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Numerical Methods

Some fracture mechanics principles
— Brittle/ductile materials & Fatigue
— Linear elastic fracture mechanics

Computational fracture mechanics for brittle materials
— Crack propagation

— Cohesive models

— XFEM

Computational fracture mechanics for ductile materials
— Damage models

Multiscale methods
— Composite materials
— Atomistic models
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Numerical Methods

« Some fracture mechanics principles
— Brittle/ductile materials & Fatigue
— Linear elastic fracture mechanics
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Brittle / ductile fracture

« Mechanism of brittle failure
— (Almost) no plastic deformations prior to the (macroscopic) failure

— Cleavage: separation of crystallographic planes
* In general inside the grains True o
» Preferred directions: low bonding 1
« Between the grains: corrosion, H,, ...

— Rupture criterion

. 1920, Griffith: opsva =V E 27,
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Brittle / ductile fracture

« Mechanism of ductile failure True o
— Plastic deformations prior to (macroscopic)
failure of the specimen
» Dislocations motion
== void nucleation around inclusions

=== micro cavity coalescence
== crack growth

— Failure criterion ﬁ\/]i\
 What about Griffith criterion orsva ~ VvV E 27~ N =
« 1950, Irwin, the plastic work at the crack tip /N
should be added to the surface energy: \ /

orsva = \/E (275 + Whi)
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Fatigue

« |n static: design with stresses lower than
— Elastic limit (c,°) or
— Tensile strength (o)

« ~1860, Wohler

— Technologist in the German railroad system

— Studied the failure of railcar axles
* Failure occurred
— After various times in service
— At loads considerably lower than expected

w/2 w/2
cycle| =
2\reversals
w/i2  w/

« Failure due to cyclic loading/unloading
— « Total life » approach

 Empirical approach of fatigue

¥ LIEGE
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Linear Elastic Fracture Mechanics (LEFM)

« Definition of elastic fracture
— Strictly speaking:

* During elastic fracture, the only changes to the
material are atomic separations

— As it never happens, the pragmatic definition is

« The process zone, which is the region where the T
inelastic deformations Q/
— Plastic flow, ¢

— Micro-fractures,
— Void growth, ...
happen, is a small region compared to the
specimen size, and is at the crack tip
— Valid for brittle failure and confined plasticity
(Small Scale Yielding)

g Ll_EG_E
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Linear Elastic Fracture Mechanics (LEFM)

« Singularity at crack tip for linear and elastic materials
— 1957, Irwin, 3 fracture modes

Mode |

(openin

T
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.

Mode Il
(sliding)

« Boundary conditions

Mode |
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Linear Elastic Fracture Mechanics (LEFM)

Singularity at crack tip for linear and elastic materials (3)

Asymptotic solutions (Airy functions)

Mode | Mode Il

Oyy

Mode Il11

C 91+,39,9+%,) C sl in s
= ——= COS — Sl — SIN — r Ty — —= COS — — Sl —— S1Il —
N 272 T2 272

[ 0 C 2
JJF%) ayz—ﬁcosijL%)

— Introduction of the Stress Intensity Factors - SIF (Pa m'/2)

((

\

K; = lim (\/ 27T-'r0'§;0d61 \9:0) = CV2m

r—0

Kir = lin%) (\/ 27T-r0f§;0de H \9_0) = CV 2 =<
i = lim (Vomrgmete M|} = cvor

K, are dependent on both
 Loading &
« Geometry
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Linear Elastic Fracture Mechanics (LEFM)

« Evaluation of the stress Intensity Factor (SIF)
— Analytical (crack 2a in an infinite plane)

A 1 y A 1 y T y
,, vty 1
KI = 0~ \V/Ta :: O, [ l T T °T° © 0o
. _ ‘
—_— < KII = TacVTa GE x;—: oL l _ TI{ X,
L\K}II = TV ] 2a :: l 2a T 2a
D —> T U
D S— l<—<—<—T°° DD D DD
T

— Numerical ’
ff ] . ‘
KI = ﬁjO’.x;\/Wa.
= < K11 = 0117cVma _ '
Krir = BrirmVma
"

« [ depends on
— Geometry
— Crack length

sig_xx [Pa] - step 0 (1/155) Z
-28+09 0 2e+09 \Y_x
[ E— |
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Linear Elastic Fracture Mechanics (LEFM)

« Evaluation of the stress Intensity Factor (SIF)
— Analytical (crack 2a in an infinite plane)

