the stock 

with a missing value according to its closest match in size and idiosyncratic volatility. Since these 

missing observations represents only 4% of the total market capitalization universe, instead, we 

decided to simply replace the missing values with transaction costs of 0.50%. We employ this 

(extreme) arbitrary value because (1) we see from Figure 3 that none of the estimates ever breach 

a trading cost of 50 bps since 1963, (2) this choice will more strongly impact illiquid stocks with 

short amount of daily observations (small-capitalization stocks) and (3) Plyakha, Uppal and Vilkov 

(2015) also choose to set this threshold for transaction costs from 1993 onwards.  

In Table 2, we report the transaction costs for our Strategic Beta strategies. We distinguish 

the implication of transaction for rebalancing the investment style portfolios on a monthly (1), 

quarterly (3), semi-annually (6) or annual (12) basis. We also examine the trading costs according 

to the number of constructed portfolios, namely, six (2x3), nine (3x3), and twenty-seven (3x3x3). 

The results are presented in annual terms (in %) and show that transaction costs have a linear 

relationship with the rebalancing frequency according to the Patton and Timmermann (2010) test 

for decreasing monotonic relationships. The level of transaction costs is also greater for portfolios 

sorted dependently and suggests that small stocks have higher weights with dependent sorting. 

[Table 2 near here] 

To summarize, each sorting methodology (independent and dependent) generates twenty-

four combinations of portfolios whom will constitute our test assets for performing the heuristic 

and risk-based optimizations. From these twenty-four combinations of constructing investment 

styles portfolios, we apply the four different allocation techniques defined in Table 1 of Section I, 



17 

namely, minimum variance, maximum diversification, risk parity, and equally weighted. In total, 

the combinations of strategies are equal to 96 for each methodology of portfolio construction.  

After adjusting our US sample for well-known biases, delisting return, survivorship bias, 

etc., and controlling for a variety of protocols to construct Strategic Beta strategies, we expect a 

dependent sorting methodology to outperform a independent sorting because the allocation of a 

dependent sort is not contingent on the correlations between the sorted variables. Such that, the 

dependent sort shows a strong stability in the stock allocation among the style portfolios. The 

diversification properties of the style portfolios constructed from the dependent sorting 

methodology are thus expected to be greater in comparison to an independent sort. 

4 Mean-Variance Spanning Test 

To test the outperformance of one sorting methodology versus the other, we build on a 

traditional mean-variance spanning test introduced by Huberman and Kandel (1987) which 

differentiates whether adding one security to a set of investment improves the efficient frontier. 

Although it is important for an investor to know whether her set of opportunity increases with a 

new asset, it might be interesting to know whether the source of improvement comes either from 

the tangent or global minimum-variance (GMV) portfolio. Indeed, the two-fund separation 

theorem (Tobin (1958)) tells us that if an investor has access to a risk-free asset, he should only 

interested in the portfolio with the highest Sharpe ratio. According to his risk-preferences, his 

optimal allocation should lie on the Capital Market Line (CML) and be composed of a mix of the 

tangent portfolio (MSR) and the risk-free asset. However, if all capital is invested in risky assets, 

the optimal portfolio lies on the efficient frontier and is dependent on the investor utility and degree 

of risk aversion.  
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Kan and Zhou (2012) establish a mean-variance spanning test based on a step-down 

approach that allows to differentiate whether the source of improvement in the efficient frontier 

comes from the tangent and/or the GMV portfolio. This is only when both portfolios are improved 

that we observe a shift of the entire opportunity set.  

The elegance of the step-down spanning tests lies in its ability to determine whether adding 

N elements to a set of K assets improves the tangent and/or GMV portfolio. The regression 

spanning test can be written as 

(1) 𝑅2
𝑡 = 𝛼 + 𝛽𝑅1

𝑡 + 𝜀𝑡  

where 𝑅1
𝑡 is the benchmark portfolios composed of K assets (US Bond and a Portfolio A) 

and 𝑅2
𝑡  is the set of test assets composed of K+N elements (Portfolio B) . In this paper, K is equal 

to 2 and N is equal to 1. Kan and Zhou (2012) present the test in matrix notations as follows: 

(2) R = XB + E  

where 

 R is the test assets returns and X is a K+1 matrix of the benchmark assets returns. The 

matrix X can be written as follows: 

(3) X = (
1
⋮
1

R1
US bond

⋮
Rt
US bond

R1
Portfolio A

⋮
Rt
Portfolio A

)  

Finally, B in equation (7) is a K+1 vector [𝛼, 𝛽𝑈𝑆 𝑏𝑜𝑛𝑑, 𝛽𝑃𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝐴]′, and E is the error 

term vector (𝜀1, … , 𝜀1𝑡 )′. 

The first test of the step-down procedure poses the null hypothesis for the tangent portfolio 

such that 𝛼 = 0𝑁 using OLS regression. The tangent portfolio is improved when the null is 

rejected.  
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(4) 𝐻0
1: 𝛼 = 0𝑁  

The second test of the step-down procedure poses the null hypothesis for the GMV 

portfolio. This second test is conditional on the first test, 𝛼 = 0𝑁, and verifies whether 𝛿 = 1𝑁 −

β 1𝐾 = 0𝑁. It is only when both conditions are rejected that the test suggests an improvement of 

the GMV portfolio by adding N assets to the K benchmark assets. 

(5) 𝐻0
2: 𝛿 = 1𝑁 − β 1𝐾 = 0𝑁  ∣  𝛼 = 0𝑁  

The term “∣” means conditional.  

Kan and Zhou (2012) identify a test for statistical significance of the hypothesis similar to 

a GRS F-test. The F-test for the first hypothesis (𝐻0
1) is 

(6) F1 = (
T − K − N

N
)(
â − â1
1 + â1

)  

where T is the number of observations, K is the number of benchmark assets, N is the 

number of test assets, 𝑎̂1 = µ̂1′𝑉̂11
−1µ̂1, with 𝑉̂11

  denoting the variance of the benchmark assets, and 

𝑎̂ takes the same notation as 𝑎̂1 but refers to the benchmark assets plus the new test asset. 

The F-test for the second hypothesis (𝐻0
2) is 

(7) F2 = (
T − K − N + 1

N
) [(

ĉ + d̂

ĉ1 + d̂1 
)(
1 + â1
1 + â 

) − 1]  

where 𝑐̂1 = 1𝐾′𝑉̂11
−11𝐾, 𝑑̂1 = 𝑎̂1𝑐̂1 − 𝑏̂1

2
 are the efficient set (hyperbola) constants with 

𝑏̂1 = µ̂1′𝑉̂11
−11𝐾 for the benchmark assets. In equation (7), 𝑎̂ , 𝑏̂ , 𝑐̂  and 𝑑̂ are the equivalent 

notations for the benchmark assets plus the new test asset.  

We illustrate in Panel A of Figure 4 a significant improvement for the tangency portfolio 

when a test asset (Portfolio B) is added to the benchmark assets (US bonds and Portfolio A). Panel 

B indicates a significant improvement for the GMV portfolio when a test asset (Portfolio B) is 
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added to the benchmark assets (US bonds and Portfolio A). The original graphical illustrations of 

Kan and Zhou (2012, p. 158) explain in more detail how the constants 𝑎̂ , 𝑏̂ , 𝑐̂  and 𝑑̂  are used to 

determine the geometric locations of the GMV portfolio. 

[Figure 4 near here] 

Intuitively, a spanning of the test assets (K+N) means that the weight attributed to the N 

test assets in the portfolio is trivial. Put differently, discarding the N test assets does not change 

significantly the efficient frontier of the K benchmark assets. 

A. Testing Characteristic-Sorted Portfolios 

In Table 3, we summarize the results of the step-down analysis6 applied to the strategies 

developed in this paper. More precisely, Panel A reports the results when the benchmark assets 

are 30-Year US Treasury Bonds and a risk-optimization technique applied to independent 

portfolios (Portfolio A), whereas the test asset is the same risk-optimization technique applied to 

dependent portfolios (Portfolio B). We perform the same analysis in Panel B but in the reverse 

order, that is, the benchmark assets are now 30-Year US Treasury Bonds and a risk-based strategy 

constructed on dependent portfolios (Portfolio A), whereas the test asset is now the same risk-

based strategy but constructed on independent portfolios (Portfolio B). 

It is important to note that each of optimizations can have twelve different combinations of 

construction according to the choices of rebalancing frequency and number of portfolios. The 

portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis, 

                                                        
6 The full analysis is reported in Appendices 3 to 6.  
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and the number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). All results 

are presented net of transaction costs. 

[Table 3 near here] 

The results shown in Panel A (Table 3) demonstrate that applying risk-optimization 

techniques to dependent portfolios can significantly improve the tangency portfolio of the 

benchmark assets for two risk-oriented strategies, that is, maximum diversification (MD) and 

minimum variance (MV). Indeed, the first hypothesis (𝐻0
1) is rejected five (nine) out of twelve 

times for MD on cap-weighted (equal-weighted) portfolios, whereas the rejection for MV 

optimization is six (five) out of twelve with cap-weighted (equal-weighted) portfolios.  

In Panel B, the results demonstrate that all risk-optimization techniques applied to 

independent portfolios never improve the tangency portfolio of the benchmark assets with a 

confidence level of 95% relative to the same risk-optimization techniques applied on dependent 

portfolios.  

In each panel, we also report the joint spanning test to understand whether the whole 

efficient frontier is shifted up and to the left once Portfolio B is added to the benchmark assets (US 

bond and Portfolio A). This test assume that returns are normally distributed and should be 

interpreted as interesting for an investor who is willing to invest her full capital in the risky assets 

when the p-value is less than 5% (rejection of the null). 

[Table 4 near here] 

In Table 4, we report the results of the previous joint spanning tests (last column of Table 

3) and examine whether the assumption of a normal distribution for the returns of the strategies 

affects our results. Kan and Zhou (2012) describe two extensions when returns are not assumed to 

be normally distributed and exhibit excess kurtosis. Using the moment conditions, they apply a 
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GMM method to estimate the regression parameters of equation (7). The first test is a joint F-test 

based on the results from the last column of Table 3. Recall that in this case, the returns are assumed 

to obey a normal distribution and the test is a joint test on the whole efficient frontier. In the first 

column of both panels (A and B), the level of rejection is high owing to an improvement in the 

global minimum variance. The second column is a GMM Wald test for returns under general 

distributions7 (𝑊𝑎
 ). The last column is a GMM Wald test in which returns are assumed to follow 

an elliptical distribution (𝑊𝑎
𝑒) and that controls for heteroscedasticity and excess kurtosis. Moving 

from the first column to the last, we see that rejection rates of spanning only decrease in Panel B, 

not in Panel A, indicating that there are over-rejection problems in the first column of Panel B 

(Table 4) because the returns are assumed to obey a normal distribution. Yet, the rejection rates in 

Panel A appears to remain stable across the assumptions about the return distribution of the 

strategies.  

B. Testing Against the US ETF Universe  

We retrieve data about the US ETF universe from Morningstar and classify it according to 

the Morningstar® Strategic Beta classification tool. Table 5 reports the Strategic Beta definitions 

from Morningstar Guide8. The last column of the table specifies the category used in this paper to 

categorize the ETF universe. There are four categories: (1) Risk-weighted, (2) Return-oriented, (3) 

Blended, and (4) Other. We also report in parentheses the number of ETFs that fall in each 

category. 

                                                        
7 For more details, see Kan and Zhou (2012, p. 171) and Chen, Chung Ho, Hsu (2010). See also Chen, Ho, and Wu 

(2004) for GMM step-down resolution. 

8 The Morningstar Strategic Beta guide can be find on this website.  

https://corporate.morningstar.com/US/documents/Indexes/Strategic-Beta-FAQ.pdf
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[Table 5 near here] 

Concerning the treatment of the database, we winsorize the 1st and 99th percentile of return 

at each available month date and then remove returns lower than -100 percent and higher than 100 

percent to lower the impact of outliers and reporting issues. Finally, we keep ETFs with more than 

one year of observations. Our tests are based on monthly returns, and all returns are denominated 

in US dollars.  

Once the database is treated for extreme values, we apply Kan and Zhou’s (2012) step-

down spanning test on the ETFs (Portfolio A) against our strategies made of portfolios sorted 

independently or dependently (Portfolio B). We end up with results for all ETFs according to the 

12 means of construction for our strategies specified in Table 4 (Section IV.A). However, for the 

sake of clarity, we aggregate the results according to the four categories listed above. We only 

differentiate the results for our strategies constructed on cap-weighted or equal-weighted 

portfolios. In Figure 5, we report the average outperformance frequency in term of tangent 

portfolio (𝐻0
1) for the strategies built on independent (red) and dependent (blue) portfolios. Results 

of Panel A is for cap-weighted portfolios, and Panel B is for equal-weighted portfolios. 

[Figure 5 near here] 

For example, risk-optimization strategies constructed on independent cap-weighted 

portfolios (in blue) outperform, on average, 31% of the risk-oriented ETFs listed in the US (graph 

on the left), whereas risk-optimization strategies constructed on dependent cap-weighted portfolios 

(in red) outperform, on average, 42% of the risk-oriented ETFs listed in the US (Panel A). The 

analysis can also be performed for the three other remaining categories, in which a risk-

optimization on dependent (independent) cap-weighted portfolios outperform 52% (43%) of 
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return-oriented, 70% (64%) of blended and 80% (78%) of other ETFs. The results are similar for 

risk optimizations on equal-weighted portfolios (graph on the right).  

Whereas the results are consistently better for strategies based on dependent portfolios, it 

is also interesting to consider ETFs with equivalent objectives and investment universes as our 

risk-based strategies for an apples-to-apples comparison. Morningstar® provides data for such 

information under the name of “US Category Group”. On its website9, Morningstar® defines the 

criteria as follows: “The term is used to group funds with similar categories and investing styles; 

can be used for a more broad-based analysis” There are six categories available in which a filter 

for ETFs investing primarily in US stocks is present. Filtering the database on these criteria 

strongly reduces our sample, but the results regarding the outperformance of our risk-based 

strategies compared to ETFs providers may be more objective since we focus our investment 

strategies on the same geographical region (apples-to-apples comparison).  

[Figure 6 near here] 

The results for ETFs listed on US exchanges and primarily investing in US equity are 

presented in Figure 6. We see that risk-optimization strategies constructed on independent cap-

weighted portfolios outperform, on average, 10% of the risk-oriented ETFs (graph on the left). 

Whereas risk-optimization strategies constructed on dependent cap-weighted portfolios 

outperform, on average, 24% of the risk-oriented ETFs. The analysis can also be performed on the 

other categories, for which a risk-optimization on dependent (independent) cap-weighted 

portfolios outperform 42% (27%) of return-oriented, 42% (27%) of blended and 50% (50%) of 

                                                        
9 Morningstar® Add-in website. The information can be found by typing “US_Category_Group” in the search bar. 

http://addin.morningstarcommodity.com/?it=template
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other ETFs. The results are similar for risk optimizations on equal-weighted portfolios (graph on 

the right).  

In conclusion, a dependent sort to construct investment style portfolios exhibits better risk-

return attributes for risk-optimization strategies. Whereas the majority of ETFs providers logically 

exhibit equivalent or better selectivity skills than our fully passive strategies on all US stock 

universes. The next sections disentangle the distinctive characteristics of the two sorting 

methodologies. 

