

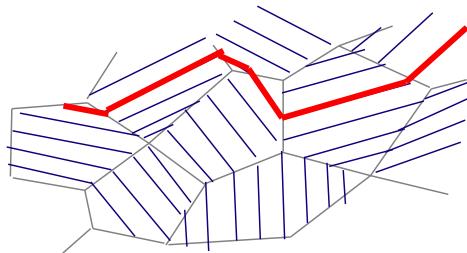
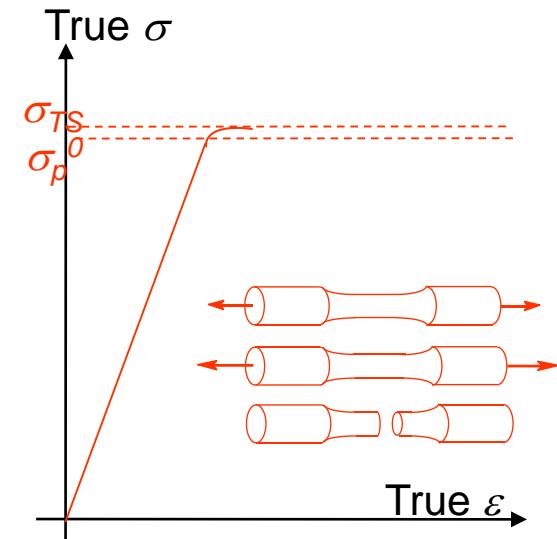
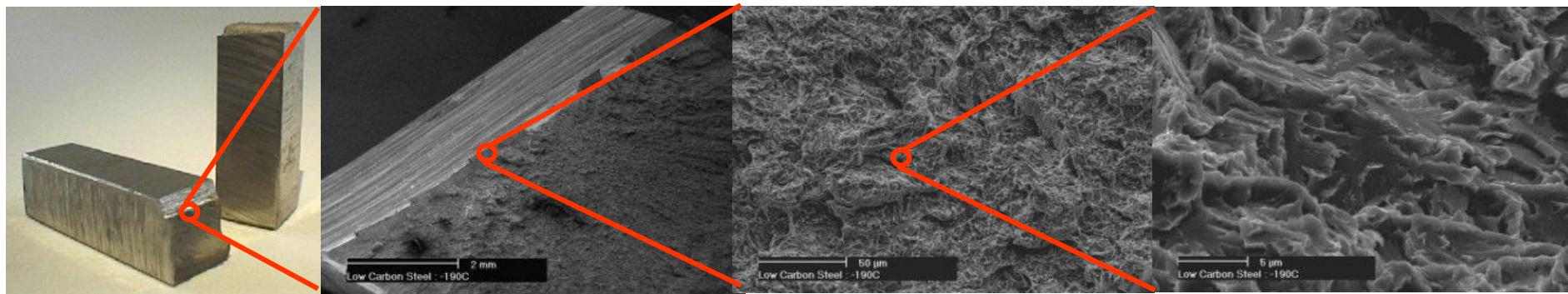
Computational Fracture Mechanics

Ludovic Noels
Computational & Multiscale Mechanics of Materials – CM3
<http://www.ltas-cm3.ulg.ac.be/>
Chemin des Chevreuils 1, B4000 Liège
L.Noels@ulg.ac.be

- Some fracture mechanics principles
 - Brittle/ductile materials & Fatigue
 - Linear elastic fracture mechanics
- Computational fracture mechanics for brittle materials
 - Crack propagation
 - Cohesive models
 - XFEM
- Computational fracture mechanics for ductile materials
 - Damage models
- Multiscale methods
 - Composite materials
 - Atomistic models

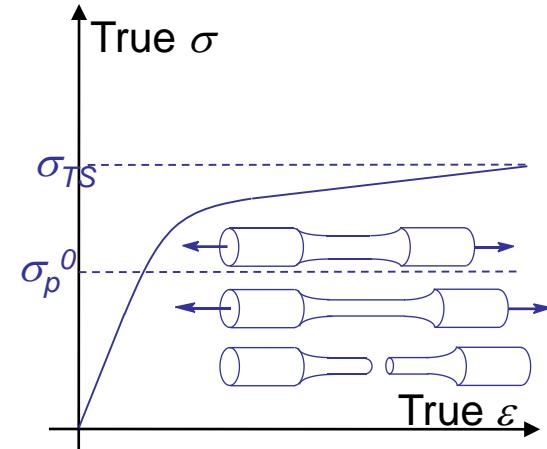
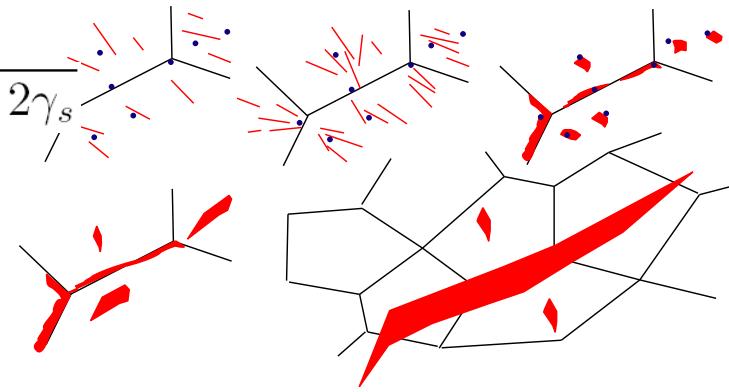
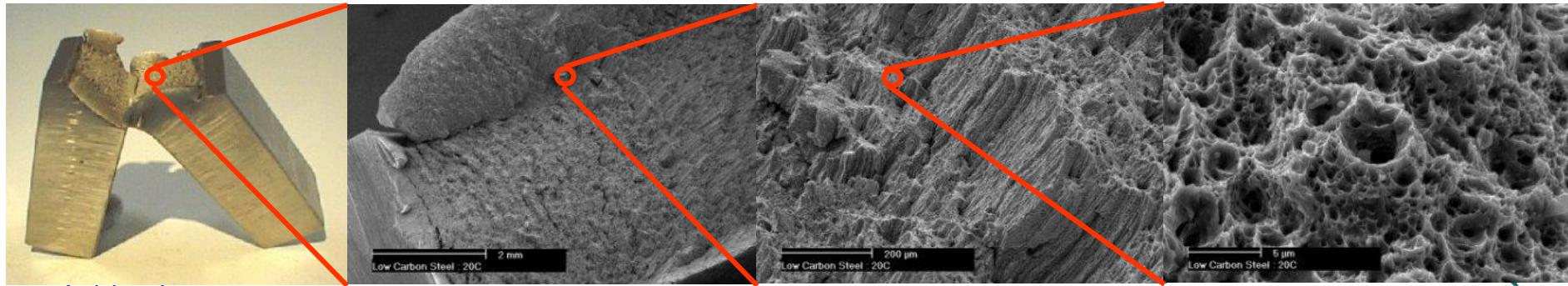
- Some fracture mechanics principles
 - Brittle/ductile materials & Fatigue
 - Linear elastic fracture mechanics
- Computational fracture mechanics for brittle materials
 - Crack propagation
 - Cohesive models
 - XFEM
- Computational fracture mechanics for ductile materials
 - Damage models
- Multiscale methods
 - Composite materials
 - Atomistic models

- Mechanism of brittle failure
 - (Almost) no plastic deformations prior to the (macroscopic) failure
 - Cleavage: separation of crystallographic planes
 - In general inside the grains
 - Preferred directions: low bonding
 - Between the grains: corrosion, H_2 , ...
 - Rupture criterion
 - 1920, Griffith: $\sigma_{TS} \sqrt{a} \div \sqrt{E 2\gamma_s}$

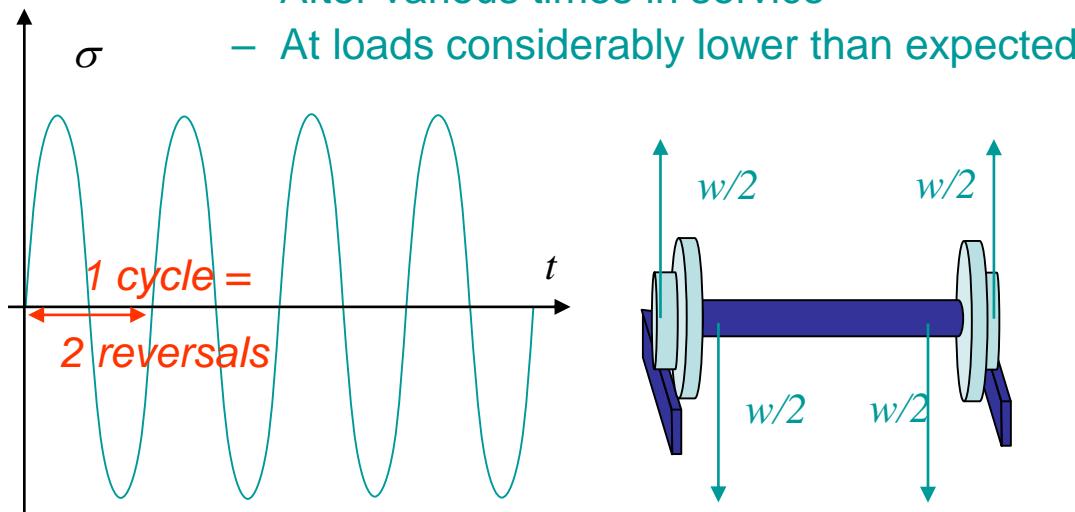


- Mechanism of ductile failure
 - Plastic deformations prior to (macroscopic) failure of the specimen
 - Dislocations motion
 - void nucleation around inclusions
 - micro cavity coalescence
 - crack growth
 - Failure criterion
 - What about Griffith criterion $\sigma_{TS} \sqrt{a} \div \sqrt{E 2\gamma_s}$
 - 1950, Irwin, the plastic work at the crack tip should be added to the surface energy:

$$\sigma_{TS} \sqrt{a} \div \sqrt{E (2\gamma_s + W_{pl})}$$

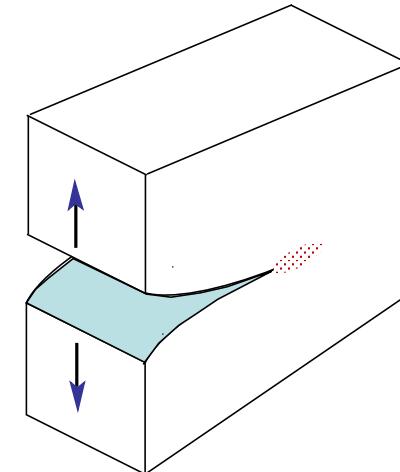


- In static: design with stresses lower than
 - Elastic limit (σ_p^0) or
 - Tensile strength (σ_{TS})
- ~1860, Wöhler
 - Technologist in the German railroad system
 - Studied the failure of railcar axles
 - Failure occurred
 - After various times in service
 - At loads considerably lower than expected



- Failure due to cyclic loading/unloading
- « Total life » approach
- **Empirical approach of fatigue**

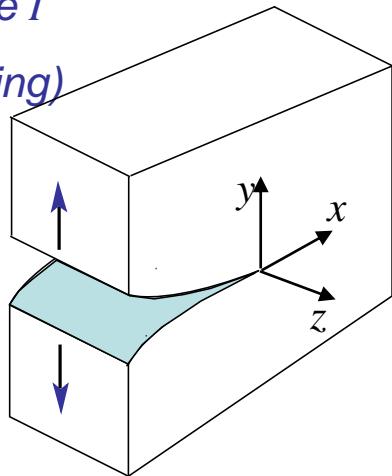
- Definition of elastic fracture
 - Strictly speaking:
 - During elastic fracture, the only changes to the material are atomic separations
 - As it never happens, the pragmatic definition is
 - The process zone, which is the region where the inelastic deformations
 - Plastic flow,
 - Micro-fractures,
 - Void growth, ...
 - happen, is a small region compared to the specimen size, and is at the crack tip
 - Valid for brittle failure and confined plasticity (Small Scale Yielding)



- Singularity at crack tip for linear and elastic materials
 - 1957, Irwin, 3 fracture modes

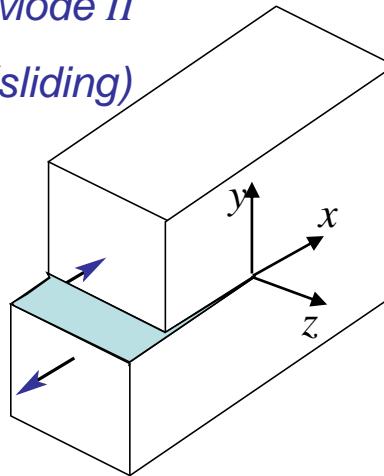
Mode I

(opening)



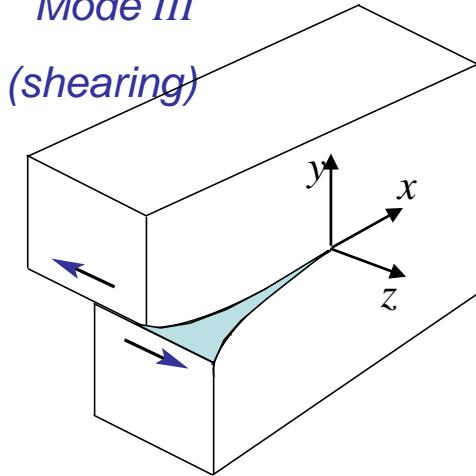
Mode II

(sliding)

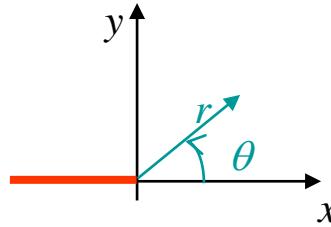


Mode III

(shearing)



- Boundary conditions



Mode I

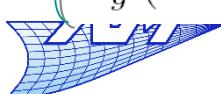
$$\left\{ \begin{array}{l} \sigma_{zz} = 0 \quad \text{or} \quad \epsilon_{zz} = 0 \\ \sigma_{yy} (\theta = \pm\pi) = 0 \\ \sigma_{xy} (\theta = \pm\pi) = 0 \\ \mathbf{u}_x (\theta > 0) = \mathbf{u}_x (\theta < 0) \\ \mathbf{u}_y (\theta > 0) = -\mathbf{u}_y (\theta < 0) \end{array} \right.$$