A 1 y A 1 y Ty
: ] A I
I(I:arx;-‘\/ﬁ :: O :: le T , I
— < KII:TOO\/E UE - Xr_:Gw l L T]{ - X,
Kip=7Vra —| “2a [ ¥ 2a ! 2a
« e l<_<_<_TwT .:..:..:..:.3;?
-
NRERARY
0w
— Numerical
7
I(lr:‘ﬁlro-oo\/ﬁ

= < K1 = 0117 V7a
Kirr = Brrime Vma
o

° :3| depends on sig_xx [Pa] - step 154 (155/155) z
15409 0 1.56409 Y x
— Geometry E— e

— Crack length g 1IE
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Linear Elastic Fracture Mechanics (LEFM)

o 1957, Irwin, new failure criterion
max — © === o IS irrelevant
— Compare the SIFs (dependent on loading and geometry) to a new material
property: the toughness
« If K, = K. === crack growth
« Toughness (ténacite) K,
— Steel, Al, ... : see figures
— Concrete: 0.2 - 1.4 MPa m%/2

o)

4 Toughness K- [MPa

Toughness Kic [MPaym] 200-|  Ajsi 40312 cr—0w

O Pure Al Trip
1401 @ WMild Low steel steels 160-

steel allovs
120

60— Composites 80—
| alloys
20— Al alloys Y|eId N MPa 40—
0 I | [ ] Brittle Temperature T [C]
00 200

0 500 1000 1500 2000 0
-200 -100 1
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Linear Elastic Fracture Mechanics (LEFM)

* Measuring K|,

P, o
— Done by strictly following the ASTM E399 procedure 1
— Preparation Thickness t
» A possible specimen is the Single Edge W
Notch Bend (SENB) v/2 V/2
— Plane strain constraint (thick enough v i

specimen) == conservative
— Specimen machined with a V-notch in
order to start a sharp crack
» Cyclic loading to initiate a fatigue crack
— Toughness test performed
» Calibrated P - érecording equipment
« The Crack Mouth Opening Displacement
(CMOD=v) is measured with a clipped gauge
« P, is obtained on P-v curves Pt P1
— either the 95% offset value or P P

c oy
— the maximal value reached before ﬁ
» K, is deduced from P using A /

PL a ,, \\\ I'/ \\
KI — 3f(w/?) /II k /'/ \

tW3 tg 1095tg |/ tg) '0.95tg
— f(a/W) depends on the test (SENB, ...) . 4 LIEGE

b
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Linear Elastic Fracture Mechanics (LEFM)

/LS

* Energy evolution during crack growth

— Assuming the crack propagates
« Example: body subjected to Q constant
» As the crack grows, there is a displacement du

= §W. = Qdu

— Energy release rate G for Q constant 0 %

« Change in energy system for a crack growth 6A vQ
dE = Qéu — GSA = (Qu) — GSA
== G = —04 (Ent — Qu)
« The internal (elastic) energy thus reads
By = B (Q,A)
* From complementary energy

u (Q? A) - _8(9 (Eint - Q“LL)
— GQG = Ju

y

AQ’A,<

Q
— G/O Oau (Q, A)dQ

# LIEGE
14 b université

17 April 2018 YSESM - Computational Fracture Mechanics



Linear Elastic Fracture Mechanics (LEFM)
A Q}
Q| ... Loadir _—

* Energy release rate interpretation

-
G = _aA (Eint - QU)

<

Uniloading

Q
6= [ om(@. 4)aq
- 0 A=AqdA

— Can be measured by conducting experiments

« Body with crack surface A, loaded up to Q* | |
» Crack growth dA at constant load === the ' u u-+aou
specimen becomes more flexible ==
displacement increment 9 ,udA
» Unload to zero
* The area between the 2 curves is then G dA

« Link with the stress intensity factor
— In linear elasticity & crack growing straight ahead
_ K} Ky | K
G = i + T + o

== The energy release rate can also be used to assess crack growth

# LIEGE
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Linear Elastic Fracture Mechanics (LEFM)

« Ciritical energy release rate
— If I1; = E;; - Qu is the potential energy of the specimen

G = _8A (Eint - VVext) — _8AHT

— Total energy has to be conserved
« Total energy E= TI;+ T
« T isthe energy required to create a crack of surface A
« There is crack growth when G = G, = 04T
— Brittle materials G = 2,
» 1 1S the surface energy, a crack creates 2 surfaces

— For other materials (ductile, composite, polymers, ...) this energy depends
on the failure process (void coalescence, debonding, ...)