5 Disentangling the outperformance: the diversification properties of the 

opportunity sets 

Our spanning tests deliver conclusive results towards better risk-return attributes for 

dependent portfolios. This section investigates further the diversification properties yielded by the 

two competing sorting methods. Section A analyses the pair-wise correlations between the 

portfolios depending on the sorting methodology. Section B estimates the correlation of stocks 

among the portfolios. Section C review the general case of equal-weighted portfolio variance and 

the implications according to the sorting methodology. Section D quantifies the differences in 

return yielded by the diversification properties of each sorting procedure.  

A. Pair-Wise Correlation of Style Portfolios  

In Figure 7, we illustrate the stock repartition when the number of portfolios is increased 

either by a larger split of the sample (from a 2x3 to a 3x3) or by adding a new characteristic 

(3x3x3). Throughout this paper, we followed Lambert et al. (2016) to stratify the US equity 

universe according to the dimensions of size, value and momentum characteristics. Considering 
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the repartitions of the stocks based on the two sorting methods, we see that using an independent 

sort results in an imbalanced of stocks across the portfolios, and this effect becomes larger when 

more groups are constructed. 

[Figure 7 near here] 

A traditional (rational) view of returns’ comovement is that comovement in prices reflects 

comovement in fundamental values (Barberis, Shleifer and Thaler (2005)). If this assumption 

holds, the average correlation between investment style portfolios should decrease when stocks 

are categorized according to a methodology that forms groups of stocks with stronger similarity in 

their fundamental values. We can thus formulate two predictions regarding the average correlation 

between investment style portfolios: first, using a dependent sort to group stock in investment 

styles provides a finer classification according to stocks’ fundamentals such that the average 

correlation between style portfolios is reduced. Second, with a large number of stocks and the 

luxury of constructing NxNxN portfolios, we could create portfolios that are close to uncorrelated 

with each other. In Table 6, we illustrate that both predictions are verified: the average correlation 

between the investment style portfolios is lower when stocks are sorted dependently and split into 

a larger number of groups (i.e. 3x3x3). The results for cap-weighted (equal-weighted) portfolios 

are reported in Panel A (Panel B). It is well-know that assets with reduced coefficients of 

correlation start bending the efficient frontier toward the left because of diversification benefits. 

This reduced correlation might thus explain part of the outperformance in term of the Sharpe ratio 

for risk optimizations applied to portfolios sorted dependently.  

[Table 6 near here] 
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B. Stocks Correlation Intra Portfolios 

Rational investors hold that comovement in prices reflects comovement in fundamental 

values (Barberis et al. (2005)). We would thus expect that the average stock correlation intra 

portfolios (after formation) under a dependent sort should be stronger than under an independent 

sort. However, Figure 8 shows that the average correlation in stocks returns after portfolio 

formation under an independent sort (red line) is consistently stronger than under a dependent sort 

(blue line). The post-portfolio formation is based on 252 days and starts from July to end of June 

t+1. For brevity, results are only shown for the 2x3 portfolios10. We also report the 25th and 75th 

percentile distribution of the yearly stocks correlations in shaded areas.  

[Figure 8 near here] 

We uncover from this puzzling systematic correlation bias that stock correlation is stronger 

among securities for which the exchange has the largest total market capitalization, i.e., the NYSE, 

NASDAQ and then AMEX, in this order. We plot in Figures 9 and 10 the reparation of stocks 

belonging to the NYSE, NASDAQ and AMEX in green, red and blue, respectively. Results for 

the 2x3 portfolios sorted independently and dependently are shown in Figures 9 and 10, 

respectively. 

[Figure 9 near here] 

[Figure 10 near here] 

We see from Figure 9 that a large part of the large-capitalization portfolios (the graphs on 

top) are represented by NYSE stocks. However, approximately 20%, on average, of the small-

capitalization portfolios (graphs on the bottom) are also represented by NYSE stocks. In contrast, 

                                                        
10 The analysis was also performed using the 3x3 and 3x3x3 sorting methodologies and yielded similar findings.  
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in Figure 10, representation of NYSE stocks is approximately 10% in each small-cap portfolio 

sorted dependently. This analysis is complemented by the yearly average correlation of stocks 

listed on each exchange from Figure 11. The graphs let us understand that a portfolio composed 

of a greater proportion of stocks listed on the NYSE will exhibit a higher average stocks 

correlation. The average correlation of stocks decreases as we move from the NYSE, to the 

NASDAQ and AMEX, in this order.  

[Figure 11 near here] 

As demonstrated in the previous section, a dependent sort on the whole set of breakpoint 

names implies a better stratification of the stocks universe compared to an independent sort. A 

lower proportion of NYSE stocks in a portfolio will mechanically reduce the average stock 

correlation after portfolio formation.  

In the next section, we review the implication of the sorting techniques for the portfolio 

variance. 

C. Portfolio Variance 

The variance of a cap-weighted portfolio is given by 

(8) σi
2 =∑∑𝑤𝑗𝑤𝑘𝜎𝑗

𝑛

𝑘

𝑛

𝑗

𝜎𝑘𝜌𝑗𝑘  

where n is the number of stocks in the ith portfolio, j is for the jth stocks in the portfolio, k 

is for the kth in the portfolios, w means weight, 𝜎 is the standard deviation, and 𝜌𝑗𝑘 is the correlation 

between the jth and kth stocks of the portfolio.  

Although a generalization of equation (8) is complicated because the stocks weights (w) in 

cap-weighted portfolios vary over time, Gorton and Rouwenhorst (2006) describe a generalization 
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of equation (9) for equal-weighted portfolios. The equation of the variance for the ith equal-

weighted portfolio can be written as follows: 

(9) 
σi
2 =

1

n⏟
Weight on the assets 
average variance

var̅̅ ̅̅ +
n − 1

n⏟  
Weight on the assets 
average covariance

covar̅̅ ̅̅ ̅̅ ̅ 
 

where n is the number of stocks in the ith portfolio, 𝑣𝑎𝑟̅̅ ̅̅ ̅ is the average variance of the n 

stocks, and 𝑐𝑜𝑣𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅  is the average covariance of these same n stocks. 

As n (the number of stocks within a portfolio) becomes larger, the variance of the portfolio 

(𝜎𝑖
2) converges to the average covariance of its constituents, 𝜎𝑖

2 ≈ 𝑐𝑜𝑣𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ . From Figure 1 (Section 

I), we know that the number of stocks found in the portfolios sorted independently are, on average, 

equal to 24, 26, 28, 10, 8, and 4 percent over our 60-year sample period for the portfolios denoted 

LL, LM, LH, HL, HM, and HH, respectively. In Table 7, we illustrate a scenario in which 6 

portfolios (2x3) are constructed according to the market equity and book-to-market equity ratio of 

a firm with a stock universe of 100 stocks. 

[Table 7 near here] 

According to Panel A of Table 7, independent sorting assigns greater weights to the average 

variance of large-capitalization stocks, more specifically to large value stocks (25%). As soon as 

the level of diversification in the portfolio decreases, higher weights will be given to the 

idiosyncratic risk of a stock. Panel B shows that even with a small number of securities (100), the 

weight assigned to stocks’ specific risk with dependent sorting remains fairly low (6.25%). Using 

dependent sorting to classify stocks in style portfolios, the repartition of stocks becomes close to 

1/n (n is equal to 6) when the breakpoints are the 33th and 66th percentiles of the distribution for all 

breakpoint names (NYSE, NASDAQ, and AMEX). Even though this concern may be immaterial 
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for the construction of six portfolios with a universe of more than 3,000 stocks (US), the issue 

might become important for (1) a greater number of portfolios, (2) the early stage of the sample, 

or (3) less developed markets. 

D. Diversification Return 

Booth and Fama (1992) introduce the concept of the diversification return as a function of 

a portfolio geometric average return. According to those authors, a geometric average return is an 

important performance measure for portfolio management practices because it represents the 

growth rate that an investor would have earned if she held a portfolio since day one11. Denoting 

the geometric average return as g, volatility as σ, arithmetic average return as 𝜇, Booth and Fama 

(1992) demonstrate that the measure can be approximated by the following mathematical formula:  

(10) 𝑔𝑃 = 𝜇𝑝 −
𝜎𝑝
2

2
  

where p means portfolio. Moreover, we also know from Plyakha et al. (2015) that the 

expected arithmetic return (𝜇𝑝) of a portfolio made of N constituents is equal to 

(11) µp = ∑E(w𝑖,𝑡+1
 Ri,t

 )

N

i

= ∑[E(wi,t+1
 )E(Ri,t

 ) + cov(wi,t+1
 , Ri,t

 )]

N

i

  

where 𝜇𝑝 = 𝐸(𝑅𝑝) and i refers to the ith security in the portfolio (p). 

Finally, from the paper of Erb and Harvey (2006, Table 8), the impact of a simple buy and 

hold strategy for the portfolio (p) and the consituents’ weights (w) according to the market 

capitalization can be formalized as 

                                                        
11 Willenbrock (2011) notes the mathematical equation as (1 + 𝑔)𝑇, with g denoting the geometric average return and 

T denoting holding periods.  
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(12) µp −∑wi̅̅ ̅ µi 

N

i

  

However, we know only the average of 𝑤𝑖 after realization (ex-post). A more natural 

method to compare the impact of rebalancing ex-ante (before realization) should be against an 

allocation that is equally weighted (DeMiguel et al. (2009)) because this is the only allocation for 

which we know ex-ante wi̅̅ ̅, that is (1/N). The equation thus becomes  

(13) µp −
1

N
∑µi 

N

i

  

Substituting (11) in (13), we have  

(14) ∑[E(wi,t+1
 )E(Ri,t

 ) + cov(wi,t+1
 , Ri,t

 )]

N

i

−
1

N
∑E(Ri,t

 ) 

N

i

  

Rearranging the terms leads to the following form:  

(15) 
∑cov(wi,t+1

 , Ri,t
 )

N

i⏟            
covariance 
return 

+∑(E(wi,t+1
 ) −

1

N
)E(Ri,t

 ) 

N

i⏟                  
Adjustment for 
not being EW

 
 

It is important to note that both terms vanish if we implement an equally weighted strategy 

that rebalances at each period t (in this study, on a monthly basis).  

Finally, Willenbrock (2011) formalizes the diversification return as follows:  

(16) DR = gP − ∑wi̅̅ ̅ gi 

N

i

  

where i stands for the ith security in the portfolio (p) and g refers to the geometric return. 
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The concept of diversification in returns emphasizes that the geometric average return of a 

portfolio is greater than the sum of the geometric average return of its constituents. Substituting 

(10) in (16), we have 

(17) DR = µp −
σp
2

2
− 
1

N
∑ (µi −

σi
2

2
) 

N

i

  

Alternatively, we can factorize the equation such that,  

(18) DR = µp −
σp
2

2
− 
1

N
∑ µi 

N

i

+
1

N
∑ 

σi
2

2
 

N

i

  

Rearranging the terms, 

(19) 
𝐷𝑅 = 𝜇𝑝 − 

1

𝑁
∑ 𝜇𝑖  

𝑁

𝑖⏟        
equation (15)

+
1

2
(𝜎𝑖

2 − 𝜎𝑝
2) 

 

We can substitute the terms from equations (15) in (19) and rewrite the diversification 

return as follows:  

(20) 
DR =∑cov(wi,t+1

 , Ri,t
 )

N

i⏟            
covariance 
return 

+∑(E(wi,t+1
 ) −

1

N
)E(Ri,t

 ) 

N

i⏟                  
Adjustment for 
not being EW

+
1

2
(σ̅i
2 − σp

2)
  ⏟      

Variance Reduction 
Benefit

 
 

Equation (20) provides a benchmark12 to compare a strategy using dynamic weights with 

the average constituents that it holds. The benefits of applying risk-optimization strategies (MV, 

MD, and risk parity) to the passive portfolios can be compared to a naïve diversification allocation 

(equally weighted). We can isolate whether the incremental return benefit is earned by the weights 

                                                        
12 This test is implemented on gross returns. The decomposition in equation (20) does not hold when transaction costs 

are considered. 
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of the strategy (first and second terms) or the last term, also coined volatility harvesting by 

Bouchey et al. (2012). The full decomposition of the results can be found in Appendices 7 to 10.  

To compare the benefits of diversification between the two sorting methodologies, we 

adjust the diversification return according to the risk of the benchmark sorting methodology. In 

this paper, we use the independent sorted portfolios as a benchmark. Equation (21) describe the 

risk-adjustment for comparing the diversification return. 

 πDR
 =

σIndependent

σdependent
(DRdependent) − (DRIndependent) (21) 

In short, if the spread (𝜋𝐷𝑅
 ) is positive, a dependent sort to construct portfolios delivers 

greater diversification benefits on a risk-adjusted basis than an independent sort. In Table 8, we 

report the results for four Strategic Beta strategies and the combination of rebalancing frequency, 

number of portfolios and portfolios allocation (cap-weighted and equal-weighted). The spreads are 

strictly positive in 92 of 96 strategies. Risk-oriented strategies specifically designed to maximize 

the objective of diversification (max. div.) yields (logically) the best results. 

[Table 8 near here] 

Figures 12 and 13 let us visualize the global results for all the risk-based strategies on cap-

weighted and equal-weighted portfolios, respectively. On a risk-adjusted basis, we see that the 

covariance drag (light red columns) is smaller for portfolios sorted dependently. However, for 

most of the strategies, the adjustment for not being equally weighted (light blue columns) and the 

variance reduction benefit (light gray columns) are typically greater for dependently sorted 

portfolios.  

[Figure 12 near here] 

[Figure 13 near here] 
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6 Conclusions 

Motivated by the need to reduce the number of assets in portfolio optimizations, we 

implement smart beta strategies on “style” portfolios as the equity building block. This approach 

not only reduces the issues in estimating a large covariance matrix of returns but also is consistent 

with the common practice of institutional investors, who tend to reallocate funds across style 

groupings (see, for instance, Froot and Teo (2008)). We show that the methodology for grouping 

stocks in different style buckets has strong implications for the performance of the final strategy. 

To categorize stocks in investment style portfolios, we stratify the universe along the dimensions 

of size, value and momentum characteristics. We implement two sorting methodologies to 

construct characteristic-based portfolios: traditional independent sorting according to Fama and 

French (1993) and dependent sorting according to Lambert et al. (2016). To demonstrate the 

implications of the sorting methodologies, we apply mean-variance spanning tests from Kan and 

Zhou (2012) on the risk-oriented strategies that use characteristic-based portfolios as assets (or 

Strategic Beta strategies). The results show that dependent sorting of stocks in portfolios provides 

significantly higher Sharpe ratios for risk-oriented Strategic Beta strategies. The results hold 

regardless of whether stocks are capitalization-weighted or equal-weighted in portfolios, whether 

stocks are rebalanced at different frequencies or whether returns are net of transaction costs. 

Because dependent sorting controls for correlated variables and stratifies the stock universe in 

well-diversified portfolios (Lambert et al. (2016)), this sorting methodology delivers better 

diversification benefits for Strategic Beta strategies. To demonstrate this point, we provide a 

decomposition of the diversification return from Booth and Fama (1992). We uncover that the 

diversification return is, on a risk-adjusted basis, higher for Strategic Beta strategies implemented 

on dependent portfolios than on independent portfolios. 
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Appendix 1 

Estimation of the Covariance Matrix 

We briefly describe in this section a shrinkage methodology used in our applications to 

estimate the covariance with lower sampling errors following Ledoit and Wolf (2004). In their 

model, the authors build on Elton and Gruber (1973) who use a constant correlation coefficient to 

shrink the assets’ covariance toward a global average correlation estimator 

The constant correlation coefficient is determined using, 

(22) ρ̂ =
1

N(N − 1)
(∑∑ρ̂ij

N

j

− N

N

i

)  

where N is the number of portfolios - in our applications, either 6, 9 or 27. The term ρ̂ij is 

the historical correlation estimate between the ith portfolio and the jth portfolio.  

