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Brittle / ductile fracture

• Mechanism of brittle failure

– (Almost) no plastic deformations prior to the  (macroscopic) failure

– Cleavage: separation of crystallographic planes 

• In general inside the grains 

• Preferred directions: low bonding

• Between the grains: corrosion, H2, …

– Rupture criterion

• 1920, Griffith:
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Brittle / ductile fracture

• Mechanism of ductile failure

– Plastic deformations prior to (macroscopic) 

failure of the specimen

• Dislocations motion         

void nucleation around inclusions          

micro cavity coalescence 

crack growth

– Failure criterion

• What about Griffith criterion

• 1950, Irwin, the plastic work at the crack tip

should be added to the surface energy:
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Fatigue

• In static: design with stresses lower than 

– Elastic limit (sp
0) or 

– Tensile strength (sTS) 

• ~1860, Wöhler 

– Technologist in the German railroad system

– Studied the failure of railcar axles

• Failure occurred

– After various times in service 

– At loads considerably lower than expected

• Failure due to cyclic loading/unloading

– « Total life » approach

• Empirical approach of fatigue
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Linear Elastic Fracture Mechanics (LEFM)

• Definition of elastic fracture

– Strictly speaking:

• During elastic fracture, the only changes to the 

material are atomic separations

– As it never happens, the pragmatic definition is

• The process zone, which is the region where the 

inelastic deformations

– Plastic flow,

– Micro-fractures,

– Void growth, …

happen, is a small region compared to the 

specimen size, and is at the crack tip

– Valid for brittle failure and confined plasticity 

(Small Scale Yielding)
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Linear Elastic Fracture Mechanics (LEFM)

• Singularity at crack tip for linear and elastic materials
– 1957, Irwin, 3 fracture modes

• Boundary conditions

Mode I Mode II Mode III

(opening)                                 (sliding)                                     (shearing)       
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• Singularity at crack tip for linear and elastic materials (3)

– Asymptotic solutions (Airy functions)

– Introduction of the Stress Intensity Factors - SIF (Pa m1/2)

– Ki are dependent on both 

• Loading & 

• Geometry

Linear Elastic Fracture Mechanics (LEFM)
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• Evaluation of the stress Intensity Factor (SIF)

– Analytical (crack 2a in an infinite plane)

– Numerical

• bi depends on

– Geometry

– Crack length

Linear Elastic Fracture Mechanics (LEFM)
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• 1957, Irwin, new failure criterion

– smax → ∞         s is irrelevant 

– Compare the SIFs (dependent on loading and geometry) to a new material 

property: the toughness

• If Ki = KiC crack growth 

• Toughness (ténacité) KIc

– Steel, Al, … : see figures

– Concrete: 0.2 - 1.4 MPa m1/2

Linear Elastic Fracture Mechanics (LEFM)
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• Measuring KIc

– Done by strictly following the ASTM E399 procedure

– Preparation

• A possible specimen is the Single Edge 

Notch Bend (SENB)

– Plane strain constraint (thick enough 

specimen)           conservative

– Specimen machined with a V-notch in 

order to start a sharp crack

• Cyclic loading to initiate a fatigue crack

– Toughness test performed

• Calibrated P - d recording equipment

• The Crack Mouth Opening Displacement 

(CMOD=v) is measured with a clipped gauge

• Pc is obtained on P-v curves 

– either the 95% offset value or 

– the maximal value reached before

• KIc is deduced from Pc using

– f(a/W) depends on the test (SENB, …)

Linear Elastic Fracture Mechanics (LEFM)
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• Energy evolution during crack growth

– Assuming the crack propagates 

• Example: body subjected to Q constant

• As the crack grows, there is a displacement du

– Energy release rate G for Q constant

• Change in energy system for a crack growth dA

• The internal (elastic) energy thus reads

• From complementary energy

Linear Elastic Fracture Mechanics (LEFM)
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• Energy release rate interpretation

– Can be measured by conducting experiments

• Body with crack surface A0 loaded up to Q*

• Crack growth  dA at constant load           the

specimen becomes more flexible          

displacement increment 

• Unload to zero

• The area between the 2 curves is then G dA

• Link with the stress intensity factor

– In linear elasticity & crack growing straight ahead

The energy release rate can also be used to assess crack growth

Linear Elastic Fracture Mechanics (LEFM)
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• Critical energy release rate