= (G, = 2vs + VVpl
— Crack growth criterion is G > G

« Link with toughness

Kf K%I K%H K?
— — _IC
ETE T 2 Ge =

17 April 2018 YSESM - Computational Fracture Mechanics
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Linear Elastic Fracture Mechanics (LEFM)

« J-integral
— Assuming stress-free lips
— Energy that flows toward the crack tip by

J = / U(e)n, —u_, -T|dl
I'y

_ /r (U me T

 Itis path independent

* No assumption on linearity required
» Does not depend on subsequent crack growth direction

— For linear elasticity and for any contour I' embedding a straight crack
K? K?, K?

ey BTl ¥ R VB
E’ E’ 2/

J

“ v Ll_EGE
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Finite element model: J-integral by domain integration

Linear Elastic Fracture Mechanics (LEFM)

— Can be rewritten

J / [Uijui,a:Q,j - UQ,;?:} dA
D

« ( is discretized using the same

shape functions than the elements

— This integral is valid for any

region around the crack tip

» As long as the crack lips are straight

Efficient for finite element method

C g=0
ocoo|looo|loooloo o
ocoo|looo|looo|loo o
ocooo0o|looo|looo|loo o0
O 0 O

—1l00 0

00 O q
Ay O o O
00 o0 o0 0
=_]ooo o 00 o0
00 O > 00 0
00 0 00 0

<

ocoo|looo|looo|loo o
oooDooo oo o0o|loo o0
ocoofooo|loooloo o
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Linear Elastic Fracture Mechanics (LEFM)

« Direction of crack grow

— Assumptions: the crack will grow in the direction where the SIF related to
mode | in the new frame is maximal

* Crack growth if (\/ 2Troge ('T‘? 9*)) > Ko with Dy oo

9*:0

— From direction of loading, one can compute the propagation direction

liII }{I 36 3(3()136* . 9
CO 8 KI Top \/_r COS SN ¢ COS

100 0 100
0[deg.]

# LIEGE
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Numerical Methods

« Computational fracture mechanics for brittle materials
— Crack propagation
— Cohesive models
— XFEM

a v Ll_EGE
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Crack propagation

A simple method is a FE simulation where the crack is used as BCs

— The mesh is conforming with the crack lips

] I \
| /’" 0 ‘ . | |
\ / /g‘é! .‘: ‘ \ I|

:s%‘ ! II'. 1 || ‘
¢ LIEGE
21 v université
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Crack propagation

« Finite element model: J-integral by domain integration

J = / U () my — w - T dl
I'

K‘Z K2 KQ C q:O
& J=_4L 11 71 ©co00|00O0|00O|0OO
E’ E’ 2/1 coo|loooloooloo o
— Can be rewritten ocoo|looo|loool|looo
O o O _ o0 O
00 O y q=1 oo o

A
J/ {o'”u”qj—Uqr}dA ‘OO O\ 00 O
D —
00 O O o O
« ( is discretized using the same oo 01 *X Joo o
: 00 O ©o0o0
shape functions than the elements <

OO0 O0O|00O OO0 O|0OO0O O
— This integral is valid for any ©00L00l000|000
OO0 OO0 O|lO0OD O|0OO0O O

region around the crack tip

» As long as the crack lips are straight

— Efficient for finite element method

“ v Ll_EGE
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Crack propagation

« A simple method is a FE simulation where the crack is used as BCs (2)
— Mesh the structure in a conforming way with the crack
— Extract SIFs K, (different methods, but J-integral is common)
— Use criterion on crack propagation
« Example: the maximal hoop stress criterion (\/%0'99 (7, 9*)) > Ko

with crack propagation direction obtained by gyargg|,. =0 & Dg9006|,. <0

9*
— If the crack propagates
* Move crack tip by Aa in the 6*-direction

* A new mesh is required as the crack has changed (since the mesh has to be
conforming)

— Involves a large number of remeshing operations (time consuming)
— Is not always fully automatic
— Requires fine meshes and Barsoum elements

— Not used

ﬁl ¥ LIEGE
. . . université
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Cohesive elements

« The cohesive method is based on Barenblatt model
— This model is an idealization of the brittle fracture mechanisms
« Separation of atoms at crack tips (cleavage)

« As long as the atoms are not separated by a distance &, there are attractive
forces (see overview lecture)