Mode II

$$\left\{ \begin{array}{l} \sigma_{zz} = 0 \quad \text{or} \quad \epsilon_{zz} = 0 \\ \sigma_{yy} (\theta = \pm\pi) = 0 \\ \sigma_{xy} (\theta = \pm\pi) = 0 \\ \mathbf{u}_x (\theta > 0) = -\mathbf{u}_x (\theta < 0) \\ \mathbf{u}_y (\theta > 0) = \mathbf{u}_y (\theta < 0) \end{array} \right.$$

Mode III

$$\left\{ \begin{array}{l} \sigma_{xx} = \sigma_{xy} = \sigma_{yy} = \sigma_{zz} = 0 \\ \mathbf{u}_y = \mathbf{u}_x = 0 \\ \mathbf{u}_z (\theta > 0) = -\mathbf{u}_z (\theta < 0) \end{array} \right.$$



- Singularity at crack tip for linear and elastic materials (3)

- Asymptotic solutions (Airy functions)

Mode I

$$\sigma_{yy} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} \left[1 + \sin \frac{3\theta}{2} \sin \frac{\theta}{2} \right] + \mathcal{O}(r^0)$$

Mode II

$$\sigma_{xy} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} \left[1 - \sin \frac{3\theta}{2} \sin \frac{\theta}{2} \right] + \mathcal{O}(r^0)$$

Mode III

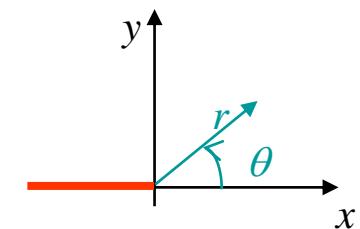
$$\sigma_{yz} = \frac{C}{\sqrt{r}} \cos \frac{\theta}{2} + \mathcal{O}(r^0)$$

- Introduction of the Stress Intensity Factors - SIF (Pa m^{1/2})

$$\begin{cases} K_I = \lim_{r \rightarrow 0} \left(\sqrt{2\pi r} \sigma_{yy}^{\text{mode I}} \Big|_{\theta=0} \right) = C\sqrt{2\pi} \\ K_{II} = \lim_{r \rightarrow 0} \left(\sqrt{2\pi r} \sigma_{xy}^{\text{mode II}} \Big|_{\theta=0} \right) = C\sqrt{2\pi} \\ K_{III} = \lim_{r \rightarrow 0} \left(\sqrt{2\pi r} \sigma_{yz}^{\text{mode III}} \Big|_{\theta=0} \right) = C\sqrt{2\pi} \end{cases}$$

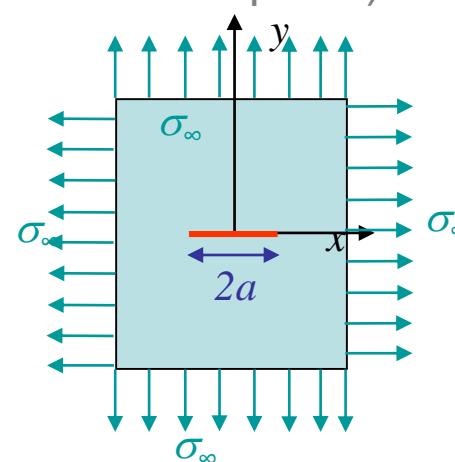
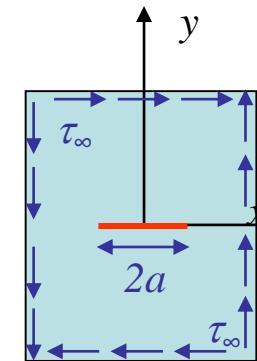
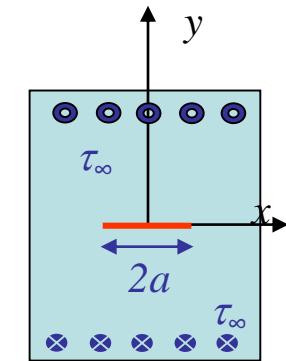
$$\begin{cases} \sigma^{\text{mode i}} = \frac{K_i}{\sqrt{2\pi r}} \mathbf{f}^{\text{mode i}}(\theta) \\ \mathbf{u}^{\text{mode i}} = K_i \sqrt{\frac{r}{2\pi}} \mathbf{g}^{\text{mode i}}(\theta) \end{cases}$$

- **K_i are dependent on both**
 - **Loading &**
 - **Geometry**



- Evaluation of the stress Intensity Factor (SIF)
 - Analytical (crack $2a$ in an infinite plane)

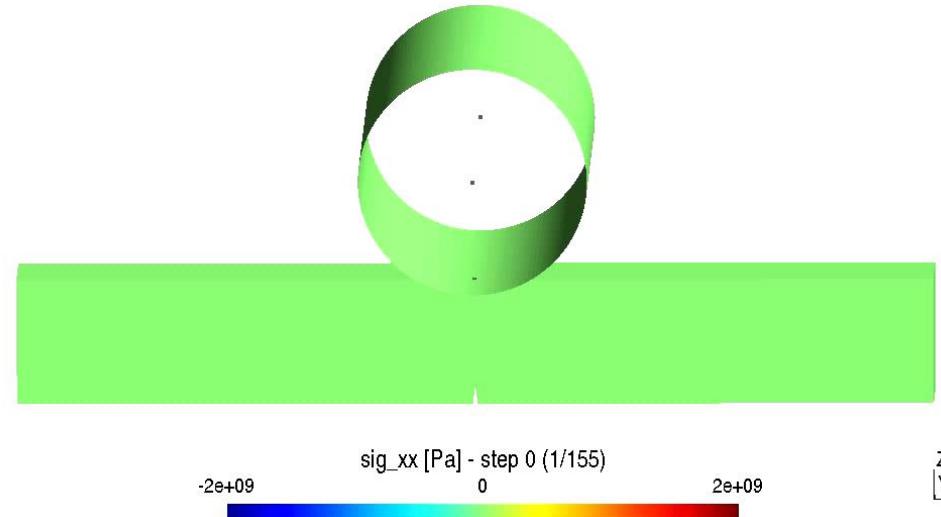
$$\Rightarrow \left\{ \begin{array}{l} K_I = \sigma_\infty \sqrt{\pi a} \\ K_{II} = \tau_\infty \sqrt{\pi a} \\ K_{III} = \tau_\infty \sqrt{\pi a} \end{array} \right.$$



- Numerical

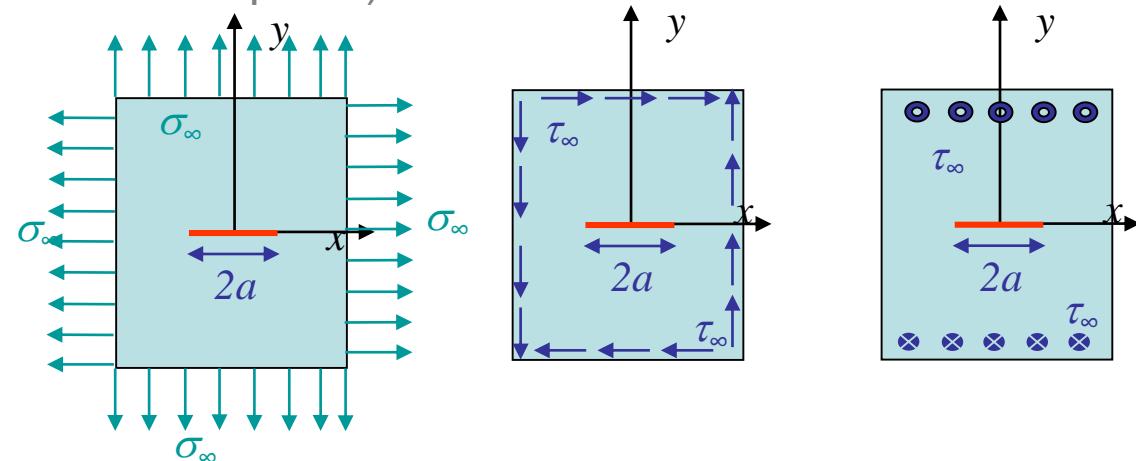
$$\Rightarrow \left\{ \begin{array}{l} K_I = \beta_I \sigma_\infty \sqrt{\pi a} \\ K_{II} = \beta_{II} \tau_\infty \sqrt{\pi a} \\ K_{III} = \beta_{III} \tau_\infty \sqrt{\pi a} \end{array} \right.$$

- β_i depends on
 - Geometry
 - Crack length



- Evaluation of the stress Intensity Factor (SIF)
 - Analytical (crack $2a$ in an infinite plane)

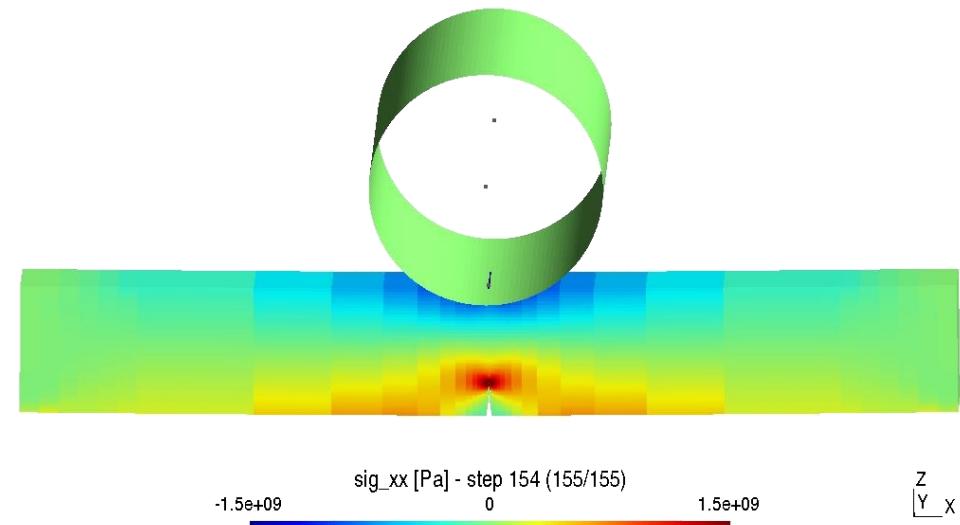
$$\Rightarrow \left\{ \begin{array}{l} K_I = \sigma_\infty \sqrt{\pi a} \\ K_{II} = \tau_\infty \sqrt{\pi a} \\ K_{III} = \tau_\infty \sqrt{\pi a} \end{array} \right.$$



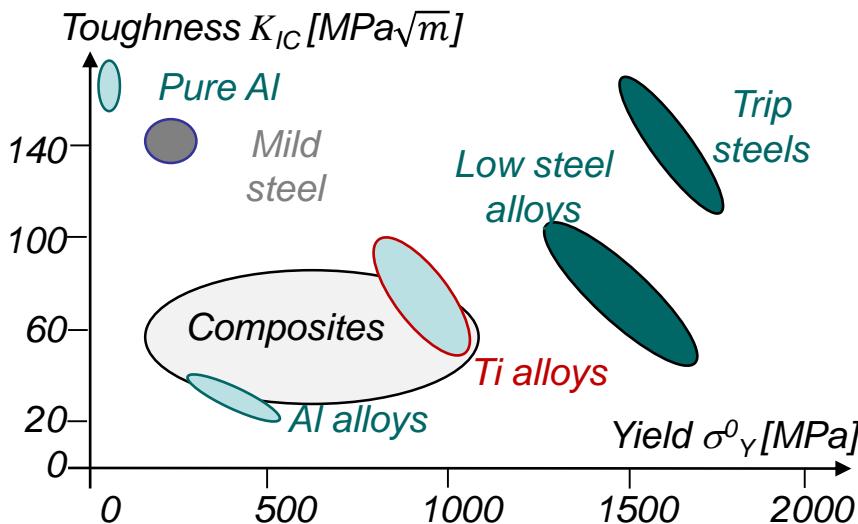
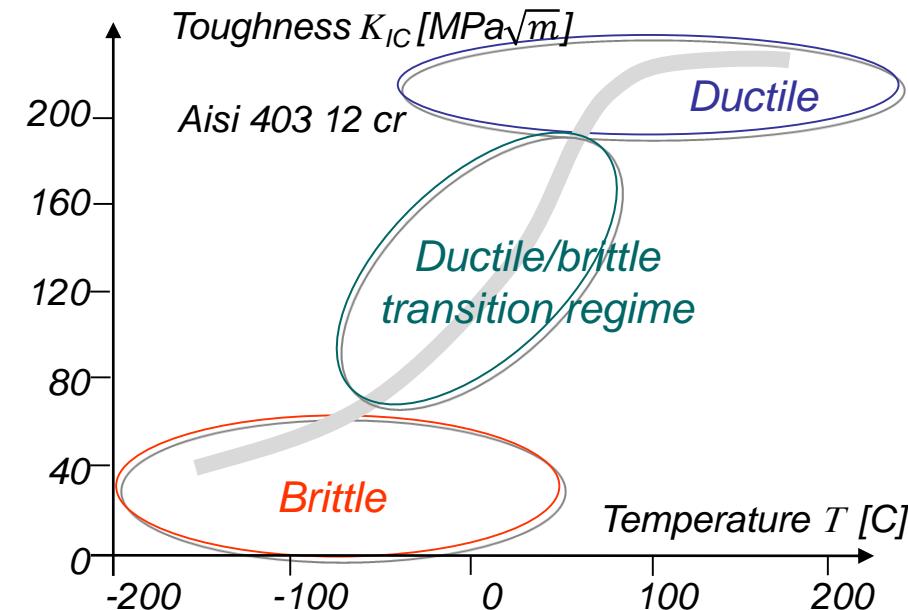
- Numerical

$$\Rightarrow \left\{ \begin{array}{l} K_I = \beta_I \sigma_\infty \sqrt{\pi a} \\ K_{II} = \beta_{II} \tau_\infty \sqrt{\pi a} \\ K_{III} = \beta_{III} \tau_\infty \sqrt{\pi a} \end{array} \right.$$