– If PT = Eint - Qu is the potential energy of the specimen

– Total energy has to be conserved

• Total energy E =  PT + G

• G is the energy required to create a crack of surface A

• There is crack growth when

– Brittle materials

» gs is the surface energy, a crack creates 2 surfaces

– For other materials (ductile, composite, polymers, …) this energy depends 

on the failure process (void coalescence, debonding, …)

– Crack growth criterion is G ≥ GC

• Link with toughness

– Since                                                       𝐺𝐶 =
𝐾𝐼𝐶
2

𝐸′2

Linear Elastic Fracture Mechanics (LEFM)
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• J-integral

– Assuming stress-free lips

– Energy that flows toward the crack tip by

• It is path independent

• No assumption on linearity required

• Does not depend on subsequent crack growth direction

– For linear elasticity and for any contour G embedding a straight crack

Linear Elastic Fracture Mechanics (LEFM)
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• Finite element model: J-integral by domain integration

– Can be rewritten

• q is discretized using the same

shape functions than the elements

– This integral is valid for any 

region around the crack tip

• As long as the crack lips are straight

– Efficient for finite element method

Linear Elastic Fracture Mechanics (LEFM)
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Linear Elastic Fracture Mechanics (LEFM)

• Direction of crack grow

– Assumptions: the crack will grow in the direction where the SIF related to 

mode I in the new frame is maximal

• Crack growth if                                                with

– From direction of loading, one can compute the propagation direction
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Crack propagation

• A simple method is a FE simulation where the crack is used as BCs

– The mesh is conforming with the crack lips
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• Finite element model: J-integral by domain integration

&

– Can be rewritten

• q is discretized using the same

shape functions than the elements

– This integral is valid for any 

region around the crack tip

• As long as the crack lips are straight

– Efficient for finite element method

Crack propagation
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Crack propagation

• A simple method is a FE simulation where the crack is used as BCs (2)

– Mesh the structure in a conforming way with the crack

– Extract SIFs Ki (different methods, but J-integral is common)

– Use criterion on crack propagation

• Example: the maximal hoop stress criterion

with crack propagation direction obtained by                          &

– If the crack propagates

• Move crack tip by Da in the q*-direction

• A new mesh is required as the crack has changed (since the mesh has to be 

conforming)

– Involves a large number of remeshing operations (time consuming)

– Is not always fully automatic

– Requires fine meshes and Barsoum elements

– Not used
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Cohesive elements

• The cohesive method is based on Barenblatt model

– This model is an idealization of the brittle fracture mechanisms

• Separation of atoms at crack tips (cleavage)

• As long as the atoms are not separated by a distance dt, there are attractive 

forces (see overview lecture)

– For elasticity 𝐺𝐶 =  0
𝛿𝑡 𝜎𝑦 𝛿 𝑑𝛿

• So the area below the s-d curve corresponds to GC if crack grows straight ahead

– This model requires only 2 parameters

• Peak cohesive traction smax (spall strength)

• Fracture energy GC (typically from KIC)

• Shape of the curves has no importance as long as it is monotonically decreasing

2a rprp

Crack tip
Cohesive 

zone tip

x

y

sy
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d

sy (d)

dt

GC
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Cohesive elements

• Insertion of cohesive elements

– Between 2 volume elements

– Computation of the opening (cohesive element)

• Normal to the interface in the 

deformed configuration N –

• Normal opening

• Sliding

• Resulting opening

with bc the ratio between the shear and normal 

critical tractions

– Definition of a potential

• Potential                to match the 

traction separation law (TSL) curve

• Traction (in the deformed configuration) derives 

from this potential
d

sy (d)

dt

GC
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Cohesive elements

• Computational framework

– How are the cohesive elements inserted?

– First method: intrinsic Law

• Cohesive elements inserted from the beginning

• So the elastic part prior to crack propagation

is accounted for by the TSL

• Drawbacks:

– Requires a priori knowledge of the crack path to be efficient

– Mesh dependency [Xu & Needelman, 1994]

– Initial slope that  modifies the effective elastic modulus

» Alteration of a wave propagation

– This slope should tend to infinity [Klein et al. 2001]

» Critical time step is reduced

– Second method: extrinsic law

• Cohesive elements inserted on the fly 

when failure criterion (s>smax) is verified 

[Ortiz & Pandolfi 1999]

• Drawback:

– Complex implementation in 3D 

especially for parallelization

Failure criterion

incorporated within

the cohesive law

Failure criterion
external to the
cohesive law
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Cohesive elements