Cohesive y“C -
one tip rac\ P 5
(v by
O
-ﬁ LAt 5
h rp i 2a a >

— For elasticity G, = fo

* So the area below the o-6 curve corresponds to G if crack grows straight ahead

— This model requires only 2 parameters
« Peak cohesive traction c,,,, (spall strength)
« Fracture energy G (typically from K,;)
« Shape of the curves has no importance as long as it is monotonically decreasing

"
_ ) LiEeE
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Cohesive elements

* |nsertion of cohesive elements
— Between 2 volume elements

— Computation of the opening (cohesive element)
* Normal to the interface in the
deformed configuration N -

* Normal opening §, = max([u] - N—, 0)
. Sliding o, = [u] — [u] - NN~
* Resulting opening 5 — , /52 4 52 |15,

with . the ratio between the shear and normal

critical tractions

— Definition of a potential
 Potential ¢ = ORS match the
traction separation law (TSL) curve

« Traction (in the deformed configuration) derives

- i dop 0o . O dg
from this potential ¢ — 2% _ ¥ s
P =55 3. ¥ ‘o,

# LIEGE
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Cohesive elements

« Computational framework
— How are the cohesive elements inserted? t

Failure criterion
incorporated within
the cohesive law

— First method: intrinsic Law Omax

« Cohesive elements inserted from the beginning

» So the elastic part prior to crack propagation
is accounted for by the TSL

 Drawbacks:

— Requires a priori knowledge of the crack path to be efficient
— Mesh dependency [xu & Needelman, 1994]
— Initial slope that modifies the effective elastic modulus
» Alteration of a wave propagation
— This slope should tend to infinity [Kiein et al. 2001]
» Critical time step is reduced
— Second method: extrinsic law t
» Cohesive elements inserted on the fly

when failure criterion (o>oc,,,,) IS verified
[Ortiz & Pandolfi 1999]
» Drawback:
— Complex implementation in 3D
especially for parallelization

Failure criterion
external to the
cohesive law

—

)

ﬁl ¥ LIEGE
. . . université
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Cohesive elements

« Examples

displacement (300/13800)

0 0.0879 0.176

damage (0/2007)
0 0.425 0.85
[ |

% # LIEGE
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Cohesive elements

« Examples

0 LiEcE
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Cohesive elements

« Experimental characterization of the parameters £)
., . Gmax
— Critical energy release rate G,
_ Kic Ge
* From toughness tests G, = o1
R 5

— Spall strength a,,,,

1/ 2y,
E/aou %ﬁ&,
» For perfect crystal === analytical value

aly a' (nm)
EF:}{S

o (Pa)

OTh —

u

0

» For non-perfect materials

— Could be a measured stress
at distance 1,

— Delicate to put in place Q/A/rv
C
\

In practice calibration (see next slide)

a v LI-EGE
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Cohesive elements

« Effect of the spall strength g,,,4 0.035 .
— It should cover the stochastic 0.03 ﬂ —mjm
effect of material discrepancies 0.025;
— Use of Weibull function ;_ 0%
B.0.015

displacement

0 0.00015 0.0003
_—— .

3 # LIEGE
30 universi
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Cohesive elements

« Advantages of the method
— Can be mesh independent (non regular meshes)
— Can be used for large problem size
— Automatically accounts for time scale [Camacho & Ortiz, 1996]
* Fracture dynamics has not been studied in these classes

— Really useful when crack path is already known
« Debonding of fibers
» Delamination of composite plies

— No need for an initial crack
» The method can detect the initiation of a crack

« Drawbacks
— Still requires a conforming mesh

— Requires fine meshes

TEGc
e h... = __TIEfCc
max — 7(1-v2)c?
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eXtended Finite Element Method

* How to get rid of conformity requirements?
« Key principles
— For a FE discretization, the displacement field

is approximated by wy, (¢*) = ZN‘I

acl
 Sum on nodes a in the set | (11 nodes here)

« U2 are the nodal displacements
« N2 are the shape functions
« &'are the reduced coordinates
— XFEM
* New degrees of freedom are introduced to account for the discontinuity
« It could be done by inserting new nodes () near the
crack tip, but this would be inefficient (remeshing)

* Instead, shape functions are modified

— Only shape functions that intersect the crack

— This implies adding new degrees of freedom

to the related nodes (©)

q v Ll_EG_E
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eXtended Finite Element Method