- β_i depends on
 - Geometry
 - Crack length



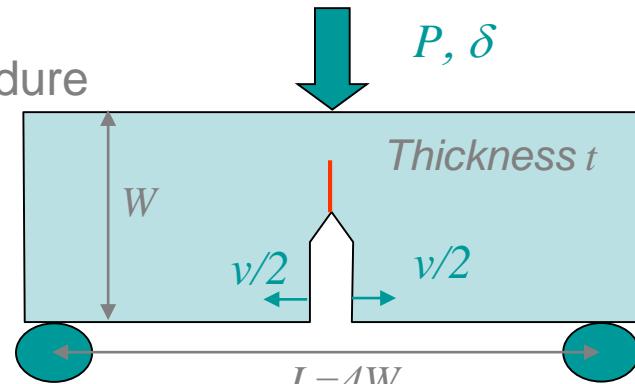
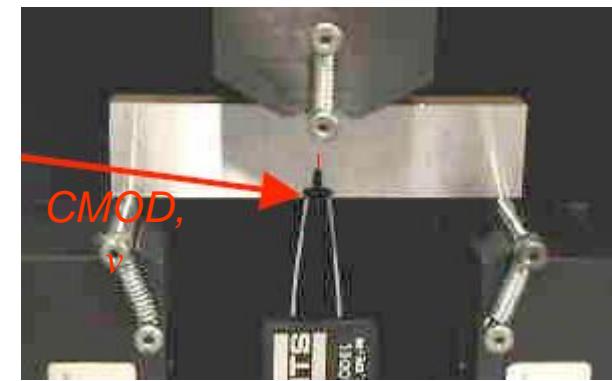
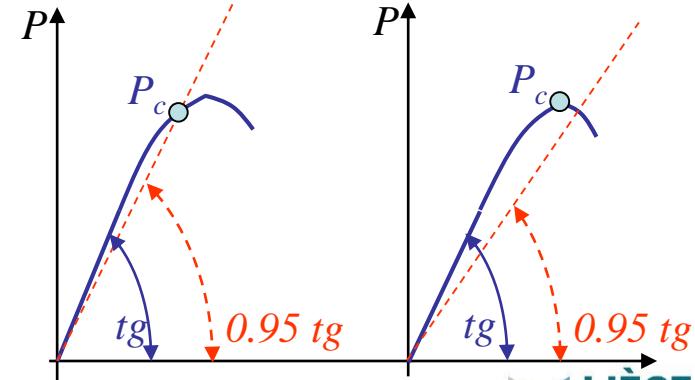
- 1957, Irwin, new failure criterion
 - $\sigma_{\max} \rightarrow \infty \rightarrow \sigma$ is irrelevant
 - Compare the SIFs (dependent on loading and geometry) to a new material property: the toughness
 - If $K_i = K_{iC} \rightarrow$ crack growth
 - Toughness (ténacité) K_{Ic}
 - Steel, Al, ... : see figures
 - Concrete: $0.2 - 1.4 \text{ MPa m}^{1/2}$



- Measuring K_{Ic}
 - Done by strictly following the ASTM E399 procedure
 - Preparation
 - A possible specimen is the Single Edge Notch Bend (SENB)
 - Plane strain constraint (thick enough specimen) \rightarrow conservative
 - Specimen machined with a V-notch in order to start a sharp crack
 - Cyclic loading to initiate a fatigue crack
 - Toughness test performed
 - Calibrated $P - \delta$ recording equipment
 - The Crack Mouth Opening Displacement (CMOD= ν) is measured with a clipped gauge
 - P_c is obtained on $P-\nu$ curves
 - either the 95% offset value or
 - the maximal value reached before
 - K_{Ic} is deduced from P_c using

$$K_I = \frac{PL}{tW^{\frac{3}{2}}} f\left(\frac{a}{W}\right)$$

– $f(a/W)$ depends on the test (SENB, ...)



- Energy evolution during crack growth
 - Assuming the crack propagates
 - Example: body subjected to Q constant
 - As the crack grows, there is a displacement δu
 - Energy release rate G for Q constant
 - Change in energy system for a crack growth δA

$$\delta E_{int} = Q\delta u - G\delta A = \delta(Qu) - G\delta A$$

$$\Rightarrow G = -\partial_A (E_{int} - Qu)$$

- The internal (elastic) energy thus reads

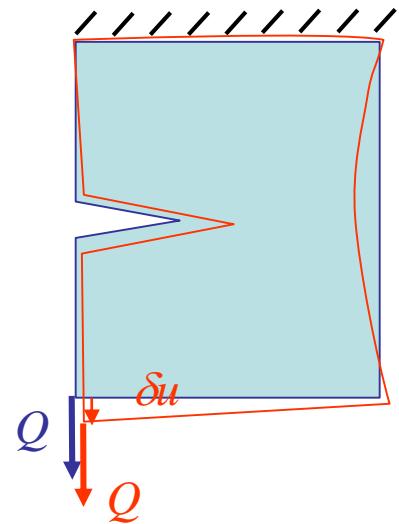
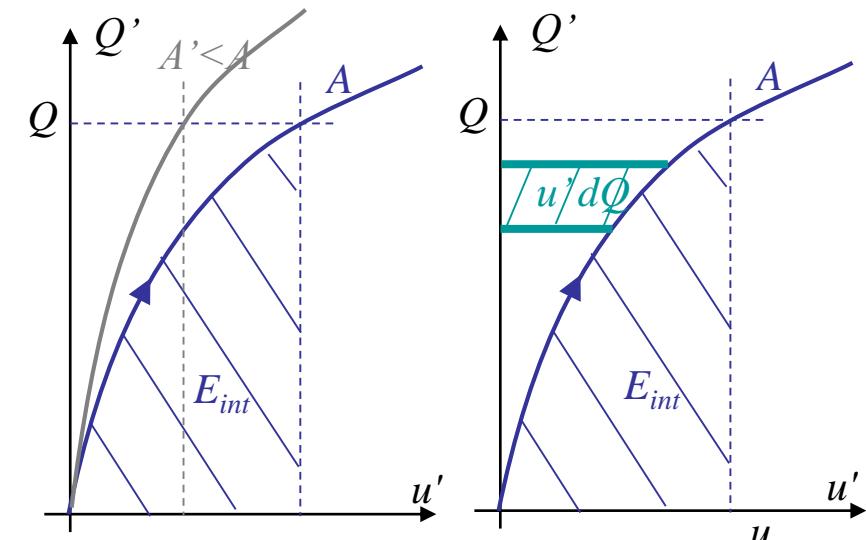
$$E_{int} = E_{int}(Q, A)$$

- From complementary energy

$$u(Q, A) = -\partial_Q (E_{int} - Qu)$$

$$\Rightarrow \partial_Q G = \partial_A u$$

$$\Rightarrow G = \int_0^Q \partial_A u(Q', A) dQ'$$



- Energy release rate interpretation

$$\left\{ \begin{array}{l} G = -\partial_A (E_{\text{int}} - Qu) \\ G = \int_0^Q \partial_A u (Q', A) dQ' \end{array} \right.$$

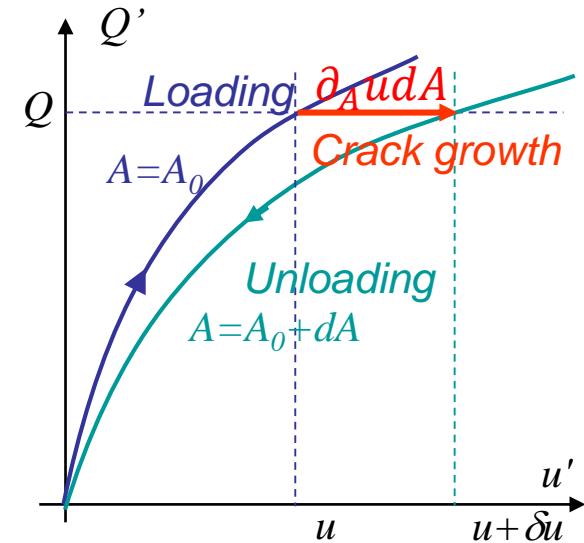
- Can be measured by conducting experiments
 - Body with crack surface A_0 loaded up to Q^*
 - Crack growth dA at constant load \rightarrow the specimen becomes more flexible \rightarrow displacement increment $\partial_A u dA$
 - Unload to zero
 - The area between the 2 curves is then $G dA$

- Link with the stress intensity factor

- In linear elasticity & crack growing straight ahead

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$$

\rightarrow The energy release rate can also be used to assess crack growth



- Critical energy release rate

- If $\Pi_T = E_{\text{int}} - Qu$ is the potential energy of the specimen

$$G = -\partial_A (E_{\text{int}} - W_{\text{ext}}) = -\partial_A \Pi_T$$

- Total energy has to be conserved

- Total energy $E = \Pi_T + \Gamma$

- Γ is the energy required to create a crack of surface A

- There is crack growth when $G = G_c = \partial_A \Gamma$

- Brittle materials $G_c = 2\gamma_s$

- » γ_s is the surface energy, a crack creates 2 surfaces

- For other materials (ductile, composite, polymers, ...) this energy depends on the failure process (void coalescence, debonding, ...)

- $\Rightarrow G_c = 2\gamma_s + W_{\text{pl}}$

- Crack growth criterion is $G \geq G_c$

- Link with toughness

– Since

$$G = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu} \Rightarrow G_c = \frac{K_{IC}^2}{E'^2}$$

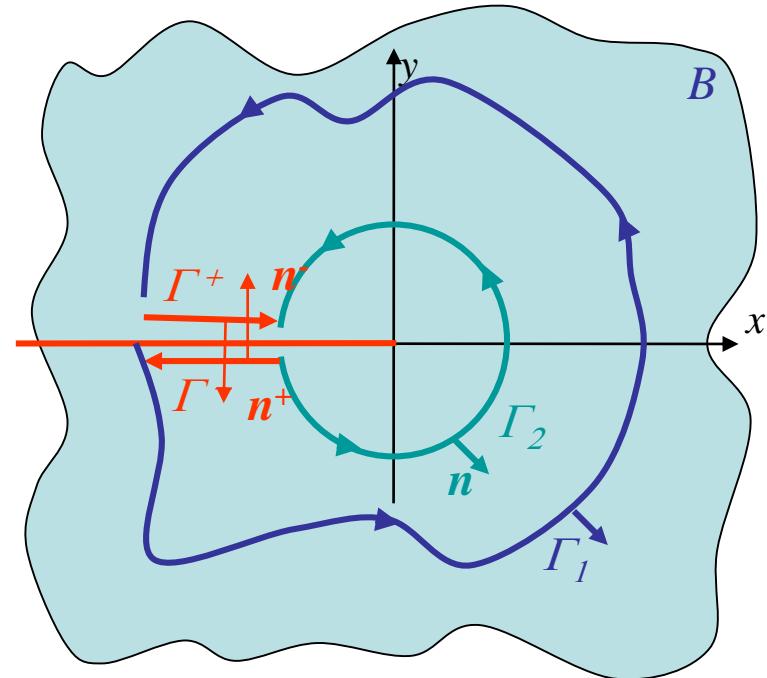
- **J-integral**

- Assuming stress-free lips
- Energy that flows toward the crack tip by

$$\begin{aligned} J &= \int_{\Gamma_1} [U(\boldsymbol{\varepsilon}) \mathbf{n}_x - \mathbf{u}_{,x} \cdot \mathbf{T}] dl \\ &= \int_{\Gamma_2} [U(\boldsymbol{\varepsilon}) \mathbf{n}_x - \mathbf{u}_{,x} \cdot \mathbf{T}] dl \end{aligned}$$

- It is path independent
- No assumption on linearity required
- Does not depend on subsequent crack growth direction
- For linear elasticity and for any contour Γ embedding a straight crack

$$J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$$

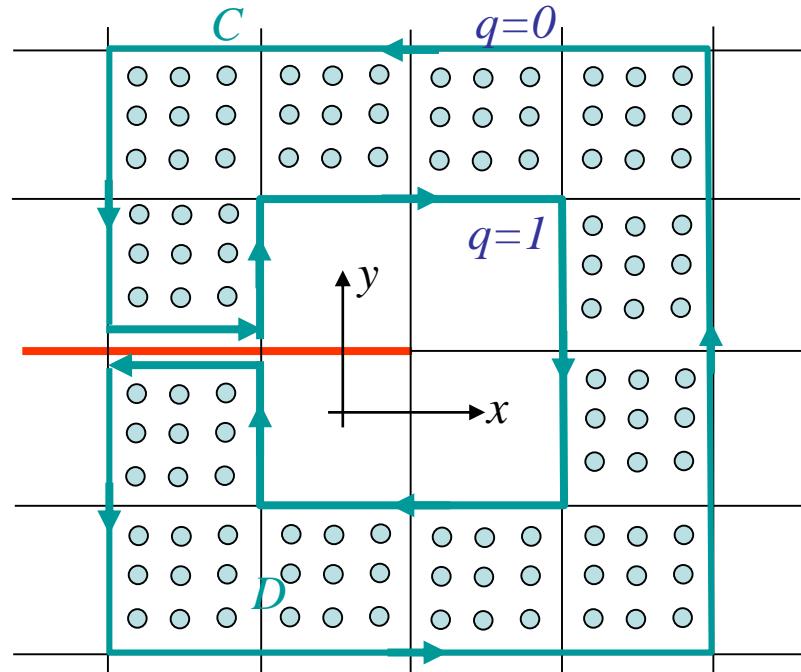


- Finite element model: J -integral by domain integration

- Can be rewritten

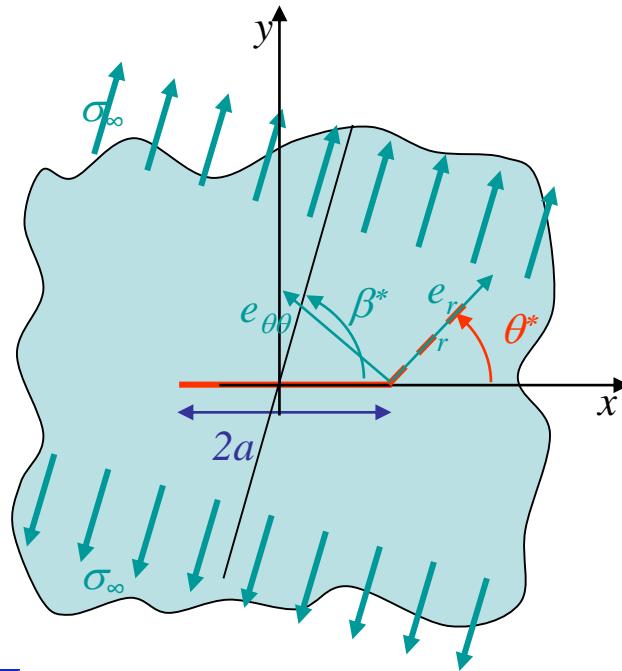
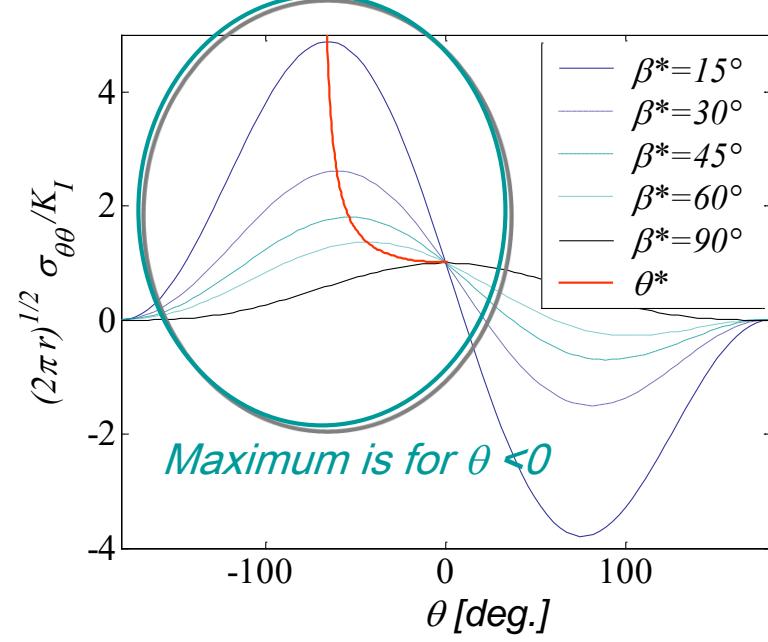
$$J = \int_D [\sigma_{ij} u_{i,x} q_{,j} - U q_{,x}] dA$$