Ledoit and Wolf (2004)  then obtain an optimal structure for the covariance matrix and 

reduce the sampling error of a traditional sample covariance matrix (S):  

(23) Σ = δF + (1 − δ)S  

where 𝛴 is the output covariance matrix from the shrinkage estimation and 𝛿 is the optimal 

shrinkage intensity13. S is the sample covariance matrix from our 60 daily returns, and F is the 

structured covariance matrix with assets’ covariance estimated via the constant correlation 

estimator14 in equation (22). In our empirical study, the estimations of the sample and the 

structured covariance matrices are based on 60-day rolling windows to accommodate for gradual 

                                                        
13 Matlab code is made available at Prof. Wolf’s website. 

14 The covariance of the matrix F is given by 𝜎𝑖𝑗 = 𝜌̂𝜎𝑖𝜎𝑗 . 

http://www.econ.uzh.ch/en/people/faculty/wolf/publications.html#9
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changes in the return distribution and short-term variations. On a practical basis, using monthly 

return to estimate assets’ covariance matrix might be cumbersome because of the short track 

records of the Exchange-Traded Fund (ETF) universe. Although our paper, we intend to 

reconstruct a proxy for the market portfolio based on risk-factor-based assets, a real-life 

application with tradable assets (Idzorek and Kowara (2013)) would impose constraints on the 

historical information available to replicate our results. For this reason - to stay as close as possible 

to what real-world applications may offer - we focus our optimizations on 60-day rolling windows. 
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Appendix 2 

Transaction Costs 

1. Gibbs estimates 

A traditional model to estimate trading costs of a security is documented by Roll (1984). 

This model only requires information about the daily trade price, prior midpoint of the bid-ask 

prices and the sign of trade to perform the estimation. Formally, the procedure is written as follows: 

(24) 

mt = mt−1 + ut 

pt = mt +  cqt 
 

where mt is the log midpoint of the prior bid-ask price, pt is the log trade price, qt is the 

sign of the trade (+1 for a buy and -1 for a sale), c is the effective cost, and ut is assumed to be 

unrelated to the sign of the trade (qt).  

Since we take in equation (24) the logarithm for the price variables, the daily change in 

price is given by 

∆pt = pt − pt−1 

= mt +  cqt −mt−1 −  cqt−1 

(25) = c∆qt + ut  

Hasbrouck (2009) suggests extending Roll’s (1984) model with a market factor and 

estimating the effective trading costs using Bayesian Gibbs sampling applied to the daily prices of 

U.S. equity retrieved from CRSP data. The market-factor model15 is presented as follows:  

(26) ∆pt = c∆qt + βrmrmt + ut  

                                                        
15 The SAS code is made available on Prof. Hasbrouck’s website. 

http://people.stern.nyu.edu/jhasbrou/
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where 𝑟𝑚𝑡 is the market return on day t and βrm is the parameter estimate from the 

regression on the market return. 

The Bayesian methodology estimates the effective costs (c) based on a sequence of 

iterations where the initial prior for c is strictly positive and follows a normal distribution with 

mean zero and variance equal to 0.052, denoted 𝑁+(𝜇 = 0, 𝜎2 = 0.052). According to Hasbrouck 

(2009), the initial values of the prior should not impact the final estimate of the effective cost of a 

stock because the first 200 iterations (of 1,000) are disregarded to compute the average of the 

estimated values for the trading cost (c). The purpose of the Gibbs sampling is to estimate the value 

of the parameters c and 𝛽 conditional on the values drawn for the sign of trade (qt) and the error 

term (ut). For each iteration, new values for qt and ut are drawn from their respective distributions, 

and an OLS regression is performed to estimate the new values of c and 𝛽.The process is repeated 

1,000 times, and the final value for c is the average of the last 800 estimations of the procedure. 

For more information on the iterative process, we refer to Hasbrouck (2009, p. 1447), who 

summarizes the procedure in four steps16. 

  

                                                        
16 Further details regarding the application of the estimation technique can also be found in Marshall, Nguyen and 

Visaltanachoti (2011) and Novy-Marx and Velikov (2016). 



Appendix 3 

The table reports the results for the step-down regression-based mean-variance spanning test from Kan and Zhou (2012). 

We display the results when the benchmark assets are 30-Year US Treasury Bonds and the Strategic Beta on independent cap-

weighted portfolios. The test assets have the same Strategic Beta on dependent cap-weighted portfolios. In total, there are four 

different Strategic Beta strategies: equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity 

(RP). These portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis. The number of 

portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). The first column reports the correlation between Strategic Beta 

on both sorting methodologies. F1 tests the null hypothesis that additional tests asset do not improve the ex-post tangency portfolio. 

F2 tests the null hypothesis that additional test assets do not improve the ex-post global-minimum-variance (GMV) portfolio. We 

also report the step-down joint-p, which tests whether the efficient frontier is improved when we add the test asset to the benchmark 

assets. 𝑊𝑎
𝑒 is the GMM Wald test when returns are assumed to have a multivariate ellicptical distribution; the results are comparable 

to those for the step-down joint-p. 𝑊𝑎
  is the GMM Wald and is valid under all return distributions. The sample period ranges from 

July 1963 to December 2015. 

 

            Step-Down Test   GMM Wald Test 

Strategy Corr. 
 

 

 F-test p-value  
 

p-value 
 

p-value Joint-p   
 

p-value 
 

p-value 

Rebalancing: Monthly 

EW (2x3) 0.98 0.0000 0.0189 1.0130 0.3640 0.01 0.93 2.02 0.16 0.15   1.30 0.52 1.55 0.46 

EW (3x3) 0.97 0.0001 0.0310 1.8230 0.1620 0.05 0.83 3.61 0.06 0.05   2.08 0.35 2.87 0.24 

EW (3x3x3) 0.97 0.0003 0.0288 1.3960 0.2480 0.24 0.63 2.56 0.11 0.07   1.62 0.45 2.42 0.30 

MD (2x3) 0.96 0.0012 0.0714 8.3880 0.0000 5.33 0.02 11.37 0.00 0.00   8.38 0.02 12.28 0.00 

MD (3x3) 0.94 0.0013 0.1080 10.7860 0.0000 3.65 0.06 17.85 0.00 0.00   9.26 0.01 17.86 0.00 

MD (3x3x3) 0.9 0.0022 0.1549 12.4000 0.0000 5.44 0.02 19.23 0.00 0.00   11.27 0.00 14.26 0.00 

MV (2x3) 0.91 0.0019 0.1123 7.6330 0.0010 4.87 0.03 10.34 0.00 0.00   6.16 0.05 18.28 0.00 

MV (3x3) 0.92 0.0018 0.1466 15.0730 0.0000 5.31 0.02 24.67 0.00 0.00   10.72 0.01 27.55 0.00 

MV (3x3x3) 0.93 0.0005 0.0817 5.2970 0.0050 0.54 0.46 10.06 0.00 0.00   3.41 0.18 10.06 0.01 

RP (2x3) 0.97 0.0006 0.0415 3.7240 0.0250 1.58 0.21 5.86 0.02 0.00   3.51 0.17 6.68 0.04 

RP (3x3) 0.97 0.0006 0.0595 5.2740 0.0050 1.34 0.25 9.21 0.00 0.00   4.62 0.10 9.08 0.01 

RP (3x3x3) 0.97 0.0008 0.0613 5.7450 0.0030 2.12 0.15 9.36 0.00 0.00   5.26 0.07 9.87 0.01 
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Rebalancing: Quarterly 

EW (2x3) 0.98 0.0001 0.0189 1.0060 0.3660 0.02 0.90 2.00 0.16 0.14   1.28 0.53 1.56 0.46 

EW (3x3) 0.97 0.0001 0.0310 1.8130 0.1640 0.07 0.80 3.57 0.06 0.05   2.06 0.36 2.88 0.24 

EW (3x3x3) 0.97 0.0003 0.0287 1.3900 0.2500 0.27 0.61 2.51 0.11 0.07   1.61 0.45 2.43 0.30 

MD (2x3) 0.96 0.0012 0.0623 6.6670 0.0010 4.77 0.03 8.51 0.00 0.00   6.73 0.04 10.09 0.01 

MD (3x3) 0.94 0.0013 0.1001 9.1350 0.0000 3.49 0.06 14.72 0.00 0.00   7.89 0.02 16.36 0.00 

MD (3x3x3) 0.9 0.0023 0.1729 14.6390 0.0000 5.78 0.02 23.32 0.00 0.00   12.81 0.00 17.64 0.00 

MV (2x3) 0.91 0.0015 0.1093 6.5930 0.0010 2.73 0.10 10.43 0.00 0.00   5.12 0.08 13.64 0.00 

MV (3x3) 0.92 0.0015 0.1439 14.3150 0.0000 3.79 0.05 24.73 0.00 0.00   9.49 0.01 24.68 0.00 

MV (3x3x3) 0.93 0.0007 0.0899 6.4010 0.0020 0.81 0.37 12.00 0.00 0.00   4.41 0.11 9.52 0.01 

RP (2x3) 0.97 0.0006 0.0384 3.1790 0.0420 1.60 0.21 4.76 0.03 0.01   3.21 0.20 5.78 0.06 

RP (3x3) 0.97 0.0007 0.0573 4.9510 0.0070 1.47 0.23 8.43 0.00 0.00   4.28 0.12 8.57 0.01 

RP (3x3x3) 0.97 0.0008 0.0594 5.4180 0.0050 2.04 0.15 8.78 0.00 0.00   4.92 0.09 9.21 0.01 

Rebalancing: Semi-Annually 

EW (2x3) 0.98 0.0001 0.0189 1.0040 0.3670 0.02 0.89 1.99 0.16 0.14   1.28 0.53 1.56 0.46 

EW (3x3) 0.97 0.0001 0.0310 1.8110 0.1640 0.07 0.79 3.56 0.06 0.05   2.05 0.36 2.89 0.24 

EW (3x3x3) 0.97 0.0003 0.0288 1.3960 0.2480 0.29 0.59 2.51 0.11 0.07   1.62 0.44 2.46 0.29 

MD (2x3) 0.96 0.0011 0.0668 6.4900 0.0020 3.79 0.05 9.15 0.00 0.00   6.47 0.04 9.24 0.01 

MD (3x3) 0.94 0.0014 0.1081 10.3410 0.0000 3.71 0.06 16.90 0.00 0.00   9.31 0.01 16.55 0.00 

MD (3x3x3) 0.9 0.0021 0.1697 14.4240 0.0000 4.88 0.03 23.82 0.00 0.00   13.05 0.00 15.23 0.00 

MV (2x3) 0.91 0.0019 0.0858 5.1340 0.0060 4.71 0.03 5.52 0.02 0.00   4.69 0.10 11.05 0.00 

MV (3x3) 0.93 0.0016 0.1100 8.6880 0.0000 4.14 0.04 13.17 0.00 0.00   5.96 0.05 17.21 0.00 

MV (3x3x3) 0.94 0.0010 0.0995 8.3200 0.0000 1.82 0.18 14.80 0.00 0.00   6.51 0.04 11.41 0.00 

RP (2x3) 0.97 0.0006 0.0354 2.8010 0.0620 1.94 0.17 3.66 0.06 0.01   3.11 0.21 5.22 0.07 

RP (3x3) 0.97 0.0007 0.0561 4.7940 0.0090 1.74 0.19 7.84 0.01 0.00   4.27 0.12 8.11 0.02 

RP (3x3x3) 0.97 0.0007 0.0575 5.0630 0.0070 1.92 0.17 8.19 0.00 0.00   4.63 0.10 8.14 0.02 

Rebalancing: Annually 

EW (2x3) 0.98 0.0001 0.0187 0.9860 0.3740 0.01 0.91 1.96 0.16 0.15   1.25 0.53 1.53 0.47 

EW (3x3) 0.97 0.0001 0.0309 1.7940 0.1670 0.07 0.79 3.52 0.06 0.05   2.03 0.36 2.86 0.24 

EW (3x3x3) 0.97 0.0003 0.0287 1.3910 0.2500 0.30 0.58 2.48 0.12 0.07   1.62 0.45 2.46 0.29 

MD (2x3) 0.96 0.0010 0.0613 5.2740 0.0050 3.11 0.08 7.42 0.01 0.00   5.31 0.07 8.72 0.01 

MD (3x3) 0.94 0.0014 0.1035 8.8440 0.0000 3.55 0.06 14.08 0.00 0.00   7.82 0.02 14.28 0.00 

MD (3x3x3) 0.9 0.0018 0.1475 9.9280 0.0000 3.51 0.06 16.28 0.00 0.00   9.22 0.01 12.92 0.00 

MV (2x3) 0.91 0.0021 0.1009 6.7670 0.0010 5.79 0.02 7.69 0.01 0.00   5.89 0.05 15.36 0.00 

MV (3x3) 0.93 0.0017 0.0998 7.8050 0.0000 4.67 0.03 10.88 0.00 0.00   5.57 0.06 14.75 0.00 

MV (3x3x3) 0.94 0.0009 0.1355 14.8070 0.0000 1.57 0.21 28.02 0.00 0.00   10.57 0.01 17.03 0.00 

RP (2x3) 0.97 0.0006 0.0367 2.8470 0.0590 1.54 0.22 4.15 0.04 0.01   3.02 0.22 5.00 0.08 

RP (3x3) 0.97 0.0007 0.0593 5.1100 0.0060 1.67 0.20 8.54 0.00 0.00   4.78 0.09 7.86 0.02 

RP (3x3x3) 0.97 0.0008 0.0576 4.7380 0.0090 1.83 0.18 7.63 0.01 0.00   4.65 0.10 7.11 0.03 
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Appendix 4 

The table reports the results for the step-down regression-based mean-variance spanning test from Kan and Zhou (2012). 

We display the results when the benchmark assets are 30-Year US Treasury Bonds and the Strategic Beta on independent equally 

weighted portfolios. The test assets have the same Strategic Beta on dependent equally weighted portfolios. In total, there are four 

different Strategic Beta strategies: equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity 

(RP). These portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis. The number of 

portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). The first column reports the correlation between Strategic Beta 

on both sorting methodologies. F1 tests the null hypothesis that additional test assets do not improve the ex-post tangency portfolio. 

F2 tests the null hypothesis that additional test assets do not improve the ex-post global-minimum-variance (GMV) portfolio. We 

also report the step-down joint-p, which tests whether the efficient frontier is improved when we add the test asset to the benchmark 

assets. 𝑊𝑎
𝑒 is the GMM Wald test when returns are assumed to have a multivariate elliptical distribution; the results are comparable 

to those for the step-down joint-p. 𝑊𝑎
  is the GMM Wald and is valid under all return distributions. The sample period ranges from 

July 1963 to December 2015. 
            Step-Down Test   GMM Wald Test 

Strategy Corr. 
 