« Key principles (2)
— New degrees of freedom are introduced to account for the discontinuity

acl ac.J
« J, subset of I, is the set of nodes whose shape-function

.‘
support is entirely separated by the crack (5 here) AQ‘
« u*2 are the new degrees of freedom at node a '4V
— Form of F2 the shape functions related to u*a? X
« Use of Heaviside’s function, and we want
+1 above and -1 below the crack
* In order to know if we are above or below
the crack, signed-distance has to be computed

« Normal level set Isn(&', £™) is the signed distance between a point &' of the solid
and its projection & on the crack

e (51) _ ZNa (51) w1+ Z @ (si) H (lsn (51'? £¢*>> w

acl ac.J
with H(x) = £1ifx><0

. # LIE
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eXtended Finite Element Method

« Key principles (3)
— Example: removing of a brain tumor
(L. Vigneron et al.)
— At this point
« A discontinuity can be introduced in the mesh
* Fracture mechanics is not introduced yet

— New enrichment with LEFM solution :
« Zone J of Heaviside enrichment is reduced (3 nodes)
A zone K of LEFM solution is added to the nodes
(@) of elements containing the crack tip

§') = ZNG (") ,ua+z N (&) H (lsn (Sﬂ, fi*)) u*®

acl aeJ
+ZNa 51 qub f?' Py,
acK

LEFM solution is asymptotic==>only nodes close to crack tip can be enriched
v,2 is the new degree b at node a
Y, is the new shape function b

nl ¥ LIEGE
. . . université
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eXtended Finite Element Method

« Crack propagation criterion
— Requires the values of the SIFs (2)

A more accurate solution is to compute J

2 2 2
K7 | Kip +KIII

— But K, K,; & K, have to be extracted from J — +
E’ E’ 2/t

» Define an adequate auxiliary field ua
» Compute Ja%(uaX) and J s(u+ud¥)

» On can show that the interaction integral (see lecture on SIFs)

, 2 1 ,
IS — JS . J . JG,U-I — El (K K(IUL“ + KIIK(IU 1?) + ;KIIIKIG},{IE
» If ud%is chosen such that only K2** # 0, K is obtained directly

— Then the maximum hoop stress criterion can be used

<0

=0 & 8990'99 0

(\/%0'99 (7, 9*))

— The experimental value to determine is thus the toughness K;

q v Ll_EG_E
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eXtended Finite Element Method

« Numerical example
— Crack propagation (E. Béchet)

TISPLACERENT

TTSPLACERENT DISFLACERENT DISPLACENENT

0 0,028 0 0,028 o 0 .028 0.055 0 e 0.0%5
— Advantages:

* No need for a conforming mesh (but mesh has still to be fine near crack tip)
* Mesh independency
« Computationally efficient

— Drawbacks:

* Require radical changes to the FE code
— New degrees of freedom

— (Gauss integration
— Time integration algorithm

% # LIEGE
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Numerical Methods

« Computational fracture mechanics for ductile materials
— Damage models

- Ll_EGE
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Damage models

« Failure mechanism
— Plastic deformations prior to (macroscopic)

failure of the specimen
« Dislocations motion ==> void nucleation
around inclusions ==> micro cavity
coalescence — crack growth

*  Griffith criterion gpgy/a = /E 27, should

be replaced by 51g/a + \/E (275 + Wh)

— Numerical models accounting for
this failure mode?

ol ’ o Seg
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Damage models

Introduction to damage (1D)

. : F
— As there are voids in the material, F
only a reduced surface is balancing
the traction
. . o F
* Virginsection S == o, *" = — = 0,
S holes
 Damage of the surface is defined as ) = 5
« So the effective (or damaged) surface is actually ¢ — g _ gholes _ (1-D)S
 And so the effective stress is ¢, = F _ Jow
| | T S(1-D) 1-D
— Resulting deformation R
o O
 Hooke’s law is still valid if it uses the effective stress e,, = —= = ‘
o E FE(1-D)

« So everything is happening as if Hooke’s law was multiplied by (1-D)
— Isotropic 3D linear elasticity ¢ = (1-D)H : ¢
— Failure criterion: D=D¢, with 0 < D <1

But how to evaluate D, and how does it evolve?

a v Ll_EG_E
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Damage models

« Evolution of damage D for isotropic elasticity
— Equations
© Stresses o =(1—D)H : e