• Examples
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Cohesive elements

• Examples
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Cohesive elements

• Experimental characterization of the parameters

– Critical energy release rate 𝐺𝐶

• From toughness tests 𝐺𝐶 =
𝐾𝐼𝐶
2

𝐸′2

– Spall strength 𝜎𝑚𝑎𝑥

• For perfect crystal          analytical value 

• For non-perfect materials

– Could be a measured stress 

at distance 𝑟𝐶

– Delicate to put in place

• In practice calibration (see next slide)
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Cohesive elements

• Effect of the spall strength 𝜎𝑚𝑎𝑥

– It should cover the stochastic 

effect of material discrepancies

– Use of Weibull function
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Cohesive elements

• Advantages of the method

– Can be mesh independent (non regular meshes)

– Can be used for large problem size

– Automatically accounts for time scale [Camacho & Ortiz, 1996]

• Fracture dynamics has not been studied in these classes

– Really useful when crack path is already known

• Debonding of fibers

• Delamination of composite plies

• …

– No need for an initial crack

• The method can detect the initiation of a crack

• Drawbacks

– Still requires a conforming mesh

– Requires fine meshes

• ℎmax =
𝜋𝐸𝐺𝐶

2 1−𝜈2 𝜎𝑐
2

• So parallelization is mandatory

– Could be mesh dependent

17 April 2018 YSESM - Computational Fracture Mechanics 31



eXtended Finite Element Method

• How to get rid of conformity requirements?

• Key principles

– For a FE discretization, the displacement field

is approximated by

• Sum on nodes a in the set I (11 nodes here) 

• ua are the nodal displacements

• Na are the shape functions

• x i are the reduced coordinates

– XFEM 

• New degrees of freedom are introduced to account for the discontinuity

• It could be done by inserting new nodes (   ) near the

crack tip, but this would be inefficient (remeshing)

• Instead, shape functions are modified 

– Only shape functions that intersect the crack

– This implies adding new degrees of freedom

to the related nodes (   )
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eXtended Finite Element Method

• Key principles (2) 

– New degrees of freedom are introduced to account for the discontinuity

• J, subset of I, is the set of nodes whose shape-function

support is entirely separated by the crack (5 here)

• u*a are the new degrees of freedom at node a

– Form of Fa the shape functions related to u*a?

• Use of Heaviside’s function, and we want

+1 above and -1 below the crack

• In order to know if we are above or below 

the crack, signed-distance has to be computed

• Normal level set lsn(x i, x i*) is the signed distance between a point x i of the solid 

and its projection x i* on the crack

with H(x) = ±1 if x >< 0 

lsn(x i, x i*)
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eXtended Finite Element Method

• Key principles (3) 

– Example: removing of a brain tumor 

(L. Vigneron et al.)

– At this point

• A discontinuity can be introduced in the mesh

• Fracture mechanics is not introduced yet

– New enrichment with LEFM solution

• Zone J of Heaviside enrichment is reduced (3 nodes)

• A zone K of LEFM solution is added to the nodes

(  ) of elements containing the crack tip

• LEFM solution is asymptotic        only nodes close to crack tip can be enriched

• yb
a is the new degree b at node a

• Yb is the new shape function b
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eXtended Finite Element Method

• Crack propagation criterion

– Requires the values of the SIFs (2)

• A more accurate solution is to compute J

– But KI, KII & KIII have to be extracted from                                      

» Define an adequate auxiliary field uaux

» Compute  Jaux(uaux) and J s(u+uaux)

» On can show that the interaction integral (see lecture on SIFs)

» If uaux is chosen such that only Ki
aux ≠ 0, Ki is obtained directly

– Then the maximum hoop stress criterion can be used

with                             &

– The experimental value to determine is thus the toughness 𝐾𝐼𝐶
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eXtended Finite Element Method

• Numerical example

– Crack propagation (E. Béchet)

– Advantages:

• No need for a conforming mesh (but mesh has still to be fine near crack tip)

• Mesh independency

• Computationally efficient

– Drawbacks:

• Require radical changes to the FE code
– New degrees of freedom

– Gauss integration
– Time integration algorithm
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Damage models

• Failure mechanism

– Plastic deformations prior to (macroscopic) 

failure of the specimen

• Dislocations motion         void nucleation 

around inclusions          micro cavity 

coalescence             crack growth

• Griffith criterion                                    should

be replaced by

– Numerical models accounting for

this failure mode?
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Damage models

• Introduction to damage (1D)

– As there are voids in the material, 

only a reduced surface is balancing 

the traction

• Virgin section S

• Damage of the surface is defined as

• So the effective (or damaged) surface is actually

• And so the effective stress is  

– Resulting deformation

• Hooke’s law is still valid if it uses the effective stress

• So everything is happening as if Hooke’s law was multiplied by (1-D)

– Isotropic 3D linear elasticity

– Failure criterion: D=DC, with 0 < DC <1 

• But how to evaluate D, and how does it evolve?