 

 F-test p-value 
 

p-value 
 

p-value Joint-p   
 

p-value 
 

p-value 

Rebalancing: Monthly 

EW (2x3) 0.99 0.0000 -0.0107 0.3820 0.6830 0.00 0.98 0.77 0.38 0.38   0.46 0.79 0.62 0.74 

EW (3x3) 0.98 0.0004 0.0054 0.3540 0.7020 0.69 0.41 0.02 0.90 0.37   0.66 0.72 0.94 0.62 

EW (3x3x3) 0.98 0.0005 0.0079 0.4860 0.6160 0.93 0.34 0.05 0.83 0.28   0.88 0.65 1.31 0.52 

MD (2x3) 0.97 0.0010 0.0229 2.1220 0.1210 3.56 0.06 0.68 0.41 0.02   3.55 0.17 5.73 0.06 

MD (3x3) 0.96 0.0018 0.0625 5.9120 0.0030 7.25 0.01 4.53 0.03 0.00   8.49 0.01 13.96 0.00 

MD (3x3x3) 0.93 0.0032 0.1101 10.4300 0.0000 13.08 0.00 7.63 0.01 0.00   13.61 0.00 18.55 0.00 

MV (2x3) 0.96 0.0012 0.0504 3.7630 0.0240 3.64 0.06 3.87 0.05 0.00   5.26 0.07 4.86 0.09 

MV (3x3) 0.96 0.0011 0.0935 8.5000 0.0000 2.85 0.09 14.11 0.00 0.00   6.14 0.05 14.27 0.00 

MV (3x3x3) 0.96 0.0008 0.0654 5.4520 0.0040 1.87 0.17 9.02 0.00 0.00   4.02 0.13 6.82 0.03 

RP (2x3) 0.99 0.0003 0.0006 0.3810 0.6830 0.73 0.40 0.04 0.85 0.34   0.76 0.68 0.94 0.63 

RP (3x3) 0.98 0.0007 0.0219 1.5260 0.2180 2.16 0.14 0.89 0.35 0.05   2.32 0.31 3.68 0.16 

RP (3x3x3) 0.98 0.0008 0.0273 2.1170 0.1210 2.74 0.10 1.49 0.22 0.02   2.92 0.23 4.87 0.09 
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Rebalancing: Quarterly 

EW (2x3) 0.99 0.0000 -0.0107 0.3820 0.6830 0.00 0.98 0.77 0.38 0.38   0.46 0.79 0.62 0.74 

EW (3x3) 0.98 0.0004 0.0054 0.3540 0.7020 0.69 0.41 0.02 0.90 0.37   0.66 0.72 0.94 0.62 

EW (3x3x3) 0.98 0.0005 0.0078 0.4860 0.6160 0.93 0.34 0.05 0.83 0.28   0.88 0.65 1.31 0.52 

MD (2x3) 0.98 0.0009 0.0151 1.6350 0.1960 3.08 0.08 0.19 0.67 0.05   2.98 0.23 4.41 0.11 

MD (3x3) 0.96 0.0017 0.0581 5.1810 0.0060 6.40 0.01 3.93 0.05 0.00   7.39 0.03 12.21 0.00 

MD (3x3x3) 0.92 0.0029 0.1104 8.9160 0.0000 9.99 0.00 7.73 0.01 0.00   10.78 0.01 16.08 0.00 

MV (2x3) 0.97 0.0012 0.0548 4.3650 0.0130 3.82 0.05 4.89 0.03 0.00   7.60 0.02 5.07 0.08 

MV (3x3) 0.96 0.0014 0.0736 6.3090 0.0020 4.52 0.03 8.05 0.01 0.00   5.85 0.05 12.53 0.00 

MV (3x3x3) 0.96 0.0011 0.0610 5.3830 0.0050 3.51 0.06 7.23 0.01 0.00   4.72 0.09 7.07 0.03 

RP (2x3) 0.99 0.0003 0.0002 0.3940 0.6740 0.74 0.39 0.05 0.82 0.32   0.79 0.68 0.93 0.63 

RP (3x3) 0.98 0.0007 0.0207 1.5060 0.2230 2.24 0.14 0.77 0.38 0.05   2.33 0.31 3.57 0.17 

RP (3x3x3) 0.98 0.0008 0.0269 2.0870 0.1250 2.69 0.10 1.48 0.22 0.02   2.85 0.24 4.69 0.10 

Rebalancing: Semi-Annually 

EW (2x3) 0.99 0.0000 -0.0107 0.3820 0.6820 0.00 0.98 0.77 0.38 0.38   0.46 0.79 0.62 0.74 

EW (3x3) 0.98 0.0004 0.0054 0.3540 0.7020 0.69 0.41 0.02 0.90 0.37   0.66 0.72 0.94 0.62 

EW (3x3x3) 0.98 0.0005 0.0078 0.4860 0.6160 0.93 0.34 0.05 0.83 0.28   0.88 0.65 1.31 0.52 

MD (2x3) 0.98 0.0009 0.0176 1.8590 0.1570 3.43 0.07 0.29 0.59 0.04   3.36 0.19 4.71 0.10 

MD (3x3) 0.96 0.0016 0.0529 4.6080 0.0100 5.93 0.02 3.26 0.07 0.00   6.62 0.04 10.26 0.01 

MD (3x3x3) 0.93 0.0031 0.0983 9.1780 0.0000 12.35 0.00 5.90 0.02 0.00   12.41 0.00 15.93 0.00 

MV (2x3) 0.96 0.0016 0.0468 4.1210 0.0170 6.17 0.01 2.06 0.15 0.00   9.03 0.01 6.74 0.03 

MV (3x3) 0.96 0.0017 0.0960 10.4430 0.0000 6.93 0.01 13.82 0.00 0.00   9.04 0.01 20.12 0.00 

MV (3x3x3) 0.96 0.0009 0.0701 6.3640 0.0020 2.47 0.12 10.23 0.00 0.00   5.61 0.06 7.98 0.02 

RP (2x3) 0.99 0.0004 0.0006 0.5540 0.5750 1.05 0.31 0.06 0.81 0.25   1.11 0.58 1.32 0.52 

RP (3x3) 0.98 0.0008 0.0208 1.6430 0.1940 2.56 0.11 0.73 0.40 0.04   2.60 0.27 3.85 0.15 

RP (3x3x3) 0.98 0.0008 0.0274 2.1320 0.1190 2.70 0.10 1.56 0.21 0.02   2.88 0.24 4.64 0.10 

Rebalancing: Annually 

EW (2x3) 0.99 0.0000 -0.0107 0.3820 0.6820 0.00 0.98 0.77 0.38 0.38   0.46 0.79 0.62 0.74 

EW (3x3) 0.98 0.0004 0.0054 0.3540 0.7020 0.69 0.41 0.02 0.90 0.37   0.66 0.72 0.94 0.62 

EW (3x3x3) 0.98 0.0005 0.0078 0.4860 0.6160 0.93 0.34 0.05 0.83 0.28   0.88 0.65 1.31 0.52 

MD (2x3) 0.97 0.0011 0.0135 2.3480 0.0960 4.66 0.03 0.03 0.86 0.03   4.45 0.11 5.81 0.06 

MD (3x3) 0.96 0.0021 0.0513 5.7170 0.0030 9.40 0.00 2.01 0.16 0.00   8.79 0.01 12.36 0.00 

MD (3x3x3) 0.93 0.0029 0.0792 6.7670 0.0010 10.38 0.00 3.11 0.08 0.00   10.17 0.01 13.12 0.00 

MV (2x3) 0.97 0.0013 0.0349 3.0340 0.0490 4.73 0.03 1.33 0.25 0.01   4.27 0.12 4.96 0.08 

MV (3x3) 0.96 0.0015 0.0786 7.3760 0.0010 5.60 0.02 9.09 0.00 0.00   7.41 0.03 9.25 0.01 

MV (3x3x3) 0.97 0.0003 0.0466 2.9930 0.0510 0.25 0.62 5.74 0.02 0.01   2.72 0.26 2.60 0.27 

RP (2x3) 0.99 0.0004 -0.0017 0.5970 0.5510 1.02 0.31 0.18 0.67 0.21   1.18 0.55 1.30 0.52 

RP (3x3) 0.98 0.0008 0.0203 1.7600 0.1730 2.91 0.09 0.61 0.44 0.04   2.81 0.25 3.68 0.16 

RP (3x3x3) 0.98 0.0009 0.0230 1.9530 0.1430 3.06 0.08 0.85 0.36 0.03   2.96 0.23 4.06 0.13 
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Appendix 5 

The table reports the results for the step-down regression-based mean-variance spanning test from Kan and Zhou (2012). 

We display the results when the benchmark assets are 30-Year US Treasury Bonds and the Strategic Beta on dependent cap-weighted 

portfolios. The test assets have the same Strategic Beta on independent cap-weighted portfolios. In total, there are four different 

Strategic Beta strategies: equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity (RP). 

These portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis. The number of portfolios 

is either six (2x3), nine (3x3) or twenty-seven (3x3x3). The first column reports the correlation between Strategic Beta on both 

sorting methodologies. F1 tests the null hypothesis that additional test assets do not improve the ex-post tangency portfolio. F2 tests 

the null hypothesis that additional test assets do not improve the ex-post global-minimum-variance (GMV) portfolio. We also report 

the step-down joint-p, which tests whether the efficient frontier is improved when we add the test asset to the benchmark assets. 𝑊𝑎
𝑒 

is the GMM Wald test when returns are assumed to have a multivariate ellicptical distribution; the results are comparable to those 

for the step-down joint-p. 𝑊𝑎
  is the GMM Wald and is valid under all return distributions. The sample period ranges from July 1963 

to December 2015. 
            Step-Down Test   GMM Wald Test 

Strategy Corr. 
 

 

 F-test  p-value 
 

p-value 
 

p-value Joint-p   
 

p-value 
 

p-value 

Rebalancing: Monthly 

EW (2x3) 0.98 0.0004 0.0167 1.0170 0.3620 0.85 0.36 1.18 0.28 0.10   1.41 0.50 1.92 0.38 

EW (3x3) 0.97 0.0004 0.0186 0.9470 0.3880 0.91 0.34 0.98 0.32 0.11   1.25 0.53 1.88 0.39 

EW (3x3x3) 0.97 0.0003 0.0239 1.1610 0.3140 0.53 0.47 1.79 0.18 0.08   1.40 0.50 1.92 0.38 

MD (2x3) 0.96 -0.0004 -0.0001 0.3440 0.7090 0.64 0.43 0.05 0.82 0.35   0.68 0.71 0.76 0.68 

MD (3x3) 0.94 0.0000 0.0070 0.0520 0.9490 0.00 0.99 0.10 0.75 0.74   0.05 0.98 0.07 0.97 

MD (3x3x3) 0.9 0.0001 0.0453 1.1970 0.3030 0.01 0.91 2.39 0.12 0.11   1.08 0.58 1.11 0.57 

MV (2x3) 0.91 0.0003 0.0700 3.3080 0.0370 0.16 0.69 6.46 0.01 0.01   2.32 0.31 4.73 0.09 

MV (3x3) 0.92 -0.0001 0.0064 0.0400 0.9610 0.00 0.95 0.08 0.78 0.74   0.04 0.98 0.05 0.98 

MV (3x3x3) 0.93 0.0009 0.0480 2.4370 0.0880 1.78 0.18 3.09 0.08 0.01   1.99 0.37 4.88 0.09 

RP (2x3) 0.97 0.0000 0.0077 0.1450 0.8650 0.00 0.98 0.29 0.59 0.58   0.14 0.93 0.19 0.91 

RP (3x3) 0.97 0.0001 0.0067 0.0860 0.9180 0.06 0.80 0.11 0.74 0.60   0.09 0.96 0.17 0.92 

RP (3x3x3) 0.97 0.0000 0.0045 0.0390 0.9620 0.00 0.97 0.08 0.78 0.76   0.04 0.98 0.05 0.98 
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Rebalancing: Quarterly 

EW (2x3) 0.98 0.0003 0.0167 0.9890 0.3720 0.78 0.38 1.19 0.28 0.10   1.36 0.51 1.84 0.40 

EW (3x3) 0.97 0.0004 0.0186 0.9200 0.3990 0.84 0.36 1.00 0.32 0.11   1.20 0.55 1.80 0.41 

EW (3x3x3) 0.97 0.0003 0.0239 1.1580 0.3150 0.49 0.48 1.83 0.18 0.09   1.38 0.50 1.88 0.39 

MD (2x3) 0.96 -0.0004 0.0073 0.4270 0.6530 0.47 0.50 0.39 0.53 0.26   0.75 0.69 0.77 0.68 

MD (3x3) 0.94 0.0000 0.0156 0.2420 0.7850 0.00 0.96 0.48 0.49 0.47   0.21 0.90 0.33 0.85 

MD (3x3x3) 0.9 0.0001 0.0350 0.6750 0.5090 0.01 0.91 1.34 0.25 0.22   0.59 0.75 0.65 0.72 

MV (2x3) 0.91 0.0008 0.0726 3.5680 0.0290 1.14 0.29 5.99 0.02 0.00   2.69 0.26 5.79 0.06 

MV (3x3) 0.92 0.0003 0.0075 0.0890 0.9150 0.14 0.71 0.04 0.85 0.60   0.12 0.94 0.18 0.91 

MV (3x3x3) 0.93 0.0008 0.0390 1.6810 0.1870 1.43 0.23 1.94 0.17 0.04   1.53 0.47 3.27 0.20 

RP (2x3) 0.97 0.0000 0.0115 0.3180 0.7280 0.00 0.99 0.64 0.43 0.42   0.33 0.85 0.41 0.82 

RP (3x3) 0.97 0.0001 0.0081 0.1110 0.8950 0.04 0.85 0.19 0.67 0.57   0.10 0.95 0.18 0.91 

RP (3x3x3) 0.97 0.0000 0.0056 0.0580 0.9430 0.00 0.99 0.12 0.73 0.72   0.06 0.97 0.07 0.96 

Rebalancing: Semi-Annually 

EW (2x3) 0.98 0.0003 0.0167 0.9820 0.3750 0.77 0.38 1.20 0.27 0.11   1.34 0.51 1.82 0.40 

EW (3x3) 0.97 0.0004 0.0186 0.9090 0.4030 0.81 0.37 1.00 0.32 0.12   1.18 0.55 1.77 0.41 

EW (3x3x3) 0.97 0.0003 0.0238 1.1470 0.3180 0.47 0.49 1.83 0.18 0.09   1.37 0.50 1.85 0.40 

MD (2x3) 0.96 -0.0002 0.0112 0.3390 0.7120 0.15 0.70 0.53 0.47 0.33   0.48 0.79 0.47 0.79 

MD (3x3) 0.94 0.0000 0.0104 0.1120 0.8940 0.00 0.98 0.22 0.64 0.63   0.11 0.95 0.14 0.93 

MD (3x3x3) 0.9 0.0002 0.0292 0.4640 0.6290 0.06 0.81 0.87 0.35 0.29   0.41 0.82 0.44 0.80 

MV (2x3) 0.91 0.0003 0.0823 4.9410 0.0070 0.18 0.68 9.72 0.00 0.00   3.41 0.18 6.71 0.04 

MV (3x3) 0.93 0.0003 0.0367 1.0420 0.3530 0.11 0.74 1.98 0.16 0.12   0.65 0.72 1.33 0.52 

MV (3x3x3) 0.94 0.0004 0.0214 0.5020 0.6060 0.38 0.54 0.63 0.43 0.23   0.48 0.79 0.95 0.62 

RP (2x3) 0.97 -0.0001 0.0157 0.6140 0.5420 0.02 0.90 1.21 0.27 0.24   0.70 0.71 0.73 0.70 

RP (3x3) 0.97 0.0000 0.0092 0.1430 0.8670 0.01 0.94 0.28 0.60 0.56   0.13 0.94 0.19 0.91 

RP (3x3x3) 0.97 0.0000 0.0070 0.0860 0.9180 0.00 0.99 0.17 0.68 0.68   0.08 0.96 0.10 0.95 

Rebalancing: Annually 

EW (2x3) 0.98 0.0003 0.0169 1.0100 0.3650 0.80 0.37 1.23 0.27 0.10   1.38 0.50 1.88 0.39 

EW (3x3) 0.97 0.0004 0.0187 0.9190 0.3990 0.81 0.37 1.02 0.31 0.12   1.19 0.55 1.78 0.41 

EW (3x3x3) 0.97 0.0003 0.0239 1.1510 0.3170 0.45 0.50 1.85 0.17 0.09   1.37 0.51 1.84 0.40 

MD (2x3) 0.96 -0.0001 0.0184 0.5830 0.5580 0.04 0.85 1.13 0.29 0.25   0.65 0.72 0.70 0.71 

MD (3x3) 0.94 0.0001 0.0236 0.5000 0.6070 0.01 0.92 0.99 0.32 0.30   0.44 0.80 0.61 0.74 

MD (3x3x3) 0.9 0.0006 0.0623 2.1080 0.1220 0.48 0.49 3.74 0.05 0.03   1.91 0.39 2.72 0.26 

MV (2x3) 0.91 0.0001 0.0748 4.0220 0.0180 0.02 0.88 8.04 0.01 0.00   2.85 0.24 4.84 0.09 

MV (3x3) 0.93 0.0000 0.0393 1.3450 0.2610 0.00 0.98 2.69 0.10 0.10   0.92 0.63 1.65 0.44 

MV (3x3x3) 0.94 0.0005 -0.0116 0.4870 0.6150 0.48 0.49 0.49 0.48 0.24   0.82 0.67 0.76 0.69 

RP (2x3) 0.97 0.0000 0.0144 0.4750 0.6220 0.00 0.99 0.95 0.33 0.33   0.50 0.78 0.55 0.76 

RP (3x3) 0.97 0.0001 0.0088 0.1220 0.8850 0.02 0.90 0.23 0.63 0.57   0.11 0.95 0.16 0.93 

RP (3x3x3) 0.97 0.0000 0.0107 0.1810 0.8340 0.01 0.95 0.36 0.55 0.52   0.18 0.92 0.21 0.90 
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Appendix 6 

The table reports the results for the step-down regression-based mean-variance spanning test from Kan and Zhou (2012). 