- q is discretized using the same shape functions than the elements
- This integral is valid for any region around the crack tip
 - As long as the crack lips are straight
- Efficient for finite element method



- Direction of crack grow
 - Assumptions: the crack will grow in the direction where the SIF related to mode I in the new frame is maximal
 - Crack growth if $\left(\sqrt{2\pi r} \sigma_{\theta\theta} (r, \theta^*) \right) \geq K_C$ with $\partial_\theta \sigma_{\theta\theta} |_{\theta^*} = 0$
 - From direction of loading, one can compute the propagation direction

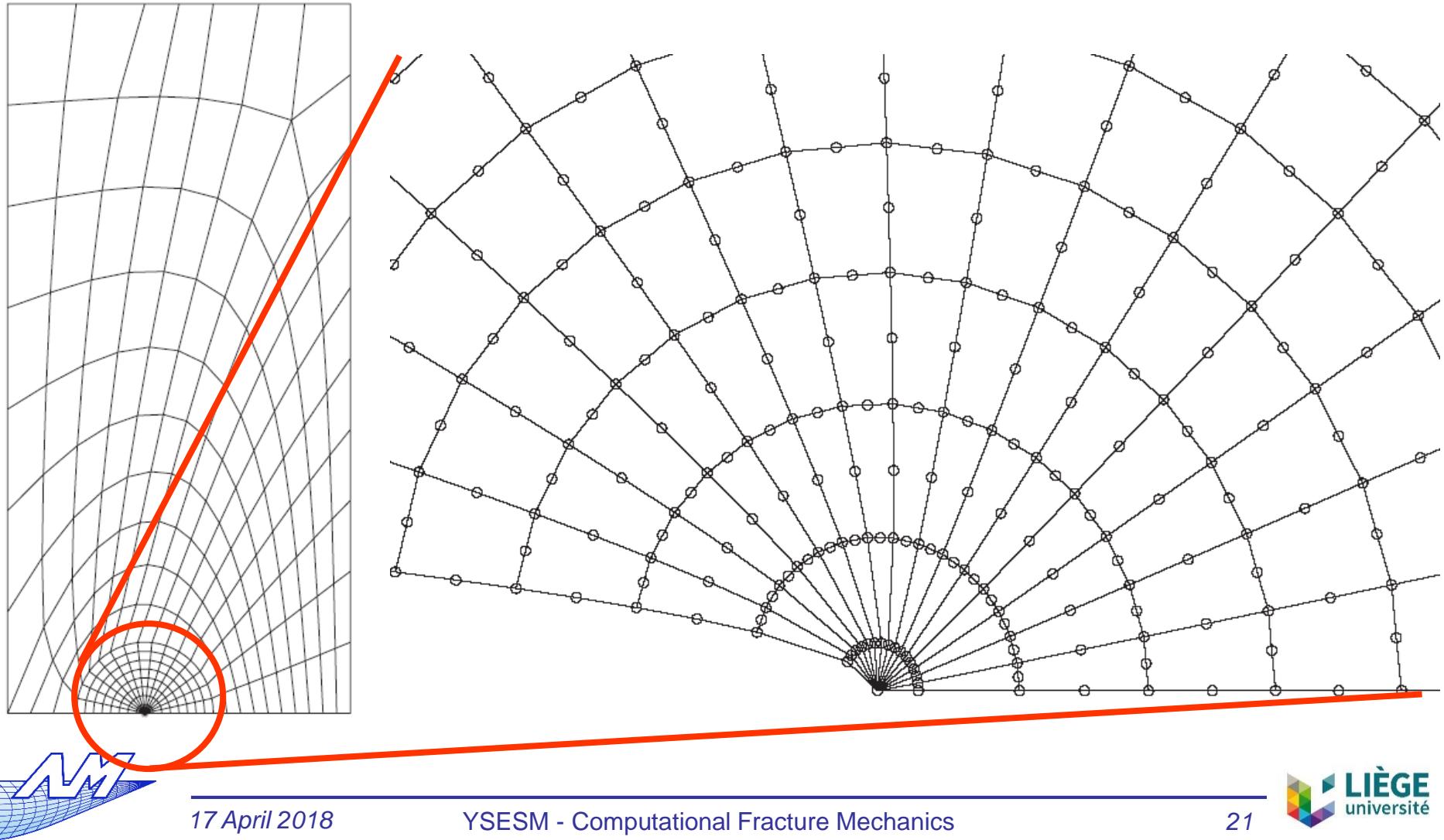
$$\cot \beta^* = \frac{K_{II}}{K_I} \quad \Rightarrow \quad \sigma_{\theta\theta} = \frac{K_I}{\sqrt{2\pi r}} \left[\cos^3 \frac{\theta}{2} - \frac{3 \cot \beta^*}{2} \sin \theta \cos \frac{\theta}{2} \right]$$



- Some fracture mechanics principles
 - Brittle/ductile materials & Fatigue
 - Linear elastic fracture mechanics
- Computational fracture mechanics for brittle materials
 - Crack propagation
 - Cohesive models
 - XFEM
- Computational fracture mechanics for ductile materials
 - Damage models
- Multiscale methods
 - Composite materials
 - Atomistic models

Crack propagation

- A simple method is a FE simulation where the crack is used as BCs
 - The mesh is conforming with the crack lips



- Finite element model: J -integral by domain integration

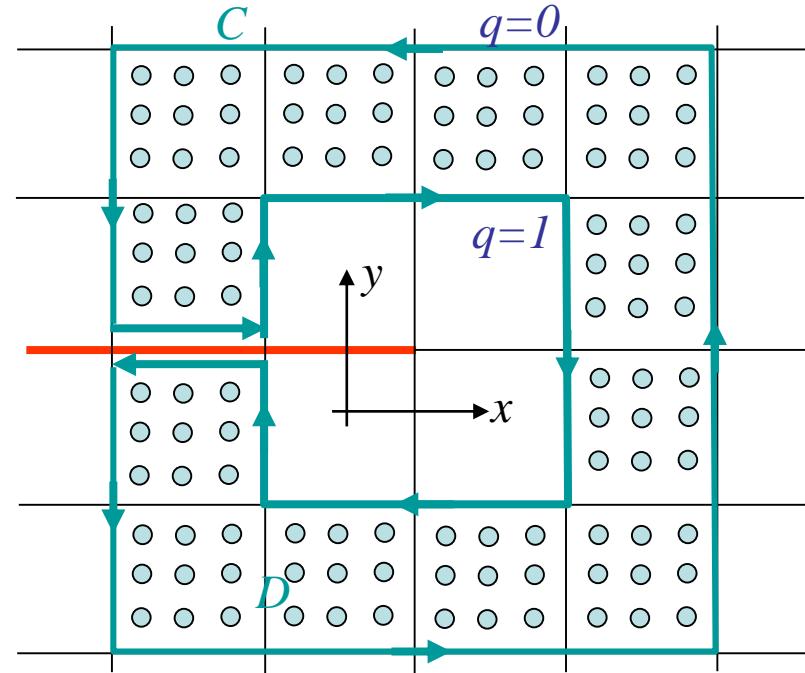
$$J = \int_{\Gamma_1} [U(\boldsymbol{\varepsilon}) \mathbf{n}_x - \mathbf{u}_{,x} \cdot \mathbf{T}] dl$$

$$\& \quad J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$$

- Can be rewritten

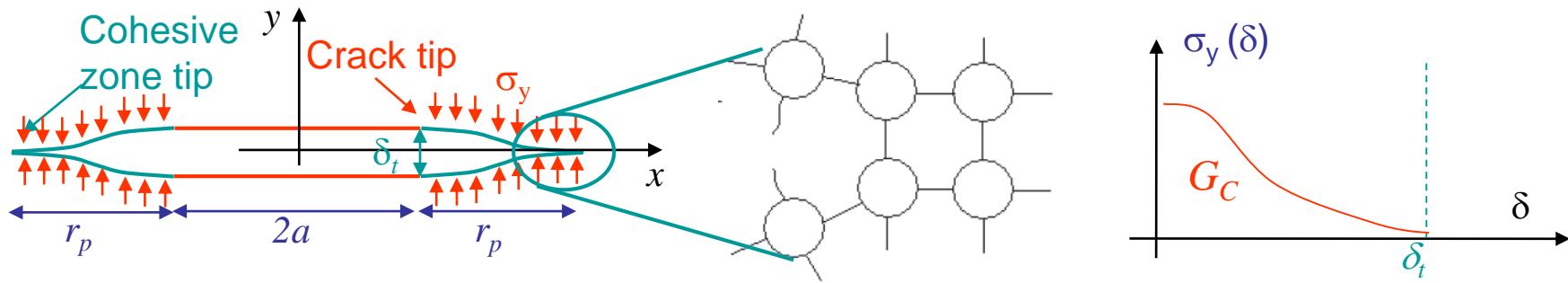
$$J = \int_D [\boldsymbol{\sigma}_{ij} \mathbf{u}_{i,x} q_{,j} - U q_{,x}] dA$$

- q is discretized using the same shape functions than the elements
- This integral is valid for any region around the crack tip
 - As long as the crack lips are straight
- Efficient for finite element method



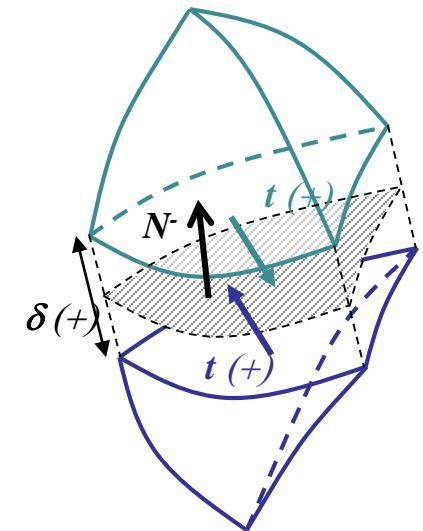
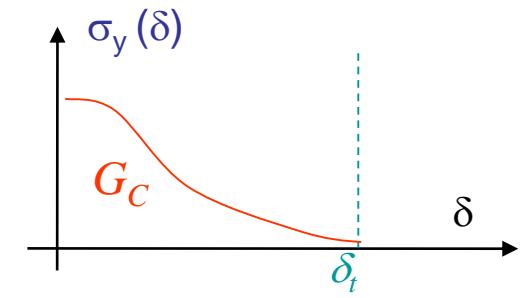
- A simple method is a FE simulation where the crack is used as BCs (2)
 - Mesh the structure in a conforming way with the crack
 - Extract SIFs K_i (different methods, but J-integral is common)
 - Use criterion on crack propagation
 - Example: the maximal hoop stress criterion $\left(\sqrt{2\pi r}\sigma_{\theta\theta}(r, \theta^*)\right) \geq K_C$ with crack propagation direction obtained by $\partial_\theta\sigma_{\theta\theta}|_{\theta^*} = 0$ & $\partial_{\theta\theta}^2\sigma_{\theta\theta}|_{\theta^*} < 0$
 - If the crack propagates
 - Move crack tip by Δa in the θ^* -direction
 - A new mesh is required as the crack has changed (since the mesh has to be conforming)
 - Involves a large number of remeshing operations (time consuming)
 - Is not always fully automatic
 - Requires fine meshes and Barsoum elements
 - Not used

- The cohesive method is based on Barenblatt model
 - This model is an idealization of the brittle fracture mechanisms
 - Separation of atoms at crack tips (cleavage)
 - As long as the atoms are not separated by a distance δ_t , there are attractive forces (see overview lecture)

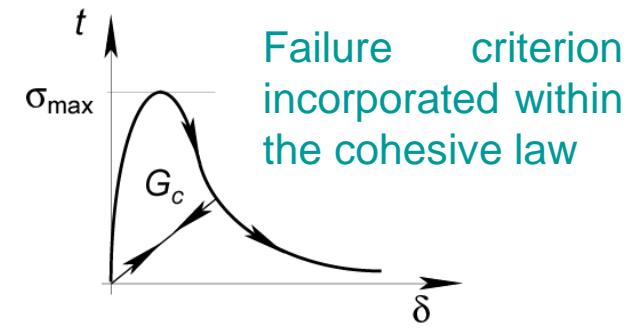
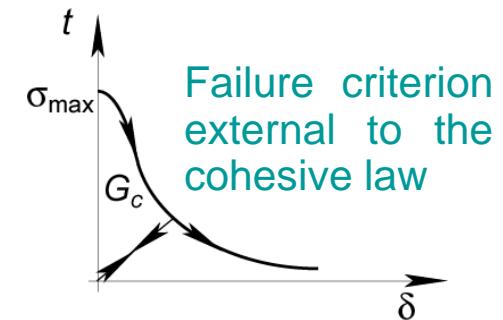