L e:H:e
- Example of damage criterion f (e, D) = (1 — D) — Yo <0
— Yc Is an energy related to a deformation threshold
» Thereis atime history £ =0
— Either damage is increased if f =0
— Or damage remains the same if f <O
— Example for Y. such that damage appears for ¢ = 0.1
1 ‘ - 1 ‘
loading
loading-unloading
0.8 0.8/
25 0.6 - 0.6/
fr a
S 04 0.4/
b
0.2 0.2/
loading
loading-unloading
% 0.05 0.1 0.15 0.2 % 0.05 0.1 0.15 0.2
& &

3yt for ductile materials plasticity is important as it induces the dama’gLe"‘EGE
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Damage models

Gurson’s model, 1977

— Assumptions
* Given a rigid-perfectly-plastic material

with already existing spherical microvoids

« Extract a statistically representative

sphere V embedding a spherical microvoid

— Porosity: fraction of voids in the total volume
and thus in the representative volume:

I/voi IA/
fr = =2

—1— —
with 1/ the material part of the volume

Vv Vv V

— Material rigid-perfectly plastic —> elastic deformations negligible

— Define
* Macroscopic strains, stresses, potential: e c&W
. Mlcroscoplc strains, stresses, potentlal e c&W

— — [ éav = — [ éav
/ i / i + V /vold
oW

'()T/V O A O
7= asV/f/ 0é %dvvf a2V
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Damage models

« Gurson’s model, 1977 (4) 5 t
— Shape of the new yield surface f (o) = (E> + 2fy cosh ;(G) —f2—-1<0

0 0
| | 7 T
— £,70.1
08 . 1,=0.01 |
\ 1,=0.001
0.6
0.4/
0.2 |
|
00 ] 2 3 4 5
p/o®
. L Of i
— Normal flow &P = oy
oo A
— Evolution of the porosity f V' cst
P y ly Q :
« Assuming isochoric matrix:

== fu = (1— fv)tr(eP)

ﬁ # LIEGE
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Damage models

« Hardening 5

— Yield criterion f (o) = (U_S) + 2fy cosh t;(‘;) _
a 9

P . P . 2
but one has to account for the hardening of the matrix ==»0, — o, (¢?)

f2 —1 <0 remains valid

* In this expression, the equivalent plastic strain of the matrix zP is used instead

of the macroscopic one gP

— Values related to the matrix and the macroscopic volume are dependant as

the dissipated energies have to match —; (1 — fy) o, (&%P) B — g g
* Voids nucleation

— Increase rate of porosity results from

« Matrix incompressibility X Represented
V' cst by 1 void
« Creation of new voids Q —— y=>
O

=>fV — (1 - fV) tr (E.p) + fnucl
« The nucleation rate can be modeled as strain controlled —: fnud — A (gp) g'p

a v Ll_EG_E
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Damage models

* Voids coalescence
— 1984, Tvergaard & Needleman

* When two voids are close (f, ~ f.), the -

O
O

material loses capacity of sustaining the loading

O
O

« Iff, is still increased, the material is unable to sustain

any loading

2 S
OO

2
O, . tr (o) o oy 2
= — 2q fyvr cosh ———— — T —1<0
o (ap@)) T g Ey T

Cowith fr 1 Jv if fv < fe
' fo+ fi:ffc (fv—fc) if fv > fe

3 # LIEGE
. . . g université
17 April 2018 YSESM - Computational Fracture Mechanics 54




Damage models

« Softening response
— Loss of solution uniqueness ==2  mesh dependency

F d
Fd
F A F A F A
"""""""""" N /T O\ AN
\ I \
e AN |l A SR A e A LM
Ad Ad Ad
F d
Fd
F/\ F/\ F/\
""""""""""" N YR s
\ PN Loy
e AN A A 'f‘/‘ _________
Ad Ad Ad
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Damage models

« Softening response (2)
— Requires non-local models
700 local_f¥ - step 0 in [0,100] ¥
0,0001 0,00316 0,1 \L
600 [ / .
b ™
500
5': 400 |
= |
< 300 }
E
200 lL — — [Besson2003]
coarse mesh Y
100 } medium mesh With ! \\ \
| fine mesh Coalescedce )
0 : ! . .|
0 0.2 0.4 0.6 0.8
Thick. reduction Ae/ey [—] - LIEGE
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Force £/ey[MPa

Damage models

Softening response (2)
— Requires non-local models

p

= local _f¥ - step 80 in [0,100] Y
’ t 0,0001 0.00316 0.1 IZ_X
. N |
“}
|
|
|
1
— — [Besson2003] !
coarse mesh I 2
medinm mesh With ! \ u
fine mesh coalescerice ) =

0.2 0.4 0.6 0.8
Thick. reduction Ae/ey [—]
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Damage models