We display the results when the benchmark assets are 30-Year US Treasury Bonds and the Strategic Beta on dependent equally 

weighted portfolios. The test assets have the same Strategic Beta on independent equally weighted portfolios. In total, there are four 

different Strategic Beta strategies: equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity 

(RP). These portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis. The number of 

portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). The first column reports the correlation between Strategic Beta 

on both sorting methodologies. F1 tests the null hypothesis that additional test assets do not improve the ex-post tangency portfolio. 

F2 tests the null hypothesis that additional test assets do not improve the ex-post global-minimum-variance (GMV) portfolio. We 

also report the step-down joint-p, which tests whether the efficient frontier is improved when we add the test asset to the benchmark 

assets. 𝑊𝑎
𝑒 is the GMM Wald test when returns are assumed to have a multivariate elliptical distribution; the results are comparable 

to those for the step-down joint-p. 𝑊𝑎
  is the GMM Wald and is valid under all return distributions. The sample period ranges from 

July 1963 to December 2015. 
            Step-Down Test   GMM Wald Test 

Strategy Corr. 
 

 

 F-test  p-value 
 

p-value 
 

p-value Joint-p   
 

p-value 
 

p-value 

Rebalancing: Monthly 

EW (2x3) 0.99 0.0003 0.0340 4.3770 0.0130 0.76 0.39 8.00 0.01 0.00   5.06 0.08 7.67 0.02 

EW (3x3) 0.98 0.0001 0.0335 2.7810 0.0630 0.06 0.81 5.51 0.02 0.02   3.21 0.20 3.89 0.14 

EW (3x3x3) 0.98 0.0001 0.0363 2.8910 0.0560 0.04 0.85 5.75 0.02 0.01   3.35 0.19 3.88 0.14 

MD (2x3) 0.97 -0.0003 0.0288 2.1720 0.1150 0.32 0.57 4.03 0.05 0.03   3.10 0.21 2.61 0.27 

MD (3x3) 0.96 -0.0006 0.0259 1.6790 0.1870 0.88 0.35 2.48 0.12 0.04   2.69 0.26 2.40 0.30 

MD (3x3x3) 0.93 -0.0010 0.0451 3.0070 0.0500 1.60 0.21 4.41 0.04 0.01   4.52 0.10 4.38 0.11 

MV (2x3) 0.96 -0.0001 0.0280 1.1850 0.3060 0.05 0.83 2.33 0.13 0.11   1.62 0.45 1.28 0.53 

MV (3x3) 0.96 0.0001 0.0044 0.0270 0.9730 0.03 0.86 0.02 0.88 0.76   0.03 0.99 0.06 0.97 

MV (3x3x3) 0.96 0.0002 0.0150 0.3090 0.7340 0.09 0.76 0.53 0.47 0.36   0.22 0.89 0.37 0.83 

RP (2x3) 0.99 0.0000 0.0266 2.5810 0.0770 0.01 0.93 5.16 0.02 0.02   3.17 0.21 3.36 0.19 

RP (3x3) 0.98 -0.0001 0.0253 1.5920 0.2040 0.06 0.81 3.13 0.08 0.06   2.04 0.36 1.90 0.39 

RP (3x3x3) 0.98 -0.0002 0.0213 1.2540 0.2860 0.15 0.70 2.36 0.13 0.09   1.58 0.45 1.53 0.47 
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Rebalancing: Quarterly 

EW (2x3) 0.99 0.0003 0.0340 4.3770 0.0130 0.76 0.39 8.00 0.01 0.00   5.06 0.08 7.67 0.02 

EW (3x3) 0.98 0.0001 0.0335 2.7810 0.0630 0.06 0.81 5.51 0.02 0.02   3.21 0.20 3.89 0.14 

EW (3x3x3) 0.98 0.0001 0.0363 2.8910 0.0560 0.04 0.85 5.75 0.02 0.01   3.35 0.19 3.88 0.14 

MD (2x3) 0.98 -0.0002 0.0325 2.7500 0.0650 0.24 0.63 5.27 0.02 0.01   3.94 0.14 3.30 0.19 

MD (3x3) 0.96 -0.0005 0.0287 1.7300 0.1780 0.63 0.43 2.83 0.09 0.04   2.61 0.27 2.34 0.31 

MD (3x3x3) 0.92 -0.0006 0.0516 2.6190 0.0740 0.59 0.44 4.66 0.03 0.01   3.32 0.19 3.28 0.19 

MV (2x3) 0.97 -0.0001 0.0214 0.7520 0.4720 0.06 0.82 1.45 0.23 0.19   1.32 0.52 0.78 0.68 

MV (3x3) 0.96 -0.0002 0.0158 0.4160 0.6600 0.10 0.76 0.74 0.39 0.30   0.50 0.78 0.58 0.75 

MV (3x3x3) 0.96 -0.0001 0.0154 0.4480 0.6390 0.05 0.83 0.85 0.36 0.30   0.48 0.79 0.57 0.75 

RP (2x3) 0.99 0.0000 0.0262 2.5830 0.0760 0.01 0.94 5.17 0.02 0.02   3.15 0.21 3.42 0.18 

RP (3x3) 0.98 -0.0001 0.0252 1.6500 0.1930 0.08 0.78 3.23 0.07 0.06   2.13 0.35 2.00 0.37 

RP (3x3x3) 0.98 -0.0002 0.0205 1.1980 0.3030 0.16 0.69 2.24 0.14 0.09   1.51 0.47 1.50 0.47 

Rebalancing: Semi-Annually 

EW (2x3) 0.99 0.0003 0.0340 4.3770 0.0130 0.76 0.39 8.00 0.01 0.00   5.06 0.08 7.67 0.02 

EW (3x3) 0.98 0.0001 0.0335 2.7810 0.0630 0.06 0.81 5.51 0.02 0.02   3.21 0.20 3.89 0.14 

EW (3x3x3) 0.98 0.0001 0.0363 2.8910 0.0560 0.04 0.85 5.75 0.02 0.01   3.35 0.19 3.88 0.14 

MD (2x3) 0.98 -0.0003 0.0321 2.6780 0.0690 0.31 0.58 5.05 0.03 0.01   4.00 0.14 3.01 0.22 

MD (3x3) 0.96 -0.0004 0.0306 1.8870 0.1520 0.55 0.46 3.23 0.07 0.03   2.75 0.25 2.38 0.31 

MD (3x3x3) 0.93 -0.0010 0.0475 3.2010 0.0410 1.45 0.23 4.95 0.03 0.01   4.66 0.10 4.40 0.11 

MV (2x3) 0.96 -0.0004 0.0435 2.8340 0.0600 0.31 0.58 5.36 0.02 0.01   6.39 0.04 2.94 0.23 

MV (3x3) 0.96 -0.0005 -0.0037 0.2500 0.7790 0.50 0.48 0.00 0.97 0.46   0.47 0.79 0.61 0.74 

MV (3x3x3) 0.96 0.0001 0.0080 0.0860 0.9180 0.01 0.93 0.16 0.69 0.64   0.07 0.96 0.09 0.95 

RP (2x3) 0.99 0.0000 0.0259 2.6270 0.0730 0.01 0.93 5.25 0.02 0.02   3.28 0.19 3.27 0.20 

RP (3x3) 0.98 -0.0002 0.0252 1.7380 0.1770 0.15 0.70 3.34 0.07 0.05   2.29 0.32 2.09 0.35 

RP (3x3x3) 0.98 -0.0002 0.0197 1.1290 0.3240 0.17 0.69 2.10 0.15 0.10   1.43 0.49 1.40 0.50 

Rebalancing: Annually 

EW (2x3) 0.99 0.0003 0.0340 4.3770 0.0130 0.76 0.39 8.00 0.01 0.00   5.06 0.08 7.67 0.02 

EW (3x3) 0.98 0.0001 0.0335 2.7810 0.0630 0.06 0.81 5.51 0.02 0.02   3.21 0.20 3.89 0.14 

EW (3x3x3) 0.98 0.0001 0.0363 2.8910 0.0560 0.04 0.85 5.75 0.02 0.01   3.35 0.19 3.88 0.14 

MD (2x3) 0.97 -0.0004 0.0379 3.8610 0.0220 0.69 0.41 7.04 0.01 0.00   5.50 0.06 4.38 0.11 

MD (3x3) 0.96 -0.0008 0.0394 3.5040 0.0310 1.61 0.21 5.39 0.02 0.00   5.12 0.08 4.92 0.09 

MD (3x3x3) 0.93 -0.0007 0.0674 4.6050 0.0100 0.80 0.37 8.41 0.00 0.00   6.04 0.05 5.40 0.07 

MV (2x3) 0.97 -0.0003 0.0365 2.4020 0.0910 0.22 0.64 4.59 0.03 0.02   2.68 0.26 2.94 0.23 

MV (3x3) 0.96 -0.0003 0.0098 0.3240 0.7230 0.24 0.62 0.41 0.53 0.33   0.52 0.77 0.57 0.75 

MV (3x3x3) 0.97 0.0006 0.0188 0.8570 0.4250 1.12 0.29 0.60 0.44 0.13   1.11 0.57 1.25 0.54 

RP (2x3) 0.99 0.0000 0.0290 3.1390 0.0440 0.00 0.95 6.28 0.01 0.01   3.69 0.16 3.75 0.15 

RP (3x3) 0.98 -0.0002 0.0263 1.9340 0.1450 0.23 0.64 3.65 0.06 0.04   2.49 0.29 2.30 0.32 

RP (3x3x3) 0.98 -0.0002 0.0244 1.7060 0.1820 0.25 0.62 3.17 0.08 0.05   2.16 0.34 2.05 0.36 
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Appendix 7 

The table reports the diversification return decomposition from equation (19) for the four different Strategic Beta strategies: 

equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity (RP). These strategies are applied 

on cap-weighted portfolios sorted independently on characteristics. These portfolios can be rebalanced on a monthly (1), quarterly 

(3), semi-annually (6) or annual (12) basis. Finally, the number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). 

The last four columns refer to terms from equation (19). The sample period ranges from July 1963 to December 2015.  

 
  Strategy   Constituents Average             

Strategy 
Arithmetic 

Return 

Geometric 

Return 
Variance   

Geometric 

Return 
Variance   

Variance 

Reduction 

Covariance 

Drag 

Adjustment 

for not 

being EW 

Variance 

Reduction 

Benefit 

Diversification 

Return 

Independent Sorted Portfolios 

Rebalancing: Monthly  

EW (2x3) 1.084 0.970 0.230   0.947 0.275   0.045 0.000 0.000 0.023 0.0226 

EW (3x3) 1.103 0.982 0.242   0.957 0.293   0.051 0.000 0.000 0.025 0.0253 

EW (3x3x3) 1.125 0.999 0.250   0.960 0.328   0.078 0.000 0.000 0.039 0.0390 

MD (2x3) 1.090 0.979 0.221   0.947 0.275   0.054 -0.005 0.011 0.027 0.0323 

MD (3x3) 1.113 1.000 0.228   0.957 0.293   0.065 0.004 0.007 0.033 0.0428 

MD (3x3x3) 1.090 0.972 0.236   0.960 0.328   0.093 -0.041 0.006 0.046 0.0120 

MV (2x3) 1.167 1.062 0.210   0.947 0.275   0.065 0.013 0.069 0.033 0.1150 

MV (3x3) 1.153 1.041 0.225   0.957 0.293   0.068 -0.001 0.051 0.034 0.0840 

MV (3x3x3) 1.147 1.044 0.205   0.960 0.328   0.123 -0.018 0.040 0.061 0.0836 

RP (2x3) 1.104 0.993 0.223   0.947 0.275   0.052 0.005 0.014 0.026 0.0457 

RP (3x3) 1.122 1.005 0.235   0.957 0.293   0.058 0.005 0.014 0.029 0.0482 

RP (3x3x3) 1.136 1.017 0.237   0.960 0.328   0.091 -0.001 0.012 0.046 0.0569 
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Rebalancing: Quarterly 