- For elasticity $G_C = \int_0^{\delta_t} \sigma_y(\delta) d\delta$
 - So the area below the σ - δ curve corresponds to G_C if crack grows straight ahead
- This model requires only 2 parameters
 - Peak cohesive traction σ_{\max} (spall strength)
 - Fracture energy G_C (typically from K_{IC})
 - Shape of the curves has no importance as long as it is monotonically decreasing

- Insertion of cohesive elements
 - Between 2 volume elements
 - Computation of the opening (cohesive element)
 - Normal to the interface in the deformed configuration \mathbf{N}^-
 - Normal opening $\delta_n = \max([\![\mathbf{u}]\!] \cdot \mathbf{N}^-, 0)$
 - Sliding $\delta_s = [\![\mathbf{u}]\!] - [\![\mathbf{u}]\!] \cdot \mathbf{N}^- \mathbf{N}^-$
 - Resulting opening $\delta = \sqrt{\delta_n^2 + \beta_c^2 \|\delta_s\|^2}$
with β_c the ratio between the shear and normal critical tractions
 - Definition of a potential
 - Potential $\phi = \phi(\delta)$ to match the traction separation law (TSL) curve
 - Traction (in the deformed configuration) derives from this potential $\mathbf{t} = \frac{\partial \phi}{\partial \delta} = \frac{\partial \phi}{\partial \delta_n} \mathbf{N}^- + \frac{\partial \phi}{\partial \delta_s} \frac{\delta_s}{\delta_s}$

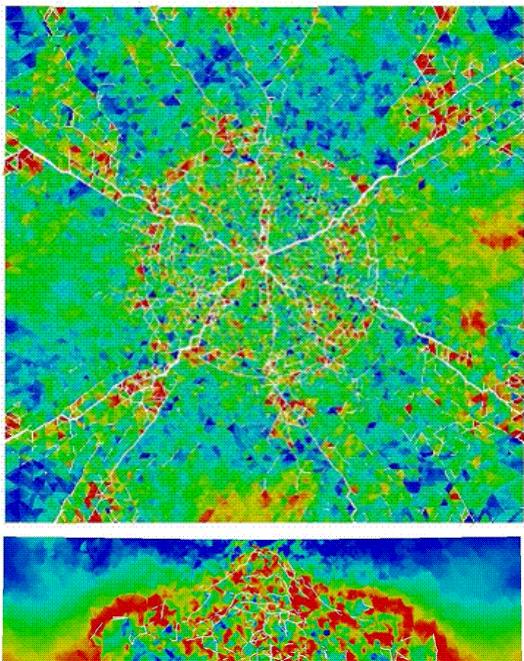
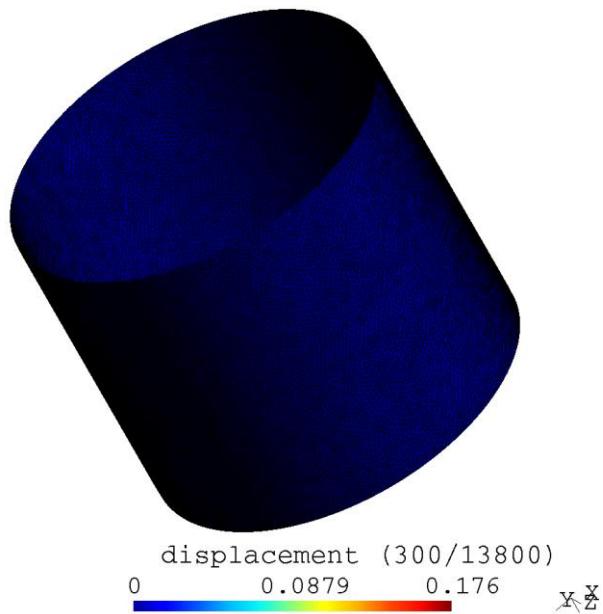
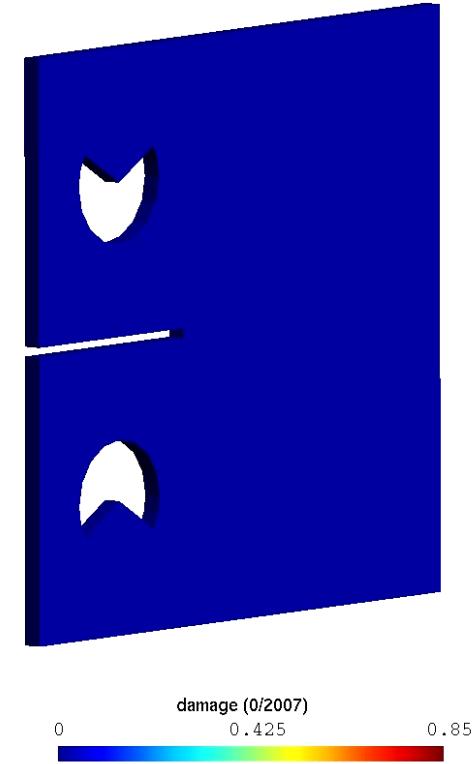


- Computational framework
 - How are the cohesive elements inserted?
 - First method: intrinsic Law
 - Cohesive elements inserted from the beginning
 - So the elastic part prior to crack propagation is accounted for by the TSL
 - Drawbacks:
 - Requires a priori knowledge of the crack path to be efficient
 - Mesh dependency [Xu & Needleman, 1994]
 - Initial slope that modifies the effective elastic modulus
 - » Alteration of a wave propagation
 - This slope should tend to infinity [Klein et al. 2001]
 - » Critical time step is reduced
 - Second method: extrinsic law
 - Cohesive elements inserted on the fly when failure criterion ($\sigma > \sigma_{\max}$) is verified [Ortiz & Pandolfi 1999]
 - Drawback:
 - Complex implementation in 3D especially for parallelization



Cohesive elements

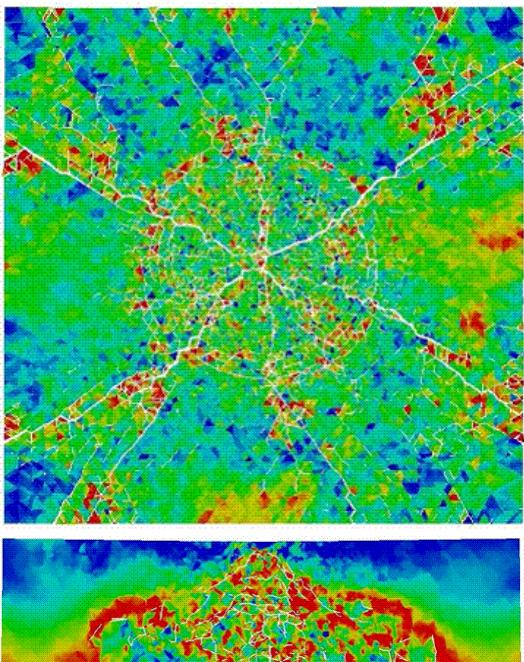
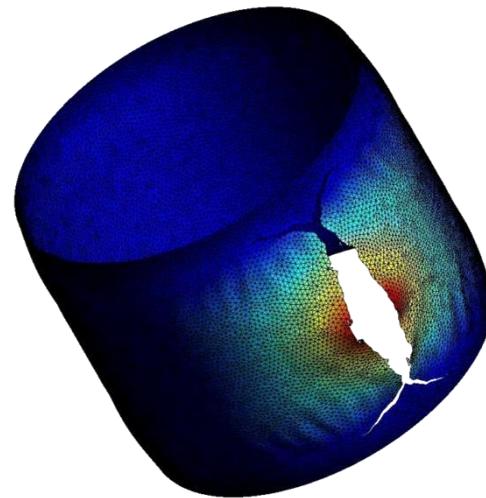
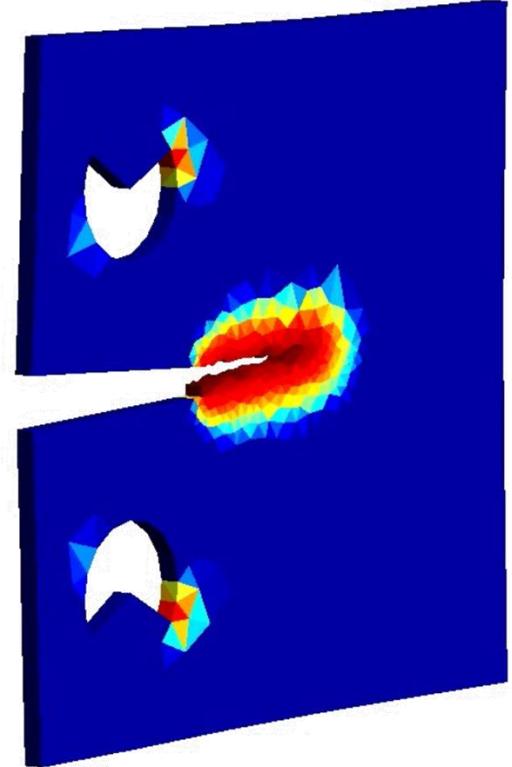
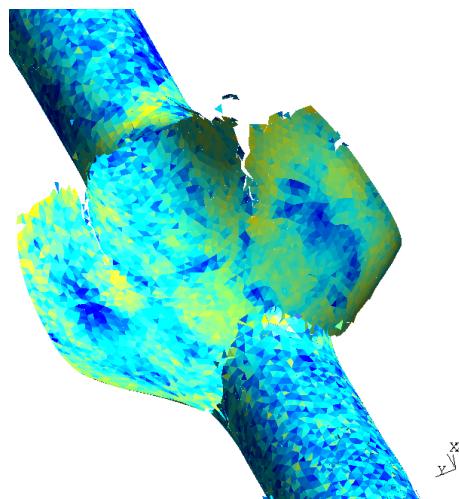
- Examples



Y
|
Z X

Cohesive elements

- Examples



- Experimental characterization of the parameters

- Critical energy release rate G_C

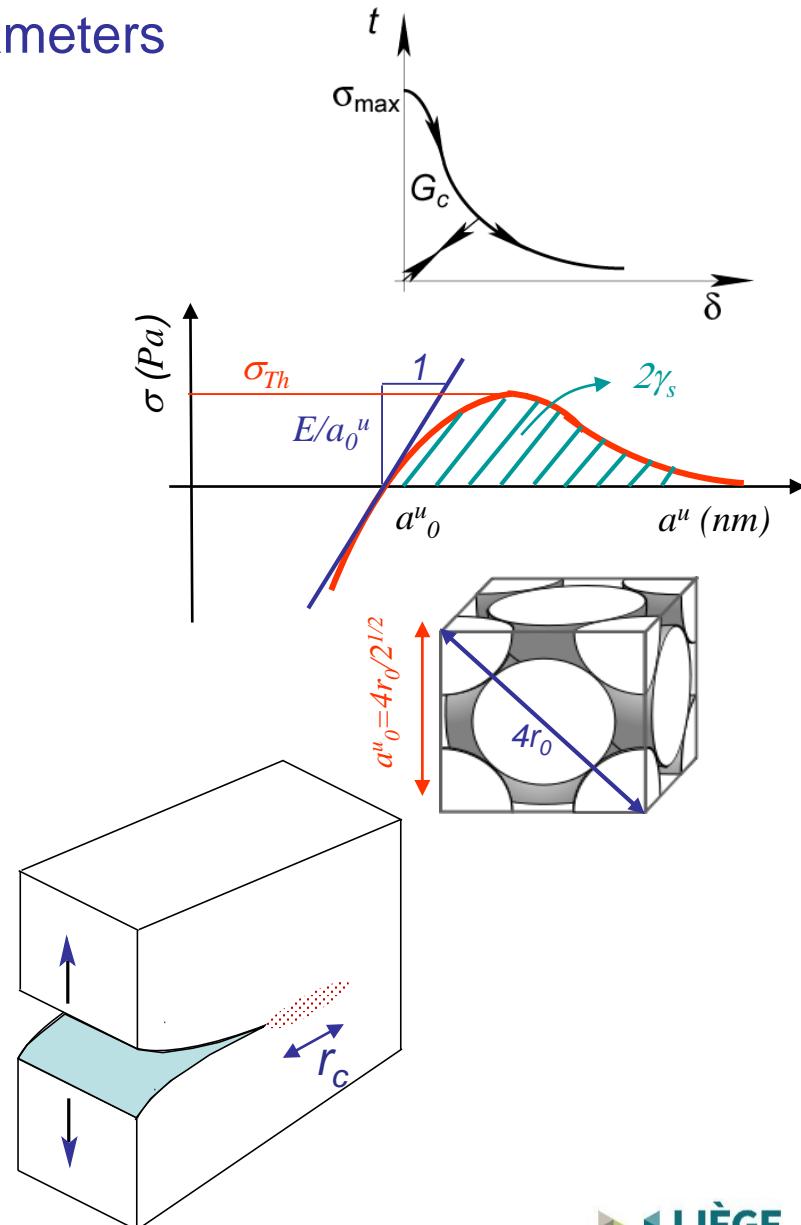
- From toughness tests $G_C = \frac{K_{IC}^2}{E'^2}$