F
F
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Damage models

• Evolution of damage D for isotropic elasticity

– Equations

• Stresses

• Example of damage criterion

– YC is an energy related to a deformation threshold

• There is a time history

– Either damage is increased if f = 0

– Or damage remains the same if f <0  

– Example for YC such that damage appears for e = 0.1

• But for ductile materials plasticity is important as it induces the damage
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Damage models

• Gurson’s model, 1977

– Assumptions

• Given a rigid-perfectly-plastic material 

with already existing spherical microvoids

• Extract a statistically representative 

sphere V embedding a spherical microvoid

– Porosity: fraction of voids in the total volume

and thus in the representative volume:

with      the material part of the volume

– Material rigid-perfectly plastic            elastic deformations negligible

– Define 

• Macroscopic strains, stresses, potential: e, s & W

• Microscopic strains, stresses, potential: e, s & W

F
F

V

V

Vvoid

n
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Damage models

• Gurson’s model, 1977 (4)

– Shape of the new yield surface

– Normal flow

– Evolution of the porosity  fV

• Assuming isochoric matrix: 
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Damage models

• Hardening

– Yield criterion                                                                             remains valid

but one has to account for the hardening of the matrix

• In this expression, the equivalent plastic strain of the matrix         is used instead 

of the macroscopic one

– Values related to the matrix and the macroscopic volume are dependant as 

the dissipated energies have to match 

• Voids nucleation

– Increase rate of porosity results from

• Matrix incompressibility

• Creation of new voids

• The nucleation rate can be modeled as strain controlled

cst
Represented 

by 1 void
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Damage models

• Voids coalescence

– 1984, Tvergaard & Needleman

• When two voids are close (fV ~ fC), the

material loses capacity of sustaining the loading

• If fV is still increased, the material is unable to sustain

any loading

• with
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Damage models

• Softening response

– Loss of solution uniqueness                 mesh dependency
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Damage models

• Softening response (2)

– Requires non-local models
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Damage models

• Softening response (2)

– Requires non-local models
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Damage models

• Complex calibration

– Experimental tests at different triaxiality states

– Calibration 

• During plastic localization

• During voids coalescences

• For different loading

• Completed by cell simulations
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• Principle

– Simulate what is happening at small scale with correct physical models

Multiscale Methods  
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BVP

Macro-scale

Material 

response

Extraction of a 

meso-scale 

Volume Element

Lmacro>>LVE>>Lmicro

– 2 BVPs are solved concurrently

• The macro-scale problem

• The meso-scale problem (on a 

meso-scale Volume Element)

– Requires two steps

• Downscaling: BC of the 

mesoscale BVP from the 

macroscale deformation-gradient 

field

• Upscaling: The resolution of the 

mesoscale BVP yields an 

homogenized macroscale 

behavior

– Gurson’s model is actually a 

multiscale model



• Example: Failure of composite laminates

– Heterogeneous materials: failure involves complex mechanisms

– Failure at different levels

• Intralaminar failure

• Delamination

Composite materials
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Composite materials

• Intralaminar failure

– Fiber rupture (1)

• If no matrix

– Fiber would not be able to carry any loading

– Fiber would become useless

• In reality

– Matrix transmits the load between the two broken parts 

– Fiber can still (partially) carry the loading

– Fiber/matrix debonding (2)

– Fiber bridging (3)

• Prevents the crack from further opening

• Corresponds to an increase of toughness 

– Fiber Pullout (4)

– Matrix cracking (5)

• Facilitates moisture

absorption

• May initiate delamination

between plies

– Ultimate tensile failure 

• Several of these mechanisms σ

σ

2

1

4

3
5
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• Intralaminar failure

– Requires multi-scale approach

• Micro-Meso damage models

• Computational homogenization

• Mean-Field-Homogenization

• …..