« Complex calibration

— Experimental tests at different triaxiality states 2.19
1.97
‘, 1.75
“ 1‘53
— Calibration 1.32
* During plastic localization 1.1
« During voids coalescences
«  For different loading 0.877
« Completed by cell simulations 0.655
2
0.438
WA SRR SRR
HOEBRRLOQAG o B TRy
spﬂhpes‘-%-ﬁa (—,%% % 0.219
FE-J2R=1mm 0
\z’ FE -J2Ri2mm
D EpR-tmm Eq. Plastic Str it
——Exp R=2mm
——Exp R=4mm
0.05 01 0.15 0.2 0.25
1-D/D % * LIEGE
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Damage models

« Complex calibration
— Experimental tests at different triaxiality states

2.19
1.97
“ -
1.53
— Calibration

. : L 1.32

« During plastic localization
« During voids coalescences 1.1

« Completed by cell simulations 0.877
2 0.658

15 ;,ggeegle:ém}g%ﬁﬁ Vg S . 0.438
CERR0n
ol O

0.219

FE-J2R=1mm
v FE-J2R=2mm
O FE-J2R=4mm 0
Exp R=1mm )
—— Exp R =2mm Eq. Plastic Str

 For different loading II I

it
——ExpR =4mm
005 01 015 02 025
1-DID « # LIEGE
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Numerical Methods

 Multiscale methods
— Composite materials
— Atomistic models

“ v Ll_EGE
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Multiscale Methods

* Principle
— Simulate what is happening at small scale with correct physical models

— 2 BVPs are solved concurrently

* The macro-scale problem @ Extraction of a
h I bl Material meso-scale
The meso-scale problem (on a VI lume Element

meso-scale Volume Element)

— Requires two steps

: BVP

« Downscaling: BC of the : i
mesoscale BVP from the NS
macroscale deformation-gradient -
field L macro™>Lve>>Lmicro

» Upscaling: The resolution of the
mesoscale BVP yields an
homogenized macroscale
behavior

— Gurson’s model is actually a
multiscale model

/e

.
) LiEeE
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Composite materials

« Example: Failure of composite laminates
— Heterogeneous materials: failure involves complex mechanisms

Fiber rupture
, /

Debonding

— Failure at different levels
 Intralaminar failure Pull out

« Delamination

/ . .
Matrix rupture ¥ Bridging

q v Ll_EG_E
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Composite materials

* Intralaminar failure
— Fiber rupture (1)
* If no matrix
— Fiber would not be able to carry any loading
— Fiber would become useless
* In reality
— Matrix transmits the load between the two broken parts
— Fiber can still (partially) carry the loading
— Fiber/matrix debonding (2)
— Fiber bridging (3)
* Prevents the crack from further opening
« Corresponds to an increase of toughness
— Fiber Pullout (4)

— Matrix cracking (5) @
» Facilitates moisture
absorption
* May initiate delamination
between plies
— Ultimate tensile failure ,/
» Several of these mechanisms @ ‘/0

Q

Q

.
) LiEeE
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Composite materials

 [Intralaminar failure

— Requires multi-scale approach
* Micro-Meso damage models

Computational homogenization

Mean-Field-Homogenization

A lot of theoretical issues

sig_xx (0/3377)

— Experimental calibration
« Complicated because of several modes
* |deally from constituents
— Representative?
* Ex: 60%-UD Carbon-fiber reinforced epoxy
— Carbon fiber:
» Use of transverse isotropic elastic

material
— Elasto-plastic matrix with damage 0 ‘
» Use manufacturer Young’s modulus 0.00 0.02 0.04 0.06

» Use manufacturer strength “

> LI-EG-E
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Composite materials

 |Intralaminar failure

— Requires multi-scale approach
* Micro-Meso damage models

Computational homogenization

Mean-Field-Homogenization

A lot of theoretical issues

— Experimental calibration
« Complicated because of several modes
 Ideally from constituents
— Representative?
* Ex: 60%-UD Carbon-fiber reinforced epoxy
— Carbon fiber:
» Use of transverse isotropic elastic

material
— Elasto-plastic matrix with damage 0 _
» Use manufacturer Young’'s modulus 0.00 0.02 0.04 0.06

» Use manufacturer strength &

W
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Composite materials

 |Interlaminar fracture

— Due to anisotropy, G, is not the same in the two directions
* Mode | and mode Il