EW (2x3) 1.088 0.973 0.229   0.947 0.275   0.045 0.003 0.000 0.023 0.0262 

EW (3x3) 1.107 0.986 0.242   0.957 0.293   0.051 0.004 0.000 0.025 0.0295 

EW (3x3x3) 1.130 1.005 0.250   0.960 0.328   0.078 0.005 0.000 0.039 0.0446 

MD (2x3) 1.099 0.988 0.221   0.947 0.275   0.053 0.004 0.011 0.027 0.0413 

MD (3x3) 1.122 1.007 0.229   0.957 0.293   0.064 0.012 0.006 0.032 0.0506 

MD (3x3x3) 1.112 0.993 0.239   0.960 0.328   0.090 -0.017 0.005 0.045 0.0324 

MV (2x3) 1.244 1.139 0.210   0.947 0.275   0.064 0.087 0.073 0.032 0.1918 

MV (3x3) 1.202 1.090 0.224   0.957 0.293   0.069 0.049 0.050 0.035 0.1332 

MV (3x3x3) 1.158 1.053 0.210   0.960 0.328   0.119 -0.002 0.036 0.059 0.0927 

RP (2x3) 1.110 0.999 0.223   0.947 0.275   0.052 0.011 0.015 0.026 0.0519 

RP (3x3) 1.130 1.012 0.235   0.957 0.293   0.058 0.012 0.015 0.029 0.0554 

RP (3x3x3) 1.141 1.022 0.238   0.960 0.328   0.090 0.004 0.013 0.045 0.0619 

Rebalancing: Semi-Annually 

EW (2x3) 1.090 0.976 0.229   0.947 0.275   0.046 0.005 0.001 0.023 0.029 

EW (3x3) 1.111 0.989 0.242   0.957 0.293   0.051 0.006 0.001 0.025 0.033 

EW (3x3x3) 1.133 1.008 0.250   0.960 0.328   0.078 0.007 0.001 0.039 0.048 

MD (2x3) 1.088 0.977 0.222   0.947 0.275   0.052 -0.009 0.012 0.026 0.030 

MD (3x3) 1.106 0.990 0.232   0.957 0.293   0.061 -0.004 0.007 0.030 0.033 

MD (3x3x3) 1.124 1.002 0.244   0.960 0.328   0.084 -0.004 0.004 0.042 0.041 

MV (2x3) 1.201 1.095 0.213   0.947 0.275   0.062 0.047 0.070 0.031 0.148 

MV (3x3) 1.230 1.117 0.227   0.957 0.293   0.066 0.081 0.046 0.033 0.160 

MV (3x3x3) 1.134 1.024 0.220   0.960 0.328   0.109 -0.022 0.032 0.054 0.064 

RP (2x3) 1.104 0.993 0.223   0.947 0.275   0.052 0.004 0.015 0.026 0.046 

RP (3x3) 1.125 1.007 0.236   0.957 0.293   0.057 0.007 0.015 0.028 0.051 

RP (3x3x3) 1.142 1.022 0.241   0.960 0.328   0.087 0.005 0.013 0.044 0.061 

Rebalancing: Annually 

EW (2x3) 1.093 0.978 0.229   0.947 0.275   0.045 0.007 0.002 0.023 0.031 

EW (3x3) 1.112 0.991 0.243   0.957 0.293   0.050 0.008 0.002 0.025 0.034 

EW (3x3x3) 1.133 1.008 0.250   0.960 0.328   0.078 0.006 0.002 0.039 0.048 

MD (2x3) 1.091 0.980 0.222   0.947 0.275   0.053 -0.008 0.014 0.026 0.033 

MD (3x3) 1.109 0.994 0.230   0.957 0.293   0.063 -0.005 0.010 0.032 0.037 

MD (3x3x3) 1.145 1.027 0.236   0.960 0.328   0.093 0.014 0.006 0.046 0.066 

MV (2x3) 1.148 1.041 0.213   0.947 0.275   0.061 0.001 0.063 0.031 0.094 

MV (3x3) 1.148 1.035 0.224   0.957 0.293   0.068 0.007 0.037 0.034 0.079 

MV (3x3x3) 1.168 1.049 0.238   0.960 0.328   0.090 0.011 0.033 0.045 0.089 

RP (2x3) 1.102 0.990 0.224   0.947 0.275   0.051 0.002 0.016 0.025 0.043 

RP (3x3) 1.119 1.001 0.236   0.957 0.293   0.057 0.001 0.015 0.029 0.045 

RP (3x3x3) 1.137 1.016 0.243   0.960 0.328   0.086 -0.001 0.014 0.043 0.056 
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Appendix 8 

The table reports the diversification return decomposition from equation (19) for the four different Strategic Beta strategies: 

equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity (RP). These strategies are applied 

on equal-weighted portfolios sorted independently on characteristics. These portfolios can be rebalanced on a monthly (1), 

quarterly (3), semi-annually (6) or annual (12) basis. Finally, the number of portfolios is either six (2x3), nine (3x3) or twenty-seven 

(3x3x3). The last four columns refer to terms from equation (19). The sample period ranges from July 1963 to December 2015.  

 
  Strategy   Constituents Average             

Strategy 
Arithmetic 

Return 

Geometric 

Return 
Variance   

Geometric 

Return 
Variance   

Variance 

Reduction 

Covariance 

Drag 

Adjustment 

for not being 

EW 

Variance 

Reduction 

Benefit 

Diversification 

Return 

Independent Sorted Portfolios 

Rebalancing: Monthly  

EW (2x3) 1.209 1.068 0.283   1.044 0.330   0.047 0.000 0.000 0.024 0.024 

EW (3x3) 1.192 1.054 0.276   1.026 0.331   0.054 0.000 0.000 0.027 0.027 

EW (3x3x3) 1.208 1.068 0.280   1.027 0.362   0.082 0.000 0.000 0.041 0.041 

MD (2x3) 1.255 1.119 0.272   1.044 0.330   0.058 0.001 0.044 0.029 0.075 

MD (3x3) 1.251 1.119 0.266   1.026 0.331   0.065 0.009 0.051 0.033 0.092 

MD (3x3x3) 1.251 1.114 0.273   1.027 0.362   0.089 -0.021 0.064 0.045 0.088 

MV (2x3) 1.355 1.217 0.277   1.044 0.330   0.053 -0.066 0.212 0.027 0.172 

MV (3x3) 1.369 1.230 0.278   1.026 0.331   0.052 0.004 0.174 0.026 0.204 

MV (3x3x3) 1.255 1.138 0.233   1.027 0.362   0.129 -0.078 0.125 0.064 0.112 

RP (2x3) 1.244 1.107 0.275   1.044 0.330   0.055 0.001 0.034 0.028 0.062 

RP (3x3) 1.224 1.090 0.268   1.026 0.331   0.062 0.000 0.032 0.031 0.064 

RP (3x3x3) 1.230 1.098 0.263   1.027 0.362   0.099 -0.007 0.029 0.050 0.072 
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Rebalancing: Quarterly 

EW (2x3) 1.216 1.074 0.283   1.044 0.330   0.047 0.006 0.001 0.024 0.030 

EW (3x3) 1.198 1.060 0.276   1.026 0.331   0.054 0.006 0.001 0.027 0.034 

EW (3x3x3) 1.215 1.076 0.280   1.027 0.362   0.082 0.007 0.001 0.041 0.049 

MD (2x3) 1.262 1.125 0.273   1.044 0.330   0.057 0.009 0.044 0.028 0.081 

MD (3x3) 1.258 1.125 0.267   1.026 0.331   0.064 0.017 0.050 0.032 0.099 

MD (3x3x3) 1.268 1.132 0.273   1.027 0.362   0.089 -0.003 0.064 0.045 0.105 

MV (2x3) 1.393 1.253 0.280   1.044 0.330   0.050 -0.033 0.217 0.025 0.209 

MV (3x3) 1.366 1.224 0.285   1.026 0.331   0.046 -0.003 0.178 0.023 0.197 

MV (3x3x3) 1.242 1.123 0.238   1.027 0.362   0.125 -0.089 0.123 0.062 0.096 

RP (2x3) 1.253 1.115 0.275   1.044 0.330   0.055 0.009 0.035 0.027 0.071 

RP (3x3) 1.233 1.098 0.268   1.026 0.331   0.062 0.008 0.033 0.031 0.072 

RP (3x3x3) 1.239 1.107 0.264   1.027 0.362   0.098 0.001 0.030 0.049 0.081 

Rebalancing: Semi-Annually 

EW (2x3) 1.221 1.079 0.282   1.044 0.330   0.047 0.009 0.003 0.024 0.035 

EW (3x3) 1.203 1.065 0.276   1.026 0.331   0.054 0.009 0.003 0.027 0.038 

EW (3x3x3) 1.219 1.080 0.279   1.027 0.362   0.083 0.009 0.003 0.041 0.053 

MD (2x3) 1.262 1.125 0.273   1.044 0.330   0.057 0.005 0.048 0.028 0.081 

MD (3x3) 1.256 1.123 0.266   1.026 0.331   0.065 0.008 0.056 0.032 0.097 

MD (3x3x3) 1.290 1.151 0.277   1.027 0.362   0.085 0.015 0.068 0.042 0.125 

MV (2x3) 1.389 1.252 0.275   1.044 0.330   0.055 -0.038 0.218 0.027 0.208 

MV (3x3) 1.410 1.270 0.280   1.026 0.331   0.050 0.048 0.170 0.025 0.243 

MV (3x3x3) 1.269 1.146 0.247   1.027 0.362   0.115 -0.059 0.121 0.058 0.119 

RP (2x3) 1.256 1.119 0.275   1.044 0.330   0.055 0.010 0.037 0.027 0.075 

RP (3x3) 1.237 1.103 0.268   1.026 0.331   0.062 0.011 0.035 0.031 0.077 

RP (3x3x3) 1.247 1.113 0.266   1.027 0.362   0.096 0.007 0.032 0.048 0.087 

Rebalancing: Annually 

EW (2x3) 1.218 1.077 0.280   1.044 0.330   0.049 0.006 0.003 0.025 0.033 

EW (3x3) 1.200 1.063 0.274   1.026 0.331   0.056 0.006 0.003 0.028 0.037 

EW (3x3x3) 1.216 1.077 0.277   1.027 0.362   0.085 0.005 0.003 0.043 0.051 

MD (2x3) 1.266 1.128 0.276   1.044 0.330   0.054 0.010 0.047 0.027 0.084 

MD (3x3) 1.255 1.122 0.267   1.026 0.331   0.063 0.007 0.057 0.032 0.095 

MD (3x3x3) 1.291 1.154 0.275   1.027 0.362   0.087 0.010 0.073 0.044 0.127 

MV (2x3) 1.407 1.268 0.279   1.044 0.330   0.051 -0.021 0.220 0.026 0.224 

MV (3x3) 1.403 1.262 0.282   1.026 0.331   0.049 0.039 0.173 0.024 0.236 

MV (3x3x3) 1.373 1.240 0.265   1.027 0.362   0.097 0.020 0.145 0.048 0.213 

RP (2x3) 1.259 1.121 0.276   1.044 0.330   0.054 0.011 0.039 0.027 0.077 

RP (3x3) 1.242 1.107 0.269   1.026 0.331   0.062 0.013 0.037 0.031 0.081 

RP (3x3x3) 1.249 1.115 0.269   1.027 0.362   0.093 0.008 0.034 0.047 0.088 
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Appendix 9 

The table reports the diversification return decomposition from equation (19) for the four different Strategic Beta strategies: 

equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity (RP). These strategies are applied 

on cap-weighted portfolios sorted dependently on characteristics. These portfolios can be rebalanced on a monthly (1), quarterly 

(3), semi-annually (6) or annual (12) basis. Finally, the number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). 

The last four columns refer to terms from equation (19). The sample period ranges from July 1963 to December 2015.  

 
  Strategy   Constituents Average             

Strategy 
Arithmetic 

Return 

Geometric 

Return 
Variance   

Geometric 

Return 
Variance   

Variance 

Reduction 

Covariance 

Drag 

Adjustment 

for not being 

EW 

Variance 

Reduction 

Benefit 

Diversification 

Return 

Dependent Sorted Portfolios 

Rebalancing: Monthly  

EW (2x3) 1.092 0.967 0.250   0.935 0.314   0.064 0.000 0.000 0.032 0.032 

EW (3x3) 1.120 0.982 0.276   0.946 0.347   0.071 0.000 0.000 0.036 0.036 

EW (3x3x3) 1.160 1.015 0.289   0.960 0.400   0.111 0.000 0.000 0.055 0.055 

MD (2x3) 1.181 1.062 0.238   0.935 0.314   0.076 -0.003 0.092 0.038 0.126 

MD (3x3) 1.190 1.064 0.251   0.946 0.347   0.096 -0.032 0.101 0.048 0.118 

MD (3x3x3) 1.223 1.084 0.278   0.960 0.400   0.122 -0.075 0.138 0.061 0.124 

MV (2x3) 1.310 1.182 0.258   0.935 0.314   0.056 -0.025 0.243 0.028 0.246 

MV (3x3) 1.263 1.135 0.256   0.946 0.347   0.091 -0.036 0.179 0.046 0.189 

MV (3x3x3) 1.179 1.058 0.241   0.960 0.400   0.159 -0.115 0.134 0.080 0.098 

RP (2x3) 1.148 1.028 0.241   0.935 0.314   0.073 0.005 0.051 0.036 0.092 

RP (3x3) 1.168 1.036 0.264   0.946 0.347   0.083 0.000 0.048 0.042 0.090 

RP (3x3x3) 1.194 1.062 0.264   0.960 0.400   0.135 -0.010 0.044 0.068 0.102 
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Rebalancing: Quarterly 

EW (2x3) 1.100 0.975 0.250   0.935 0.314   0.064 0.006 0.001 0.032 0.040 

EW (3x3) 1.130 0.992 0.276   0.946 0.347   0.071 0.009 0.001 0.035 0.045 

EW (3x3x3) 1.173 1.028 0.289   0.960 0.400   0.111 0.012 0.001 0.055 0.068 

MD (2x3) 1.190 1.070 0.240   0.935 0.314   0.074 0.006 0.092 0.037 0.135 

MD (3x3) 1.205 1.077 0.255   0.946 0.347   0.092 -0.019 0.104 0.046 0.131 

MD (3x3x3) 1.250 1.108 0.284   0.960 0.400   0.116 -0.048 0.138 0.058 0.148 

MV (2x3) 1.347 1.213 0.266   0.935 0.314   0.048 0.010 0.244 0.024 0.278 

MV (3x3) 1.279 1.150 0.259   0.946 0.347   0.088 -0.014 0.173 0.044 0.203 

MV (3x3x3) 1.190 1.067 0.246   0.960 0.400   0.153 -0.098 0.129 0.077 0.107 

RP (2x3) 1.161 1.039 0.243   0.935 0.314   0.071 0.017 0.052 0.035 0.104 

RP (3x3) 1.184 1.051 0.266   0.946 0.347   0.082 0.015 0.049 0.041 0.105 

RP (3x3x3) 1.207 1.073 0.268   0.960 0.400   0.132 0.002 0.046 0.066 0.113 

Rebalancing: Semi-Annually 

EW (2x3) 1.107 0.982 0.250   0.935 0.314   0.064 0.011 0.004 0.032 0.046 

EW (3x3) 1.137 0.998 0.277   0.946 0.347   0.070 0.013 0.004 0.035 0.052 

EW (3x3x3) 1.181 1.037 0.290   0.960 0.400   0.110 0.018 0.004 0.055 0.077 

MD (2x3) 1.172 1.051 0.242   0.935 0.314   0.072 -0.015 0.094 0.036 0.116 

MD (3x3) 1.190 1.061 0.260   0.946 0.347   0.088 -0.041 0.112 0.044 0.114 

MD (3x3x3) 1.246 1.102 0.288   0.960 0.400   0.112 -0.053 0.139 0.056 0.142 

MV (2x3) 1.363 1.227 0.271   0.935 0.314   0.043 0.044 0.226 0.021 0.292 

MV (3x3) 1.336 1.204 0.263   0.946 0.347   0.084 0.042 0.174 0.042 0.258 

MV (3x3x3) 1.188 1.062 0.253   0.960 0.400   0.146 -0.086 0.114 0.073 0.102 

RP (2x3) 1.168 1.046 0.245   0.935 0.314   0.069 0.022 0.054 0.034 0.110 

RP (3x3) 1.190 1.056 0.268   0.946 0.347   0.079 0.019 0.051 0.039 0.110 

RP (3x3x3) 1.213 1.076 0.273   0.960 0.400   0.127 0.006 0.047 0.063 0.117 

Rebalancing: Annually 

EW (2x3) 1.109 0.983 0.252   0.935 0.314   0.062 0.012 0.004 0.031 0.048 

EW (3x3) 1.136 0.998 0.278   0.946 0.347   0.069 0.012 0.005 0.035 0.051 

EW (3x3x3) 1.175 1.030 0.290   0.960 0.400   0.110 0.011 0.005 0.055 0.071 

MD (2x3) 1.170 1.047 0.245   0.935 0.314   0.069 -0.014 0.092 0.034 0.112 

MD (3x3) 1.193 1.063 0.260   0.946 0.347   0.087 -0.045 0.118 0.043 0.116 

MD (3x3x3) 1.248 1.101 0.295   0.960 0.400   0.105 -0.047 0.136 0.052 0.141 

MV (2x3) 1.311 1.177 0.269   0.935 0.314   0.045 0.010 0.209 0.023 0.242 

MV (3x3) 1.259 1.128 0.262   0.946 0.347   0.085 -0.018 0.157 0.043 0.182 

MV (3x3x3) 1.184 1.049 0.271   0.960 0.400   0.129 -0.088 0.113 0.065 0.089 

RP (2x3) 1.159 1.035 0.248   0.935 0.314   0.066 0.016 0.051 0.033 0.100 

RP (3x3) 1.178 1.044 0.269   0.946 0.347   0.078 0.009 0.049 0.039 0.097 

RP (3x3x3) 1.201 1.063 0.278   0.960 0.400   0.122 -0.003 0.045 0.061 0.103 
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Appendix 10 

The table reports the diversification return decomposition from equation (19) for the four different Strategic Beta strategies: 

equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk-parity (RP). These strategies are applied 

on equal-weighted portfolios sorted dependently on characteristics. These portfolios can be rebalanced on a monthly (1), quarterly 

(3), semi-annually (6) or annual (12) basis. Finally, the number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). 