• A lot of theoretical issues

– Experimental calibration

• Complicated because of several modes

• Ideally from constituents

– Representative?

• Ex: 60%-UD Carbon-fiber reinforced epoxy

– Carbon fiber: 

» Use of transverse isotropic elastic 

material

– Elasto-plastic matrix with damage

» Use manufacturer Young’s modulus

» Use manufacturer strength

Composite materials



17 April 2018 YSESM - Computational Fracture Mechanics 65

• Intralaminar failure

– Requires multi-scale approach

• Micro-Meso damage models

• Computational homogenization

• Mean-Field-Homogenization

• …..

• A lot of theoretical issues

– Experimental calibration

• Complicated because of several modes

• Ideally from constituents

– Representative?

• Ex: 60%-UD Carbon-fiber reinforced epoxy

– Carbon fiber: 

» Use of transverse isotropic elastic 

material

– Elasto-plastic matrix with damage

» Use manufacturer Young’s modulus

» Use manufacturer strength

Composite materials



Composite materials

• Interlaminar fracture

– Due to anisotropy, Gc is not the same in the two directions

• Mode I and mode II

– Model

• Cohesive zone model

• Mixed mode fracture criterion

where m & n are empirical parameters
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Composite materials

• Interlaminar fracture: Mode I

– Crack propagates in the matrix (resin)

• GIc = Gc of resin?

– Due to the presence of the fibers 

• GIc ≠ Gc of the pure resin 

• Fiber bridging 

– Increases toughness

• Fiber/matrix debonding

– Brittle matrix

» Crack surface is not straight 

as it follows the fibers

» More surface created

» Higher toughness

– Tough matrix

» Fibers may prevent the 

damage zone in the matrix 

from extending far away

» Smaller surface created

» Lower toughness
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Composite materials

• Interlaminar fracture: Mode I (2)

– Measure of GIc

• DCB

• At fracture

• The initial delaminated zone is 

introduced by placing a non-adhesive 

insert between plies prior to molding
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Composite materials

• Interlaminar fracture: Mode I (3)

– Measure of GIc (2)

• Linear beam theory may give wrong 

estimates of energy release rate

– The area method is an alternative solution

• Periodic loading with small 

crack propagation increments

– The loading part is usually nonlinear 

prior to fracture

• Since G is the energy released 

per unit area of crack advance:

ΔU
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a

GIc

G
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Composite materials

• Interlaminar fracture: Mode II

– GIIc

• Usually 2-10 times higher than GIc

– Especially for brittle matrix

• In mode II loading 

– Extended damage zone, containing 

micro-cracks, forms ahead of the crack tip

– The formation of this damaged zone is energy consuming

» High relative toughness in mode II

• Note that micro-cracks are 45°-kinked

– Since pure shearing is involved, this is the direction of maximal tensile stress

– Thus the micro-cracks are loaded in mode I
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• Failure of composite [90o / 45o / -45o / 90o / 0o]S- open hole laminate

Composite materials
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• Failure of composite [90o / 45o / -45o / 90o / 0o]S- open hole laminate

Composite materials
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• Failure of composite [90o / 45o / -45o / 90o / 0o]S- open hole laminate

Composite materials
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• Failure of composite [90o / 45o / -45o / 90o / 0o]S- open hole laminate

Composite materials
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• Example: Failure of polycrystalline materials

– The mesoscale BVP can also be solved using atomistic simulations

– Polycrystalline structures can then be studied 

• Finite element for the grains

• Cohesive elements between the grains 

• Material behaviors and cohesive laws calibrated from the atomistic simulations

Atomistic Methods  
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• Atomistic models: molecular dynamics

– Newton equations of motion are integrated for classical particles 

– Particles interact via different types of potentials

• For metals: Morse-, Lennard-Jones- or Embedded-Atom potentials 

• For liquid crystals: anisotropic Gay-Berne potential 

– The shapes of these potentials are obtained using ab-initio methods
• Resolution of Schrödinger for a few (<100) atoms

– Example:
• Crack propagation in a two dimensional binary model quasicrystal 

• It consists of 250.000 particles and it is stretched vertically

• Colors represent the kinetic energy of the atoms, that is, the temperature 

• The sound waves, which one can hear during the fracture, can be seen clearly

Atomistic Methods 

Prof. Hans-Rainer Trebin, Institut für Theoretische und Angewandte 

Physik Universität Stuttgart, www.itap.physik.uni-stuttgart.de/.../trebin.html
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