- Spall strength σ_{max}

- For perfect crystal \rightarrow analytical value

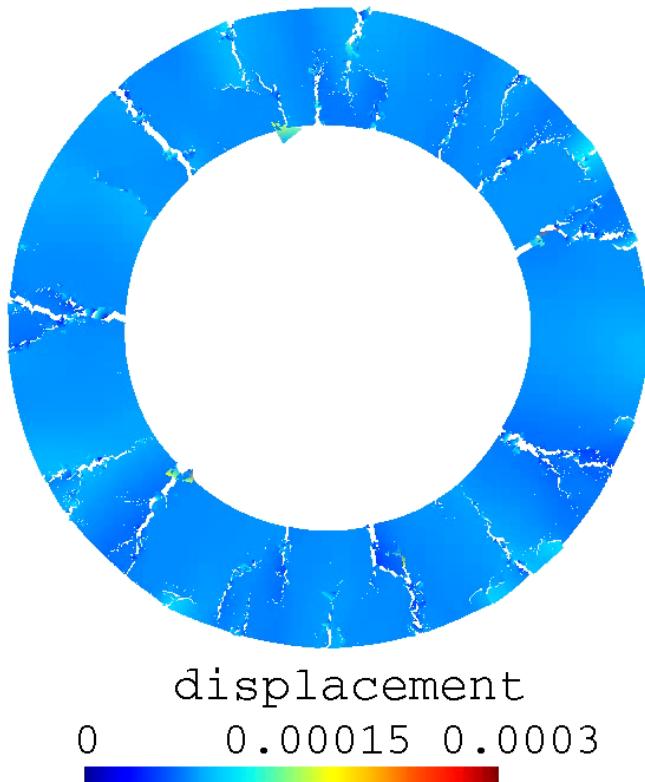
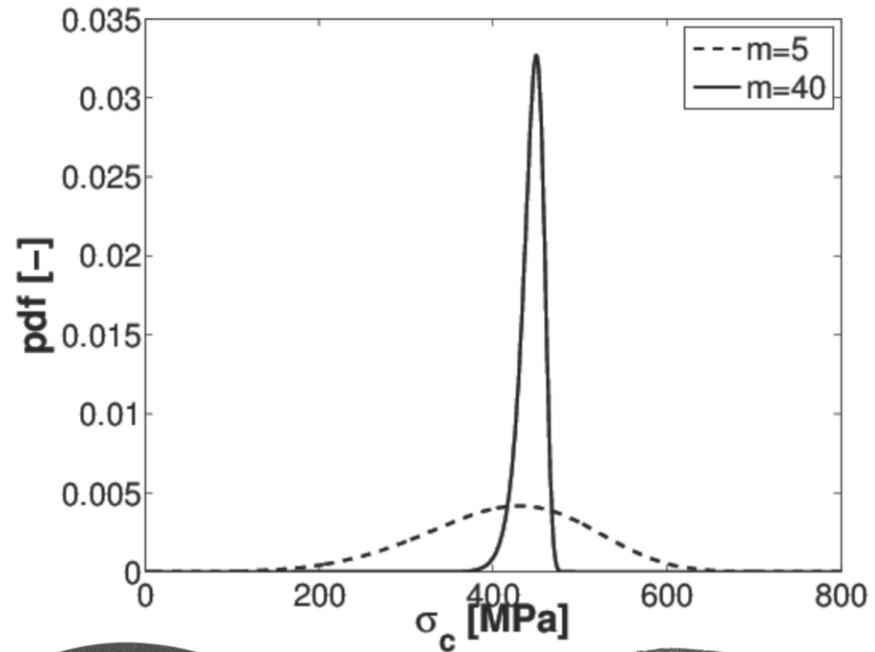
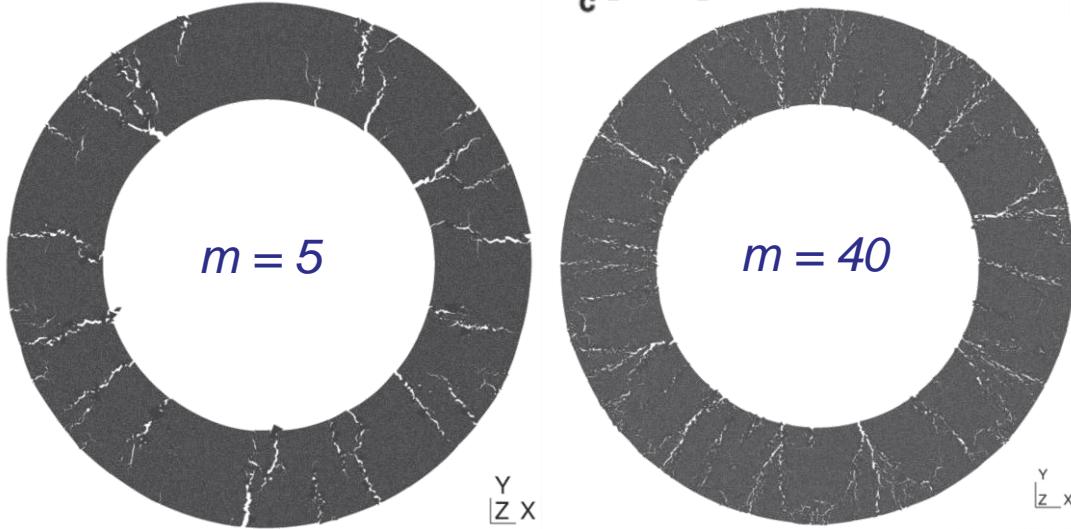
$$\sigma_{Th} = \sqrt{\frac{E\gamma_s}{a_0^u}}$$

- For non-perfect materials
 - Could be a measured stress at distance r_C
 - Delicate to put in place

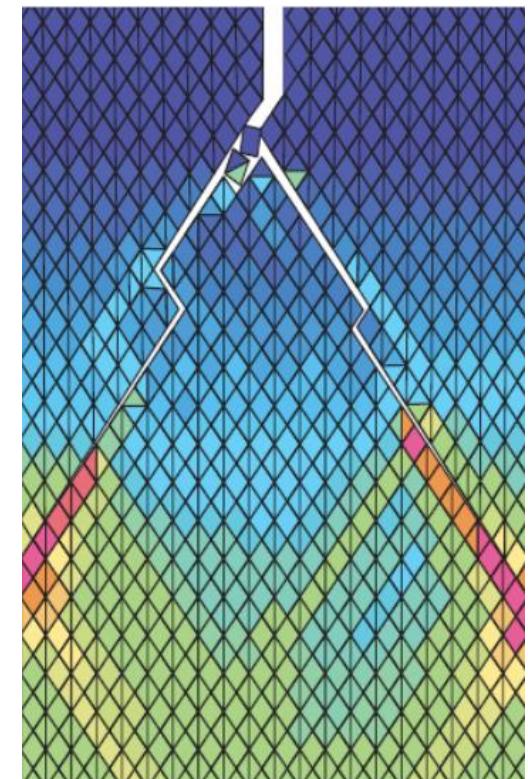


Cohesive elements

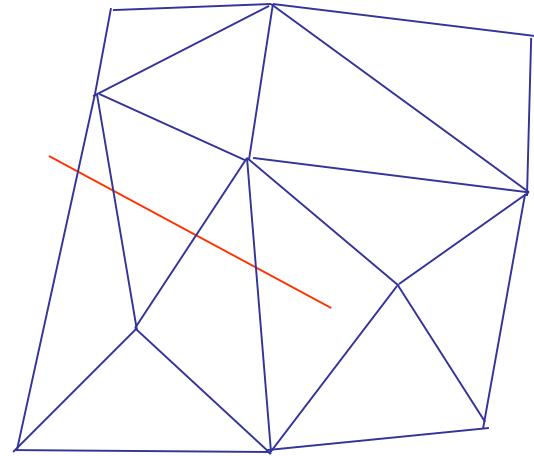
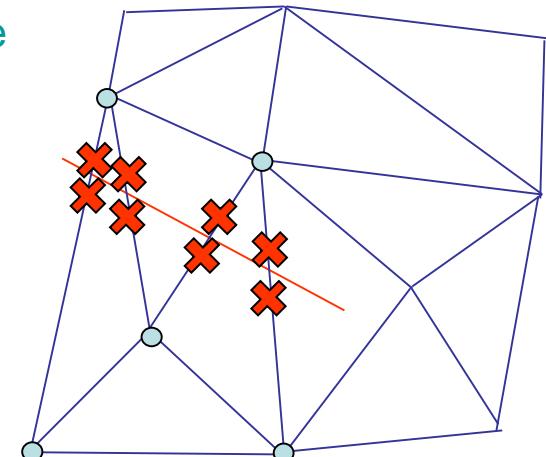
- Effect of the spall strength σ_{max}
 - It should cover the stochastic effect of material discrepancies
 - Use of Weibull function



- Advantages of the method
 - Can be mesh independent (non regular meshes)
 - Can be used for large problem size
 - Automatically accounts for time scale [Camacho & Ortiz, 1996]
 - Fracture dynamics has not been studied in these classes
 - Really useful when crack path is already known
 - Debonding of fibers
 - Delamination of composite plies
 - ...
 - No need for an initial crack
 - The method can detect the initiation of a crack
- Drawbacks
 - Still requires a conforming mesh
 - Requires fine meshes
 - $h_{\max} = \frac{\pi E G_c}{2(1-\nu^2)\sigma_c^2}$
 - So parallelization is mandatory
 - Could be mesh dependent



- How to get rid of conformity requirements?
- Key principles
 - For a FE discretization, the displacement field is approximated by $\mathbf{u}_h(\xi^i) = \sum_{a \in I} N^a(\xi^i) \mathbf{u}^a$
 - Sum on nodes a in the set I (11 nodes here)
 - \mathbf{u}^a are the nodal displacements
 - N^a are the shape functions
 - ξ^i are the reduced coordinates
 - XFEM
 - New degrees of freedom are introduced to account for the discontinuity
 - It could be done by inserting new nodes (✗) near the crack tip, but this would be inefficient (remeshing)
 - Instead, shape functions are modified
 - Only shape functions that intersect the crack
 - This implies adding new degrees of freedom to the related nodes (○)



- Key principles (2)
 - New degrees of freedom are introduced to account for the discontinuity

$$\mathbf{u}_h(\xi^i) = \sum_{a \in I} N^a(\xi^i) \mathbf{u}^a + \sum_{a \in J} N^a(\xi^i) F^a(\xi^i) \mathbf{u}^{*a}$$

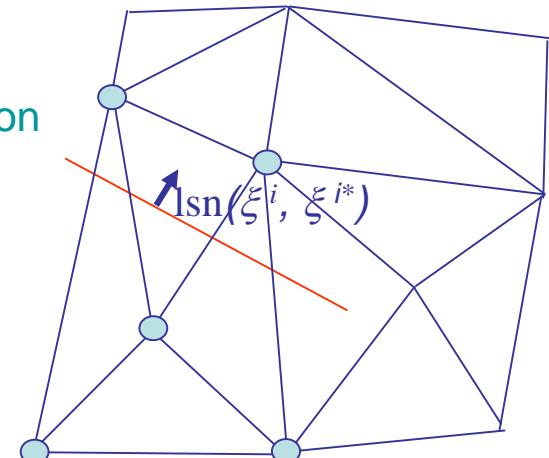
- J , subset of I , is the set of nodes whose shape-function support is entirely separated by the crack (5 here)
- \mathbf{u}^{*a} are the new degrees of freedom at node a

- Form of F^a the shape functions related to \mathbf{u}^{*a} ?

- Use of Heaviside's function, and we want +1 above and -1 below the crack
- In order to know if we are above or below the crack, signed-distance has to be computed
- Normal level set $\text{lsn}(\xi^i, \xi^{i*})$ is the signed distance between a point ξ^i of the solid and its projection ξ^{i*} on the crack

$$\implies \mathbf{u}_h(\xi^i) = \sum_{a \in I} N^a(\xi^i) \mathbf{u}^a + \sum_{a \in J} N^a(\xi^i) H(\text{lsn}(\xi^i, \xi^{i*})) \mathbf{u}^{*a}$$

with $H(x) = \pm 1$ if $x >< 0$

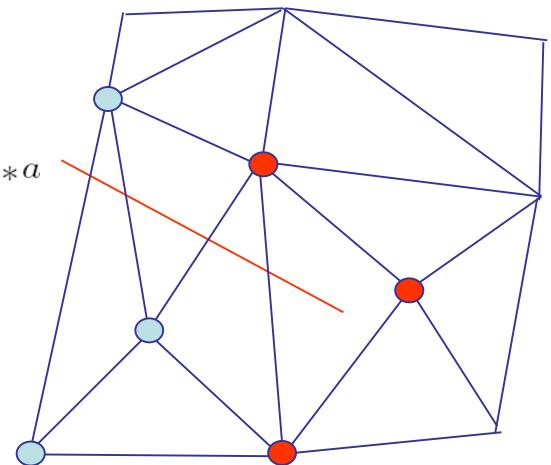


- Key principles (3)

- Example: removing of a brain tumor
(L. Vigneron et al.)
- At this point
 - A discontinuity can be introduced in the mesh
 - Fracture mechanics is not introduced yet
- New enrichment with LEFM solution
 - Zone J of Heaviside enrichment is reduced (3 nodes)
 - A zone K of LEFM solution is added to the nodes (●) of elements containing the crack tip

$$\begin{aligned} \mathbf{u}_h(\xi^i) = & \sum_{a \in I} N^a(\xi^i) \mathbf{u}^a + \sum_{a \in J} N^a(\xi^i) H(\text{lsn}(\xi^i, \xi^{i*})) \mathbf{u}^{*a} \\ & + \sum_{a \in K} N^a(\xi^i) \sum_b \Psi_b(\xi^i) \psi_b^a \end{aligned}$$

- LEFM solution is asymptotic \rightarrow only nodes close to crack tip can be enriched
- ψ_b^a is the new degree b at node a
- Ψ_b is the new shape function b



- Crack propagation criterion

- Requires the values of the SIFs (2)

- A more accurate solution is to compute J

- But K_I , K_{II} & K_{III} have to be extracted from $J = \frac{K_I^2}{E'} + \frac{K_{II}^2}{E'} + \frac{K_{III}^2}{2\mu}$

- » Define an adequate auxiliary field u^{aux}

- » Compute $J^{aux}(u^{aux})$ and $J^s(u+u^{aux})$

- » One can show that the interaction integral (see lecture on SIFs)

$$I^s = J^s - J - J^{aux} = \frac{2}{E'} (K_I K_I^{aux} + K_{II} K_{II}^{aux}) + \frac{1}{\mu} K_{III} K_{III}^{aux}$$