The last four columns refer to terms from equation (19). The sample period ranges from July 1963 to December 2015.  

 
  Strategy   Constituents Average             

Strategy 
Arithmetic 

Return 

Geometric 

Return 
Variance   

Geometric 

Return 
Variance   

Variance 

Reduction 

Covariance 

Drag 

Adjustment 

for not being 

EW 

Variance 

Reduction 

Benefit 

Diversification 

Return 

Dependent Sorted Portfolios 

Rebalancing: Monthly  

EW (2x3) 1.262 1.095 0.333   1.070 0.384   0.051 0.000 0.000 0.026 0.026 

EW (3x3) 1.274 1.109 0.331   1.076 0.396   0.066 0.000 0.000 0.033 0.033 

EW (3x3x3) 1.299 1.130 0.338   1.077 0.443   0.105 0.000 0.000 0.052 0.052 

MD (2x3) 1.378 1.221 0.312   1.070 0.384   0.072 -0.014 0.130 0.036 0.152 

MD (3x3) 1.432 1.277 0.310   1.076 0.396   0.086 -0.034 0.192 0.043 0.201 

MD (3x3x3) 1.540 1.373 0.335   1.077 0.443   0.108 -0.050 0.291 0.054 0.295 

MV (2x3) 1.456 1.306 0.302   1.070 0.384   0.083 -0.104 0.298 0.041 0.236 

MV (3x3) 1.440 1.289 0.303   1.076 0.396   0.094 -0.101 0.267 0.047 0.213 

MV (3x3x3) 1.319 1.189 0.260   1.077 0.443   0.183 -0.155 0.175 0.092 0.111 

RP (2x3) 1.318 1.160 0.317   1.070 0.384   0.067 -0.009 0.065 0.034 0.090 

RP (3x3) 1.326 1.168 0.315   1.076 0.396   0.081 -0.017 0.069 0.041 0.092 

RP (3x3x3) 1.332 1.179 0.306   1.077 0.443   0.137 -0.029 0.063 0.069 0.102 
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Rebalancing: Quarterly 

EW (2x3) 1.271 1.104 0.333   1.070 0.384   0.051 0.007 0.002 0.026 0.034 

EW (3x3) 1.285 1.120 0.331   1.076 0.396   0.065 0.009 0.002 0.033 0.044 

EW (3x3x3) 1.314 1.145 0.338   1.077 0.443   0.105 0.014 0.002 0.052 0.068 

MD (2x3) 1.381 1.224 0.314   1.070 0.384   0.070 -0.014 0.133 0.035 0.154 

MD (3x3) 1.432 1.276 0.313   1.076 0.396   0.083 -0.036 0.194 0.042 0.200 

MD (3x3x3) 1.544 1.371 0.346   1.077 0.443   0.097 -0.051 0.297 0.048 0.294 

MV (2x3) 1.490 1.338 0.303   1.070 0.384   0.081 -0.079 0.307 0.041 0.268 

MV (3x3) 1.468 1.315 0.305   1.076 0.396   0.091 -0.074 0.268 0.045 0.239 

MV (3x3x3) 1.330 1.199 0.262   1.077 0.443   0.181 -0.146 0.177 0.090 0.122 

RP (2x3) 1.330 1.171 0.318   1.070 0.384   0.067 0.000 0.068 0.033 0.101 

RP (3x3) 1.340 1.182 0.316   1.076 0.396   0.080 -0.005 0.071 0.040 0.106 

RP (3x3x3) 1.347 1.193 0.308   1.077 0.443   0.135 -0.016 0.065 0.067 0.116 

Rebalancing: Semi-Annually 

EW (2x3) 1.276 1.110 0.333   1.070 0.384   0.051 0.009 0.005 0.026 0.040 

EW (3x3) 1.292 1.126 0.331   1.076 0.396   0.065 0.011 0.006 0.033 0.051 

EW (3x3x3) 1.320 1.151 0.338   1.077 0.443   0.105 0.015 0.007 0.052 0.074 

MD (2x3) 1.384 1.227 0.315   1.070 0.384   0.070 -0.016 0.138 0.035 0.157 

MD (3x3) 1.427 1.269 0.316   1.076 0.396   0.080 -0.052 0.206 0.040 0.194 

MD (3x3x3) 1.592 1.416 0.351   1.077 0.443   0.092 0.000 0.294 0.046 0.339 

MV (2x3) 1.533 1.382 0.302   1.070 0.384   0.082 -0.038 0.309 0.041 0.312 

MV (3x3) 1.527 1.376 0.302   1.076 0.396   0.094 -0.023 0.276 0.047 0.300 

MV (3x3x3) 1.333 1.198 0.270   1.077 0.443   0.173 -0.138 0.172 0.086 0.121 

RP (2x3) 1.339 1.180 0.318   1.070 0.384   0.066 0.006 0.071 0.033 0.111 

RP (3x3) 1.351 1.193 0.317   1.076 0.396   0.079 0.002 0.076 0.040 0.117 

RP (3x3x3) 1.357 1.201 0.313   1.077 0.443   0.130 -0.010 0.068 0.065 0.124 

Rebalancing: Annually 

EW (2x3) 1.276 1.110 0.331   1.070 0.384   0.053 0.007 0.006 0.027 0.040 

EW (3x3) 1.288 1.124 0.329   1.076 0.396   0.068 0.007 0.007 0.034 0.048 

EW (3x3x3) 1.312 1.145 0.335   1.077 0.443   0.108 0.006 0.007 0.054 0.068 

MD (2x3) 1.416 1.255 0.321   1.070 0.384   0.063 0.009 0.145 0.031 0.185 

MD (3x3) 1.485 1.323 0.325   1.076 0.396   0.071 -0.015 0.226 0.036 0.247 

MD (3x3x3) 1.595 1.414 0.362   1.077 0.443   0.081 -0.006 0.303 0.040 0.337 

MV (2x3) 1.537 1.383 0.308   1.070 0.384   0.076 -0.022 0.297 0.038 0.313 

MV (3x3) 1.523 1.369 0.309   1.076 0.396   0.088 -0.018 0.267 0.044 0.293 

MV (3x3x3) 1.405 1.254 0.301   1.077 0.443   0.142 -0.070 0.177 0.071 0.177 

RP (2x3) 1.348 1.188 0.320   1.070 0.384   0.064 0.012 0.073 0.032 0.118 

RP (3x3) 1.363 1.204 0.319   1.076 0.396   0.078 0.011 0.079 0.039 0.128 

RP (3x3x3) 1.369 1.210 0.318   1.077 0.443   0.125 0.000 0.071 0.063 0.133 



Tables  

  



 

Table 1 

List of the Smart Beta Strategies’ Objective Functions 

The table decomposes the Smart Beta strategies’ objective function and the constraints applied on 

the constituents’ weights. The first column refers to the common name of the strategy. The second 

column specifies the main authors who analyze the strategy. The third column reports the objective 

function for minimization or maximization, whereas the last column displays the unleveraged 

long-only constraint applied to the constituents’ weight. 

 

Strategy Referenced Authors Objective function Constraints 

Minimum 

Variance (MV) 

Clarke, de Silva and 

Thorley (2013) 
min 𝑓(𝑤) =∑∑𝑤𝑖𝜎̂𝑖𝑗𝑤𝑗

𝑁

𝑗

𝑁

𝑖

 

𝑤𝑖  ∈ [0,1]  

∑𝑤𝑖

𝑁

𝑖=1

= 1 

Maximum 

Diversification 

(MD) 

Choueifaty and 

Coignard (2008) 

𝑚𝑎𝑥 𝑓(𝑤) =
∑ 𝑤𝑖  𝜎̂𝑖
𝑁
𝑖

√∑ ∑ 𝑤𝑖𝜎̂𝑖𝑗𝑤𝑗
𝑁
𝑗

𝑁
𝑖

 

 

Risk parity 

(RP) 

Maillard, Roncalli, 

and Teiletche 

(2010) 

𝑚𝑖𝑛 𝑓(𝑤) =∑∑(

𝑁

𝑗

𝑁

𝑖

𝑤𝑖 × (Σ𝑝𝑤𝑖) − 𝑤𝑗 × (Σ𝑝𝑤𝑗))² 

Equally 

weighted (EW) 

DeMiguel, Garlappi 

and Uppal (2009) 
1/N 

 



 

Table 2 

Strategic Beta and Transaction Costs 

The table reports the annual transaction costs (in %) for the four different Strategic Beta strategies: 

equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk parity 

(RP). These strategies are applied on portfolios sorted independently or dependently. These 

portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis. 

Finally, the number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). We also 

report the Patton and Timmermann (2010) test for decreasing monotonic relationships17. The 

sample period ranges from July 1963 to December 2015.  

 

Rebalancing 

Frequency 

(in months) 

1 3 6 12 

Decreasing 

MR 

p-value   

1 3 6 12 

Decreasing 

MR 

p-value 

  Independent Sort   Dependent Sort 

Panel A: Cap-weighted 

EW (2x3) 0.05 0.02 0.02 0.01 0.00  0.10 0.07 0.06 0.05 0.02 

EW (3x3) 0.05 0.04 0.02 0.01 0.00  0.13 0.09 0.06 0.05 0.00 

EW (3x3x3) 0.06 0.04 0.04 0.02 0.00  0.13 0.09 0.06 0.05 0.00 

MD (2x3) 0.07 0.04 0.02 0.02 0.00  0.22 0.13 0.09 0.07 0.00 

MD (3x3) 0.13 0.06 0.04 0.02 0.00  0.39 0.21 0.13 0.09 0.00 

MD (3x3x3) 0.22 0.11 0.07 0.04 0.00  0.56 0.30 0.17 0.10 0.00 

MV (2x3) 0.30 0.14 0.09 0.05 0.00  0.56 0.27 0.17 0.10 0.00 

MV (3x3) 0.51 0.18 0.10 0.05 0.00  1.01 0.33 0.18 0.11 0.00 

MV (3x3x3) 0.55 0.20 0.10 0.05 0.00  1.01 0.34 0.18 0.09 0.00 

RP (2x3) 0.06 0.04 0.02 0.01 0.00  0.13 0.09 0.06 0.06 0.00 

RP (3x3) 0.06 0.04 0.02 0.02 0.00  0.15 0.10 0.07 0.06 0.00 

RP (3x3x3) 0.07 0.05 0.04 0.02 0.00  0.17 0.11 0.07 0.05 0.00 

Panel B: Equal-weighted 

EW (2x3) 0.13 0.13 0.13 0.13 0.00  0.20 0.20 0.20 0.20 0.00 

EW (3x3) 0.11 0.11 0.11 0.11 0.00  0.21 0.21 0.21 0.21 0.00 

EW (3x3x3) 0.13 0.13 0.13 0.13 0.00  0.20 0.20 0.20 0.20 0.00 

MD (2x3) 0.18 0.17 0.15 0.14 0.00  0.38 0.31 0.27 0.27 0.01 

MD (3x3) 0.24 0.20 0.17 0.15 0.00  0.58 0.44 0.36 0.34 0.00 

MD (3x3x3) 0.43 0.28 0.22 0.18 0.00  0.84 0.62 0.46 0.41 0.00 

MV (2x3) 0.66 0.39 0.28 0.24 0.00  0.97 0.58 0.43 0.36 0.00 

MV (3x3) 0.92 0.43 0.30 0.24 0.00  1.44 0.68 0.48 0.38 0.00 

MV (3x3x3) 1.06 0.41 0.28 0.22 0.00  1.49 0.60 0.41 0.33 0.00 

RP (2x3) 0.15 0.14 0.14 0.14 0.45  0.24 0.22 0.22 0.22 0.80 

RP (3x3) 0.14 0.14 0.13 0.13 0.32  0.25 0.24 0.24 0.24 0.65 

RP (3x3x3) 0.15 0.14 0.14 0.14 0.00  0.25 0.24 0.22 0.21 0.00 

  

                                                        
17 Matlab code is made available on Prof. Patton’s website. 

http://public.econ.duke.edu/~ap172/code.html


 

Table 3 

Traditional Step-Down Approach of Kan and Zhou (2012) 

The table summarizes the results for the step-down regression-based mean-variance spanning test18 

from Kan and Zhou (2012). We display the results for the four different Strategic Beta strategies: 

equal-weighted (EW), maximum diversification (MD), minimum variance (MV), and risk parity 

(RP). The Strategic Beta strategies are applied on portfolios sorted independently or dependently. 

These portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual 

(12) basis. The number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). In 

total, each Strategic Beta can be constructed in 12 manners (denominator). 𝐻0
1 tests the null 

hypothesis that additional assets (Portfolio B) do not improve the ex-post tangency portfolio. 𝐻0
2 

tests the null hypothesis that additional assets (Portfolio B) do not improve the ex-post global-

minimum-variance (GMV) portfolio. We report the frequency at which 𝐻0
1 and 𝐻0

2 are rejected 

with a confidence interval of 95%. The step-down joint-p tests whether the efficient frontier is 

improved when Portfolio B is added to the benchmark assets. The sample period ranges from July 

1963 to December 2015. 

 

  

𝐻0
1: 𝐻0

2:     𝐻0
1: 𝐻0

2:   

Tangency  GMV  Step-down  Tangency  GMV  Step-down 

portfolio portfolio Joint-p   portfolio portfolio Joint-p 

 

Panel A:  Panel B: 

Bench.=(US+Independent)  Bench.=(US+Dependent) 

Portfolio B = Dependent  Portfolio B = Independent 
 Cap-Weighted Portfolios 

EW 0/12 0/12 4/12  0/12 0/12 0/12 

RP 0/12 11/12 12/12  0/12 0/12 0/12 

MD 5/12 12/12 12/12  0/12 0/12 1/12 

MV 6/12 12/12 12/12  0/12 4/12 6/12 
 Equal-Weighted Portfolios 

EW 0/12 0/12 0/12  0/12 12/12 12/12 

RP 0/12 0/12 7/12   0/12 4/12 7/12 

MD 9/12 5/12 11/12  0/12 9/12 12/12 

MV 5/12 9/12 12/12  0/12 2/12 2/12 

 

  

                                                        
18 Matlab code is made available on Prof. Zhou’s website.  

http://apps.olin.wustl.edu/faculty/zhou/


 

Table 4 

GMM Approach of Kan and Zhou (2012) 

The table summarizes the results for the GMM regression-based mean-variance spanning test from 

Kan and Zhou (2012). We display the results for the four different Strategic Beta strategies: equal-

weighted (EW), maximum diversification (MD), minimum variance (MV), and risk parity (RP). 