Q
n 7 h i
Thickness t u 7 Thickness t
h ﬁh ———————————————————————————————————————
Z
t
Q Tiic

— Model

 Cohesive zone model

 Mixed mode fracture criterion

_GI —GII e ,
+ — 1 A &,
where m & n are empirical parameters VO, Ve
AV
Arc

- LI_I‘EGE
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Composite materials

 Interlaminar fracture: Mode |

— Crack propagates in the matrix (resin)
* G, =G, of resin?
— Due to the presence of the fibers
« G,. # G, of the pure resin
 Fiber bridging
— Increases toughness
* Fiber/matrix debonding
— Brittle matrix
» Crack surface is not straight
as it follows the fibers
» More surface created
» Higher toughness
— Tough matrix
» Fibers may prevent the
damage zone in the matrix
from extending far away
» Smaller surface created
» Lower toughness

a v Ll_EG_E
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Composite materials

Interlaminar fracture: Mode | (2)

Q
— Measure of G,
- DCB
R0 Thicknesst I u
T
o 120Q%a? _ 3u*Eh? _ 3u() Q
Et2h? 16a* 2at
 Atfracture G;. = 3ueQe
2at

 The initial delaminated zone is

introduced by placing a non-adhesive

Paul Tihon, coexpair

insert between plies prior to molding

- LI_I‘EG_E
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Composite materials

* Interlaminar fracture: Mode | (3)

— Measure of G, (2)
» Linear beam theory may give wrong
estimates of energy release rate Thickness t

— The area method is an alternative solution
« Periodic loading with small
crack propagation increments
— The loading part is usually nonlinear
prior to fracture
« Since G is the energy released Al

per unit area of crack advance: G = —
tAa

N Gt Paul Tihon, coexpair

>0
<>
<

Q

[
»

u

s LIEGE
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Composite materials

 [Interlaminar fracture: Mode I

GIlc

* Usually 2-10 times higher than G,
— Especially for brittle matrix

* In mode Il loading
— Extended damage zone, containing

micro-cracks, forms ahead of the crack tip
— The formation of this damaged zone is energy consuming
» High relative toughness in mode Il

Thickness t

* Note that micro-cracks are 45°-kinked
— Since pure shearing is involved, this is the direction of maximal tensile stress

— Thus the micro-cracks are loaded in mode | s LIEGE
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Composite materials

» Fallure of composite [90°/ 45°/ -45°/ 90°/ 0°]s- open hole laminate
o o o sn 4o
O no mta o

damage (640/758)
0.1 1
-450-ply 90°-ply (in) 0°-ply
. L|EGE
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Composite materials

» Fallure of composite [90°/ 45°/ -45°/ 90°/ 0°]s- open hole laminate

450-ply -450-ply 90°-ply (in) 0°-ply ‘
% ¥ LIEGE
79 & université
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Composite materials

* Fallure of composite [90°/ 45°/ -45°/ 90°/ 0°]s- open hole laminate

isplacement (555/555)
2e-06 2e-05 0.0002

-
450 | -450 -450 [ 90° (in) 90° (in) / Q° > s LIEGE
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Composite materials

* Fallure of composite [90°/ 45°/ -45°/ 90°/ 0°]s- open hole laminate
o

isplacement (555/555)
2e-06 2e-05 0.0002
| -
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Atomistic Methods

« Example: Failure of polycrystalline materials
— The mesoscale BVP can also be solved using atomistic simulations

— Polycrystalline structures can then be studied
* Finite element for the grains
* Cohesive elements between the grains
« Material behaviors and cohesive laws calibrated from the atomistic simulations

Grain size: 3.28 nm

a v Ll_EG_E
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Atomistic Methods

« Atomistic models: molecular dynamics
— Newton equations of motion are integrated for classical particles

— Particles interact via different types of potentials
« For metals: Morse-, Lennard-Jones- or Embedded-Atom potentials
» For liquid crystals: anisotropic Gay-Berne potential
— The shapes of these potentials are obtained using ab-initio methods
* Resolution of Schrodinger for a few (<100) atoms
— Example:
« Crack propagation in a two dimensional binary model quasicrystal
« It consists of 250.000 particles and it is stretched vertically
« Colors represent the kinetic energy of the atoms, that is, the temperature
« The sound waves, which one can hear during the fracture, can be seen clearly

Prof. Hans-Rainer Trebin, Institut fur Theoretische und Angewandte

Physik Universitat Stuttgart, www.itap.physik.uni-stuttgart.de/.../trebin.html
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