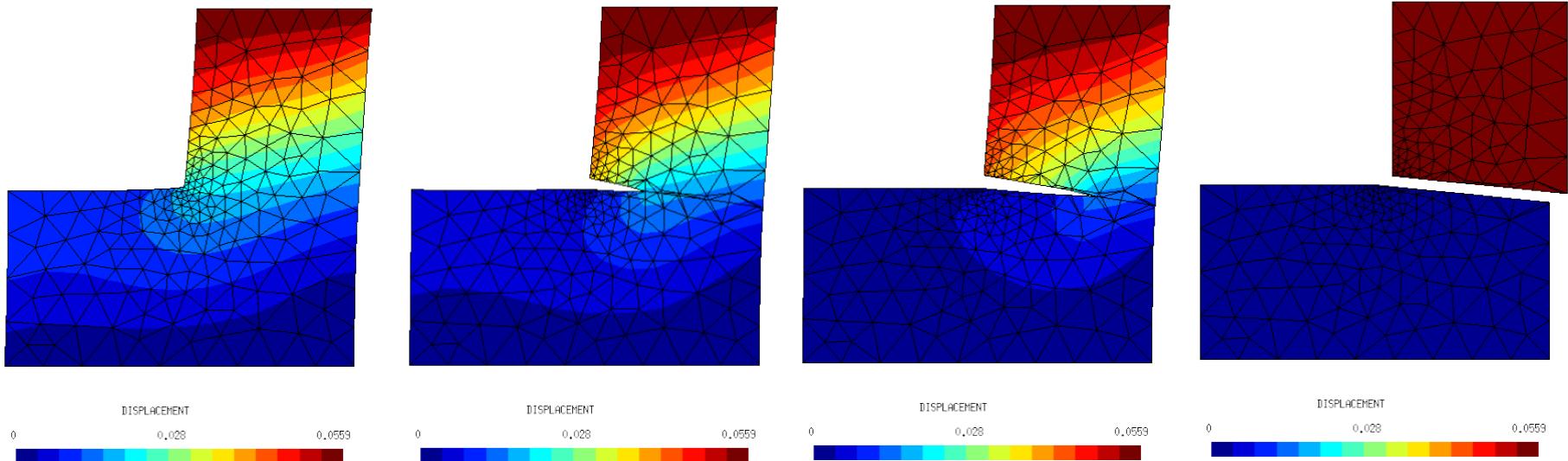
- » If u^{aux} is chosen such that only $K_i^{aux} \neq 0$, K_i is obtained directly

- Then the maximum hoop stress criterion can be used

$$\left(\sqrt{2\pi r} \sigma_{\theta\theta} (r, \theta^*) \right) \geq K_C \text{ with } \partial_\theta \sigma_{\theta\theta} \big|_{\theta^*} = 0 \quad \& \quad \partial_{\theta\theta}^2 \sigma_{\theta\theta} \big|_{\theta^*} < 0$$

- The experimental value to determine is thus the toughness K_{IC}

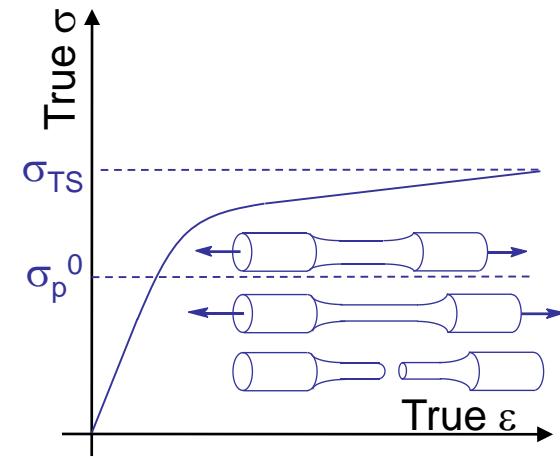
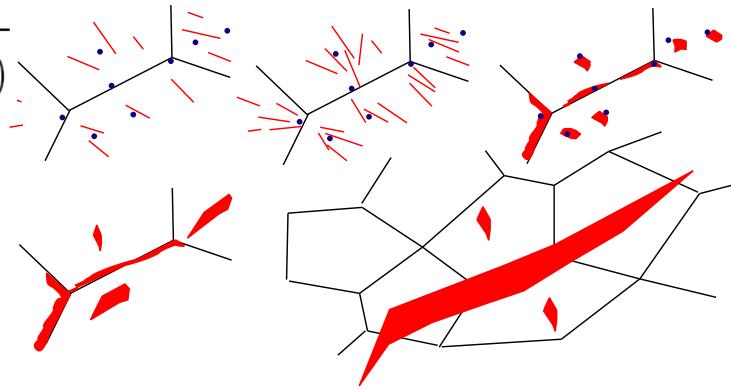
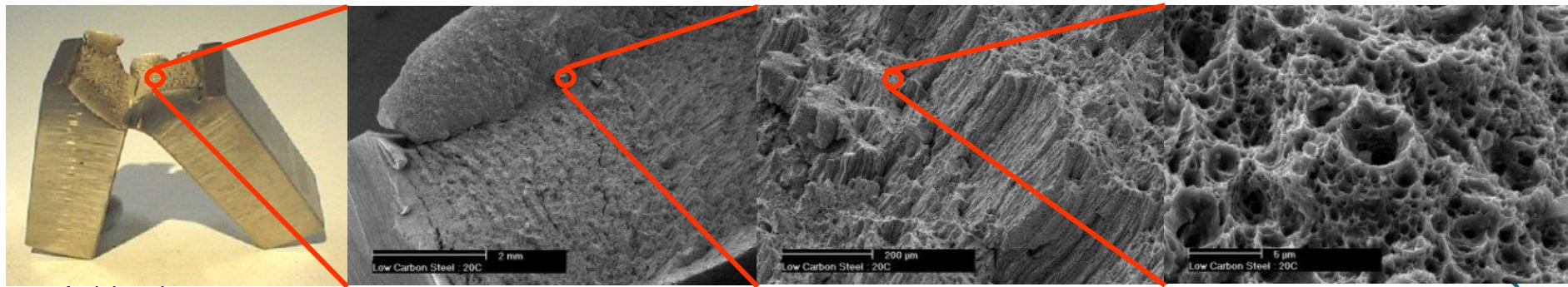
- Numerical example
 - Crack propagation (E. Béchet)



- Advantages:
 - No need for a conforming mesh (but mesh has still to be fine near crack tip)
 - Mesh independency
 - Computationally efficient
- Drawbacks:
 - Require radical changes to the FE code
 - New degrees of freedom
 - Gauss integration
 - Time integration algorithm

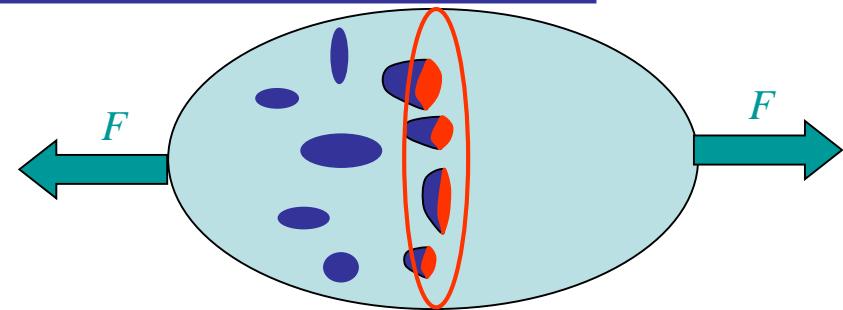
- Some fracture mechanics principles
 - Brittle/ductile materials & Fatigue
 - Linear elastic fracture mechanics
- Computational fracture mechanics for brittle materials
 - Crack propagation
 - Cohesive models
 - XFEM
- Computational fracture mechanics for ductile materials
 - Damage models
- Multiscale methods
 - Composite materials
 - Atomistic models

- Failure mechanism
 - Plastic deformations prior to (macroscopic) failure of the specimen
 - Dislocations motion \rightarrow void nucleation around inclusions \rightarrow micro cavity coalescence \rightarrow crack growth
 - Griffith criterion $\sigma_{TS} \sqrt{a} \div \sqrt{E 2\gamma_s}$ should be replaced by $\sigma_{TS} \sqrt{a} \div \sqrt{E (2\gamma_s + W_{pl})}$
 - Numerical models accounting for this failure mode?



- Introduction to damage (1D)

- As there are voids in the material, only a reduced surface is balancing the traction



- Virgin section $S \implies \sigma_{xx}^{\text{virgin}} = \frac{F}{S} = \sigma_{xx}$
 - Damage of the surface is defined as $D = \frac{S^{\text{holes}}}{S}$
 - So the effective (or damaged) surface is actually $\hat{S} = S - S^{\text{holes}} = (1 - D) S$
 - And so the effective stress is $\hat{\sigma}_{xx} = \frac{F}{S(1 - D)} = \frac{\sigma_{xx}}{1 - D}$

- Resulting deformation

- Hooke's law is still valid if it uses the effective stress $\epsilon_{xx} = \frac{\hat{\sigma}}{E} = \frac{\sigma_{xx}}{E(1 - D)}$
 - So everything is happening as if Hooke's law was multiplied by $(1 - D)$
- Isotropic 3D linear elasticity $\sigma = (1 - D) \mathcal{H} : \epsilon$
- Failure criterion: $D = D_C$, with $0 < D_C < 1$

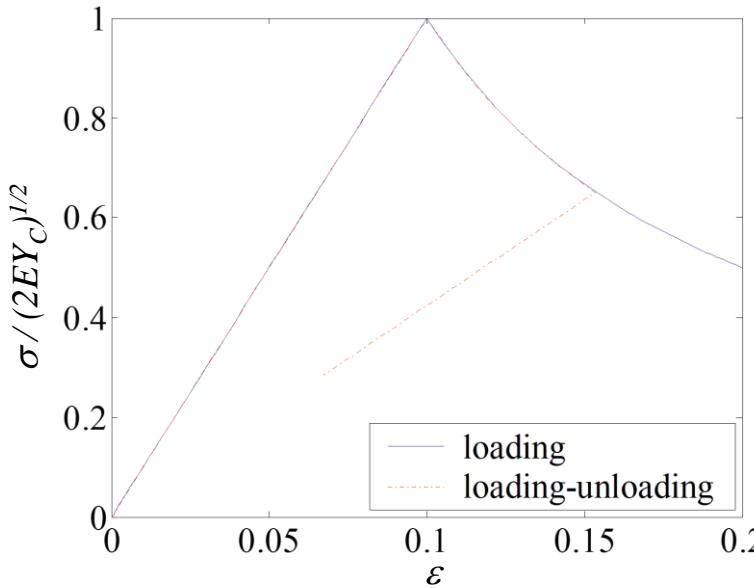
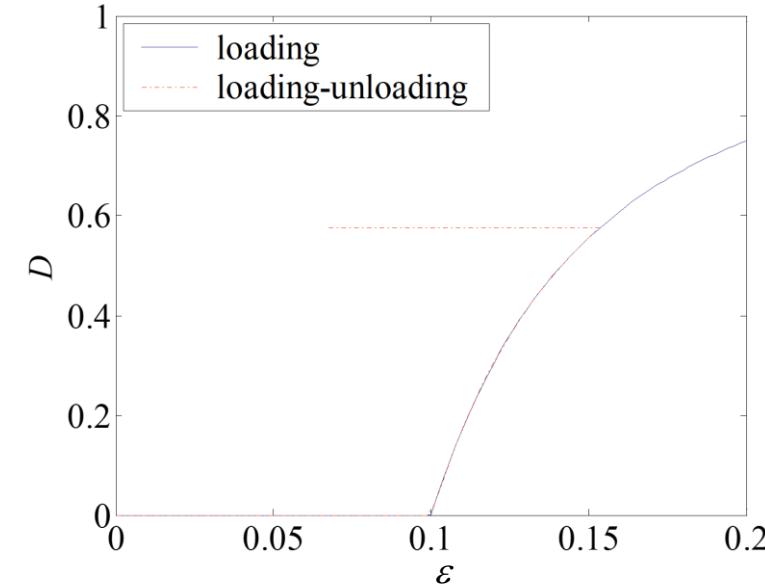
- But how to evaluate D , and how does it evolve?

- Evolution of damage D for isotropic elasticity

- Equations

- Stresses $\sigma = (1 - D) \mathcal{H} : \varepsilon$
 - Example of damage criterion $f(\varepsilon, D) = (1 - D) \frac{\varepsilon : \mathcal{H} : \varepsilon}{2} - Y_C \leq 0$
 - Y_C is an energy related to a deformation threshold
 - There is a time history $f \dot{D} = 0$
 - Either damage is increased if $f = 0$
 - Or damage remains the same if $f < 0$

- Example for Y_C such that damage appears for $\varepsilon = 0.1$



- But for ductile materials plasticity is important as it induces the damage

- Gurson's model, 1977

- Assumptions

- Given a rigid-perfectly-plastic material with already existing spherical microvoids
 - Extract a statistically representative sphere V embedding a spherical microvoid
 - Porosity: fraction of voids in the total volume and thus in the representative volume:

$$f_V = \frac{V_{\text{void}}}{V} = 1 - \frac{\hat{V}}{V}$$

with \hat{V} the material part of the volume

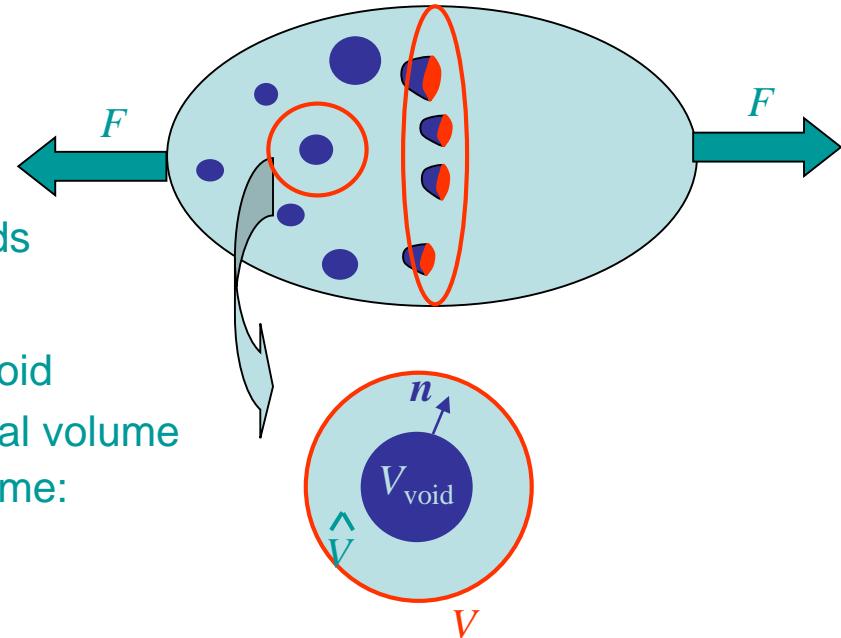
– Material rigid-perfectly plastic \implies elastic deformations negligible