The Strategic Beta strategies are applied on portfolios sorted independently or dependently. These 

portfolios can be rebalanced on a monthly (1), quarterly (3), semi-annually (6) or annual (12) basis. 

The number of portfolios is either six (2x3), nine (3x3) or twenty-seven (3x3x3). In total, each 

Strategic Beta can be constructed in 12 (denominator) ways. The step-down joint-p tests whether 

the efficient frontier is improved when we add Portfolio B to the benchmark assets. 𝑊𝑎
𝑒 is the 

GMM Wald test when returns are assumed to have a multivariate ellicptical distribution. 𝑊𝑎
  is the 

GMM Wald and is valid under all return distributions. We report the frequency at which the tests 

are rejected with a confidence interval of 95%. The sample period ranges from July 1963 to 

December 2015. 

 

 

Step-down 

Joint-p 
𝑊𝑎
  𝑊𝑎

𝑒  Step-down 

Joint-p 
𝑊𝑎
  𝑊𝑎

𝑒 

 

Panel A: 

Bench.=(US+Independent) 

Portfolio B = Dependent 

 
Panel B; 

Bench.=(US+Dependent) 

Portfolio B = Independent 

 Cap-Weighted Portfolios 

EW 4/12 0/12 0/12  0/12 0/12 0/12 

RP 12/12 9/12 0/12  0/12 0/12 0/12 

MD 12/12 12/12 11/12  1/12 0/12 0/12 

MV 12/12 12/12 5/12  6/12 1/12 0/12 
 Equally Weighted Portfolios 

EW 0/12 0/12 0/12  12/12 4/12 0/12 

RP 7/12 0/12 0/12  7/12 0/12 0/12 

MD 11/12 8/12 8/12  12/12 0/12 1/12 

MV 12/12 8/12 5/12  2/12 0/12 1/12 

 

 

  



 

Table 5 

Morningstar® Strategic Beta Classification 

The table identifies the Strategic Beta classifications provided by the data provider Morningstar®. 

The first column report whether the categorization of Strategic Beta is applicable to an ETF. The 

second column identifies the specific attribute of the ETF strategy, and the last column specifies 

the broader category used in this paper to categorize the ETF universe. There are four categories: 

(1) risk-weighted, (2) return-oriented, (3) other, and (4) blended. We also mention in parentheses 

the number of ETFs that fall under the broader category groups.  

 

Strategic Beta Strategic Beta Attributes Strategic Beta Attribute Group 

YES 

Dividend Screened/Weighted 

Return-Oriented (287) 

Value  

Growth 

Fundamentally Weighted 

Multifactor 

Momentum 

Buyback/Shareholder Yield 

Earnings-Weighted 

Quality 

Expected Returns 

Size 

Revenue-Weighted 

Minimum Variance 

Risk-Oriented (20) Low/High Beta 

Risk-Weighted 

Non-Traditional Commodity 

Other (82) 
Equal-Weighted 

Non-Traditional Fixed-Income 

Multi-asset 

NO Not Applicable  Blended (1013) 

  



 

Table 6 

Correlation between Characteristic-Sorted Portfolios 

The table reports the average correlation (in %) for the characteristic-sorted portfolios constructed 

using independent and dependent sorting methodologies. The third column specifies the difference 

in the average correlation between the independent and dependent sorting. Correlations are 

estimated based on daily returns, and the sample period ranges from 01/07/1963 to 31/12/2015. 

 

  

Independent  Dependent 
  

Difference 

   (1)-(2) Sorting (1) Sorting (2) 

#Number of portfolios 
 Panel A: Cap-weighted Portfolios 

2x3 84.99  78.00  6.99 

3x3 84.99  75.81  9.18 

3x3x3 78.38  66.80  11.58 
 Panel B: Equal-weighted Portfolios 

2x3 87.13  82.64  4.49 

3x3 85.62  78.01  7.61 

3x3x3 78.63  69.12  9.51 

 

  



 

Table 7 

Source of Variance of Equally Weighted Portfolios 

The table presents the impact on equally weighted portfolios’ variance according to the number of 

stocks that comprise the portfolios. We illustrate the weights assigned based on the average 

variance of assets with a stock universe comprising 100 stocks. The results of the Fama and French 

(1993) methodology are presented based on Figure 2.  

 

  
Panel A: 

Independent Sort 

Panel B: 

Dependent Sort 

Portfolios (2x3) 

n  Weights on  Weights 

on  
𝑐𝑜𝑣𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅  

n  Weights on  Weights 

on  
𝑐𝑜𝑣𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅  

stocks 𝑣𝑎𝑟̅̅ ̅̅ ̅ stocks 𝑣𝑎𝑟̅̅ ̅̅ ̅ 

LL (Small Growth) 24 4.00% 96.00% 16 6.25% 93.75% 

LM (Small Neutral) 26 4.00% 96.00% 16 6.25% 93.75% 

LH (Small Value) 28 4.00% 96.00% 16 6.25% 93.75% 

HL (Large Growth) 10 10.00% 90.00% 16 6.25% 93.75% 

HM (Large Neutral) 8 13.00% 87.00% 16 6.25% 93.75% 

HH (Large Value) 4 25.00% 75.00% 16 6.25% 93.75% 

 

  



 

Table 8 

Spread in Risk-adjusted Diversification Returns 

The table reports the spread of diversification return from equation (21) for the four different 

Strategic Beta strategies: equal-weighted (EW), maximum diversification (MD), minimum 

variance (MV), and risk parity (RP). These strategies are applied on portfolios sorted 

independently or dependently. These portfolios can be rebalanced on a monthly (1), quarterly (3), 

semi-annually (6) or annual (12) basis. Finally, the number of portfolios is either six (2x3), nine 

(3x3) or twenty-seven (3x3x3). The sample period ranges from July 1963 to December 2015. 

 

 Rebalancing 
Monthly  Quarterly Semi-Annually Annually 

→ 

↓ Strategy Panel A: Cap-Weighted Portfolios 

EW (2x3) 0.8% 1.2% 1.5% 1.4% 

EW (3x3) 0.8% 1.3% 1.6% 1.4% 

EW (3x3x3) 1.3% 1.9% 2.3% 1.8% 

MD (2x3) 8.9% 8.8% 8.1% 7.3% 

MD (3x3) 7.0% 7.3% 7.5% 7.2% 

MD (3x3x3) 10.2% 10.4% 9.0% 6.0% 

MV (2x3) 10.7% 5.5% 11.1% 12.1% 

MV (3x3) 9.3% 5.6% 7.9% 9.0% 

MV (3x3x3) 0.7% 0.6% 3.1% -0.5% 

RP (2x3) 4.3% 4.7% 6.0% 5.2% 

RP (3x3) 3.6% 4.3% 5.2% 4.7% 

RP (3x3x3) 4.0% 4.5% 4.8% 4.0% 

 Panel B: Equal-Weighted Portfolios 

EW (2x3) 0.0% 0.2% 0.2% 0.4% 

EW (3x3) 0.3% 0.7% 0.8% 0.7% 

EW (3x3x3) 0.7% 1.3% 1.4% 1.1% 

MD (2x3) 6.7% 6.3% 6.5% 8.8% 

MD (3x3) 9.4% 8.6% 8.1% 12.9% 

MD (3x3x3) 17.9% 15.6% 17.7% 16.7% 

MV (2x3) 5.4% 4.9% 9.0% 7.4% 

MV (3x3) 0.0% 3.4% 4.6% 4.4% 

MV (3x3x3) -0.6% 2.0% -0.4% -4.7% 

RP (2x3) 2.1% 2.3% 2.8% 3.2% 

RP (3x3) 2.1% 2.6% 3.1% 3.7% 

RP (3x3x3) 2.3% 2.7% 2.7% 3.4% 

 

  



 

Figures  

  



 

Figure 1 

Stock Distribution with Independent vs Dependent Sorting 

The figure displays the stock distribution into the 2x3 characteristic-sorted portfolios on size (low 

and high) and book-to-market equity ratio (low, medium and high) for the independent (left) and 

dependent (right) sorting methodologies. The independent sorting uses the NYSE as a reference 

for breakpoints, while the dependent sorting uses all name breakpoints (NYSE, NASDAQ, and 

AMEX). The period ranges from July 1963 to December 2015. 

 

 
  



 

Figure 2 

Characteristic-Sorted Portfolios Risk/Return tradeoff 

The figure displays the panels of opportunity sets made of the investment style portfolios based on 

the sorting methodology. The x-axis reports the annualized standard deviation (in %), and the y-

axis reports the annualized average return (in %). Portfolios constructed according to the 

independent and dependent sorts are displayed in red and blue, respectively. Graphs on the left 

(right) present the results for cap-weighted (equally weighted) portfolios. We display the 

opportunity set when the US stock universe is split into six (2x3), nine (3x3) and twenty-seven 

(3x3x3) groups based on the size and value for the first two splits and the size, value and 

momentum characteristics of a firm for the triple sort (3x3x3). For the sake of clarity, we only 

display the portfolio names for the double sorts (2x3 and 3x3). The first letter specifies the size, 

and the second letter refers to the value characteristic. L, M, and H refer to “Low”, “Medium”, and 

“High”, respectively.  

  



 

Figure 3 

Variation of Transaction Cost Estimates Following Hasbrouck (2009) 

The figure presents a boxplot of the distribution of individual stocks transaction costs estimated as 

in Hasbrouck (2009). The sample period ranges from 1963 to 2015. The whiskers represent the 

distribution of the 5th to 95th percentile, and the upper and lower edges of the boxes correspond to 

the 25th and 75th percentiles. The gray dots represent outliers.  

 

 

  



 

Figure 4 

Improving the Tangency (Panel A) and GMV (Panel B) Portfolios 

The figure displays the spanning illustration for opportunity sets made of a benchmark asset, i.e., 

the 30-Year US Treasury Bond and Portfolio A, and a test asset, i.e. the benchmark assets plus 

Portfolio B. The x-axis reports the annualized standard deviation (in %), and the y-axis reports the 

annualized average return (in %). This example is fictitious but illustrates in Panel A (Panel B) an 

improvement of the tangency (GMV) portfolio after adding Portfolio B to the benchmark assets. 

 

Panel A: Tangency Portfolio 

 

Panel B: GMV Portfolio 

  



 

Figure 5 

Improvement in the tangency portfolio for ETFs listed on US Exchanges  

The panels show the percentage of ETFs listed on US exchanges for which there is a significant 

improvement in the tangency portfolio (𝐻0
1) after adding risk-based strategies built upon 

independent (red) and dependent (blue) portfolios. The results shown on the left are for cap-

weighted portfolios, and those on the right are for equally weighted portfolios. 

 
  



 

 Figure 6 

Improvement in the tangency portfolio for ETFs listed on US Exchanges and a Category 

Group named U.S. Equity  

The panels show the percentage of ETFs listed on US exchanges and primarily investing in US 

equities only for which there is significant improvement of the tangency portfolio (𝐻0
1) after adding 

risk-based strategies built upon independent (red) and dependent (blue) portfolios. The results 

shown on the left are for cap-weighted portfolios, and those on the right are for equally weighted 

portfolios. 

 

 
  



 

Figure 7 

Stock Distribution with Independent vs Dependent Sorting 

These plots show the stock distribution among the 3x3 characteristic-sorted portfolios on size (low, 

medium and high) the book-to-market equity ratio (low, medium and high) for the independent 

and dependent sorting methodologies. We also report the average percentage of stock repartition 

among the 3x3x3 characteristic-sorted portfolios when momentum is added as a third variable. For 

clarity, we group the 27 portfolios according to their size classifications (small, medium, and big). 

The period ranges from July 1963 to December 2015. 

 

 

 

  



 

Figure 8 

Yearly Average Stock Returns Correlation after Portfolio Formation 

The figure shows that the average correlation in stocks returns after portfolio formation under an 

independent sort (red line) and a dependent sort (blue line). The post-portfolio-formation period is 

comprised of 252 days and starts from July to end of June t+1. We also represent by the shaded 

areas the 25-75th percentile distribution of the yearly stock correlations. The results are displayed 

for the 2x3 portfolios from 1963 to 2015.  

 

 

 

  



 

Figure 9 

Stock Distribution in Portfolios Sorted Independently According to the Listed Exchange 

The figure reports the repartitions of stocks belonging to the NYSE, NASDAQ and AMEX in 

green, red and blue, respectively. The results for the 2x3 portfolios sorted independently are 

shown. 

 

 

  



 

Figure 10 

Stock Distribution in Portfolios Sorted Dependently According to the Listed Exchange 

The figure reports the repartitions of stocks belonging to the NYSE, NASDAQ and AMEX in 

green, red and blue, respectively. The results for the 2x3 portfolios sorted dependently are shown. 

 

 

  



 

Figure 11 

Yearly Average Stock Returns Correlation after Portfolio Formation: US Exchanges 

The figure shows the average correlation in stock returns after portfolio formation according to the 

three main US exchanges, that is, the NYSE, NASDAQ, and AMEX. The post-portfolio-formation 

period comprises 252 days ranging from July t to the end of June t+1. We also represent with the 

shaded areas the 25-75th percentile distribution of the yearly stock correlations. The results for the 

period ranging from 1963 to 2015 are shown. The results for stocks listed on the NASDAQ only 

start in 1973.  

 

 

  



 

Figure 12 

Risk-Adjusted Spread in Diversification Return: Cap-Weighted Portfolios 

The figure reports the risk-adjusted spread of diversification return from equation (20). Depicted 

by the blue columns, the risk-adjusted diversification return is the sum of the covariance drag (red), 

adjustment for not following equal-weighted rebalancing scheme in each period t (light blue), and 

the variance reduction benefits (light gray) of holding a mix of the constituents rather than 

individual equities. We report the results of four rebalancing schemes, i.e., monthly, quarterly, 

semi-annually, and annually. The risk-based strategies are equal weighted (EW), maximum 

diversification (MD), minimum variance (MV), and risk parity (RP). The results are for cap-

weighted portfolios, and the sample period ranges from July 1963 to December 2015. 

 

 
 

  



 

Figure 13 

Risk-Adjusted Spread in Diversification Return: Equally Weighted Portfolios 

The figure reports the risk-adjusted diversification return from equation (20). Depicted by the blue 

columns, the risk-adjusted diversification return is the sum of the covariance drag (red), an 

adjustment for not following equal-weighted rebalancing scheme in each period t (light blue), and 

the variance reduction benefits (light gray) of holding a mix of the constituents rather than 

individual equities. We report the results of four rebalancing schemes, i.e., monthly, quarterly, 

semi-annually, and annually. The risk-based strategies are equal weighted (EW), maximum 

diversification (MD), minimum variance (MV), and risk parity (RP). The results are for equally 

weighted portfolios, and the sample period ranges from July 1963 to December 2015. 

 

 