- Define

- Macroscopic strains, stresses, potential: ε , σ & W
 - Microscopic strains, stresses, potential: $\hat{\varepsilon}$, $\hat{\sigma}$ & \hat{W}

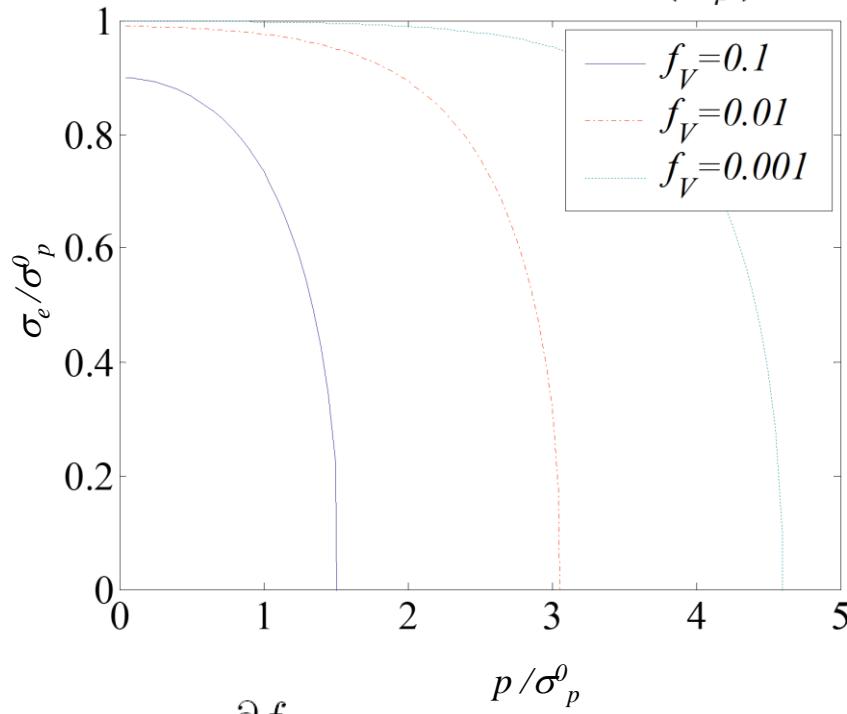
$$\dot{\varepsilon} = \frac{1}{V} \int_V \dot{\hat{\varepsilon}} dV = \frac{1}{V} \int_{\hat{V}} \dot{\hat{\varepsilon}} dV + \frac{1}{V} \int_{V_{\text{void}}} \dot{\hat{\varepsilon}} dV$$

$$\sigma = \frac{\partial \dot{W}}{\partial \dot{\varepsilon}} = \frac{1}{V} \int_{\hat{V}} \frac{\partial \hat{W}}{\partial \dot{\hat{\varepsilon}}} : \frac{\partial \dot{\hat{\varepsilon}}}{\partial \dot{\varepsilon}} dV = \frac{1}{V} \int_{\hat{V}} \hat{\sigma} : \frac{\partial \dot{\hat{\varepsilon}}}{\partial \dot{\varepsilon}} dV$$



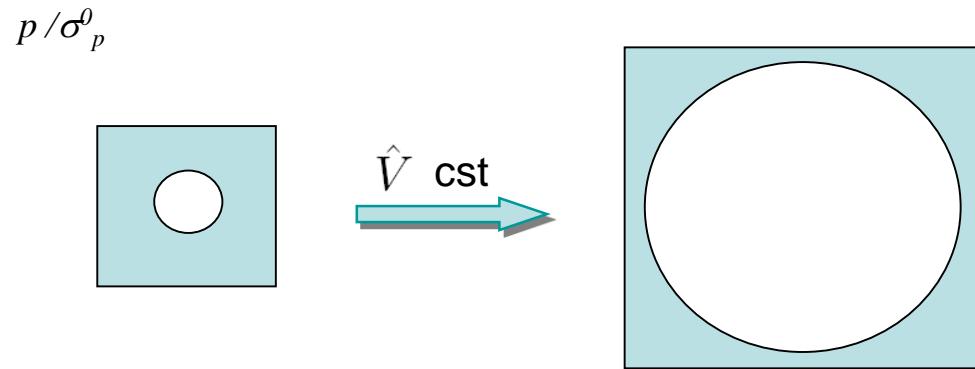
- Gurson's model, 1977 (4)

- Shape of the new yield surface $f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p^0}\right)^2 + 2f_V \cosh \frac{\text{tr}(\boldsymbol{\sigma})}{2\sigma_p^0} - f_V^2 - 1 \leq 0$

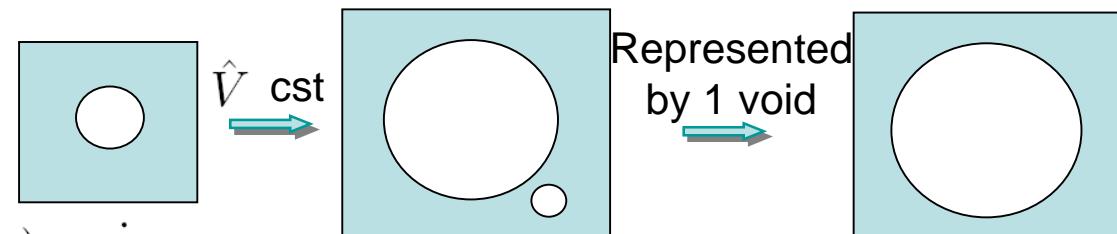


- Normal flow $\dot{\varepsilon}^p = \lambda \frac{\partial f}{\partial \boldsymbol{\sigma}}$
- Evolution of the porosity \dot{f}_V
 - Assuming isochoric matrix:

$$\dot{f}_V = (1 - f_V) \text{tr}(\dot{\varepsilon}^p)$$



- Hardening
 - Yield criterion $f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p^0}\right)^2 + 2f_V \cosh \frac{\text{tr}(\boldsymbol{\sigma})}{2\sigma_p^0} - f_V^2 - 1 \leq 0$ remains valid but one has to account for the hardening of the matrix $\rightarrow \sigma_p^0 \rightarrow \sigma_p(\hat{\varepsilon}^p)$
 - In this expression, the equivalent plastic strain of the matrix $\hat{\varepsilon}^p$ is used instead of the macroscopic one $\bar{\varepsilon}^p$
 - Values related to the matrix and the macroscopic volume are dependant as the dissipated energies have to match $\rightarrow (1 - f_V) \sigma_p(\hat{\varepsilon}^p) \dot{\hat{\varepsilon}}^p = \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}}$
- Voids nucleation
 - Increase rate of porosity results from
 - Matrix incompressibility
 - Creation of new voids
 - $\dot{f}_V = (1 - f_V) \text{tr}(\dot{\boldsymbol{\varepsilon}}^p) + \dot{f}_{\text{nucl}}$
 - The nucleation rate can be modeled as strain controlled $\rightarrow \dot{f}_{\text{nucl}} = A(\hat{\varepsilon}^p) \dot{\hat{\varepsilon}}^p$



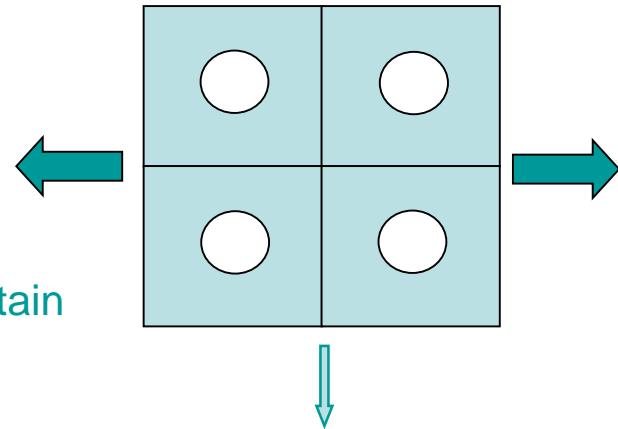
$$\rightarrow \dot{f}_V = (1 - f_V) \text{tr}(\dot{\boldsymbol{\varepsilon}}^p) + \dot{f}_{\text{nucl}}$$

$$\bullet \quad \text{The nucleation rate can be modeled as strain controlled} \rightarrow \dot{f}_{\text{nucl}} = A(\hat{\varepsilon}^p) \dot{\hat{\varepsilon}}^p$$

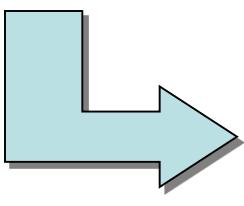
- Voids coalescence

- 1984, Tvergaard & Needleman

- When two voids are close ($f_V \sim f_C$), the material loses capacity of sustaining the loading
- If f_V is still increased, the material is unable to sustain any loading



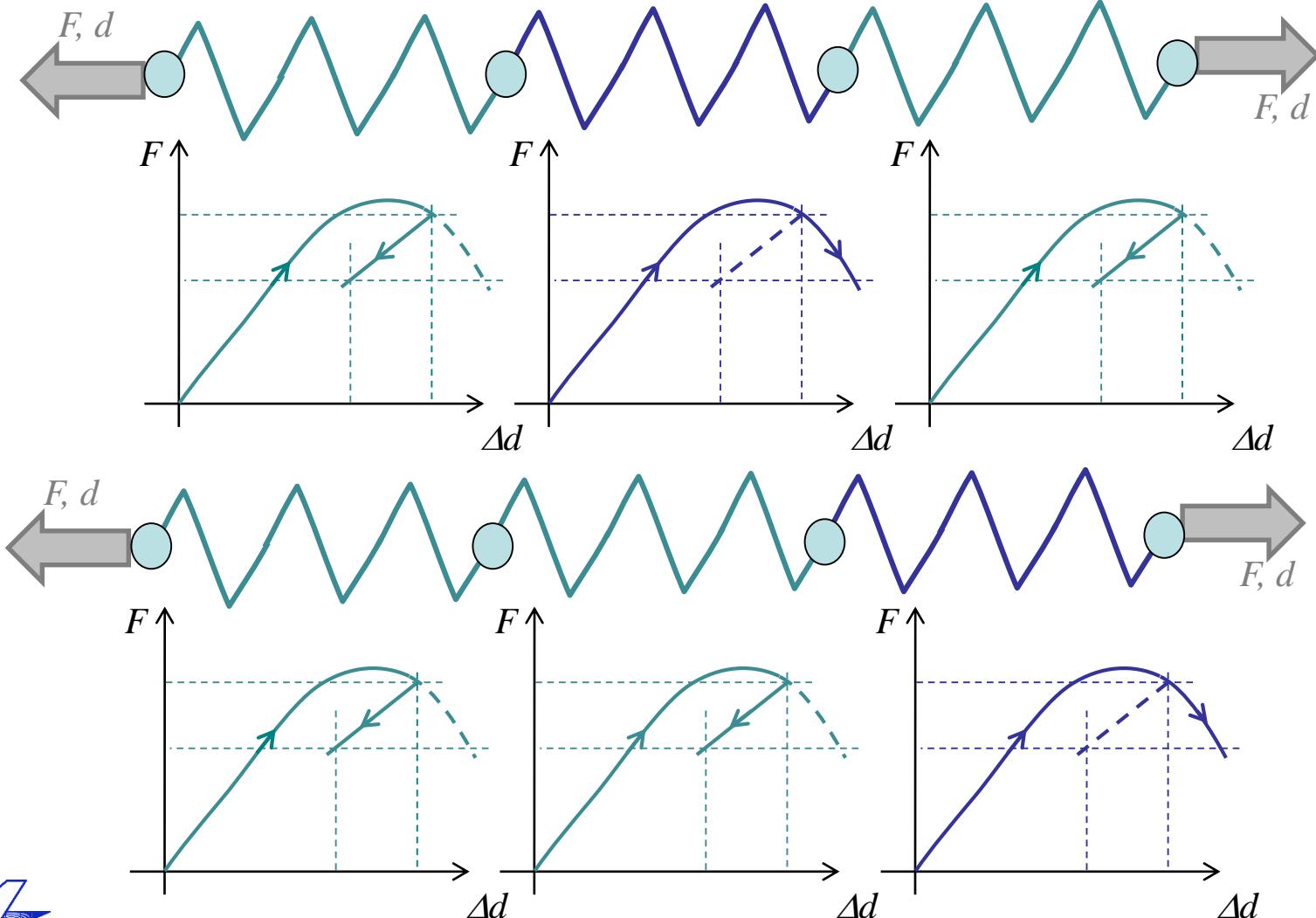
$$f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p(\hat{\varepsilon}^p)} \right)^2 + 2f_V \cosh \frac{\text{tr}(\boldsymbol{\sigma})}{2\sigma_p(\hat{\varepsilon}^p)} - f_V^2 - 1 \leq 0$$



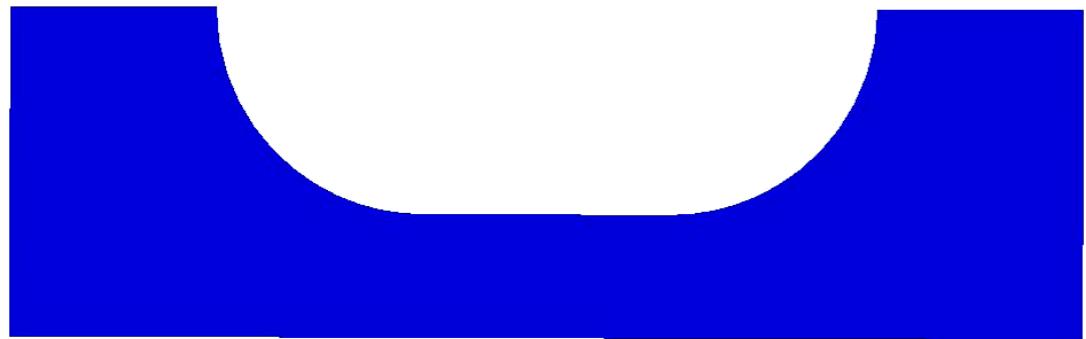
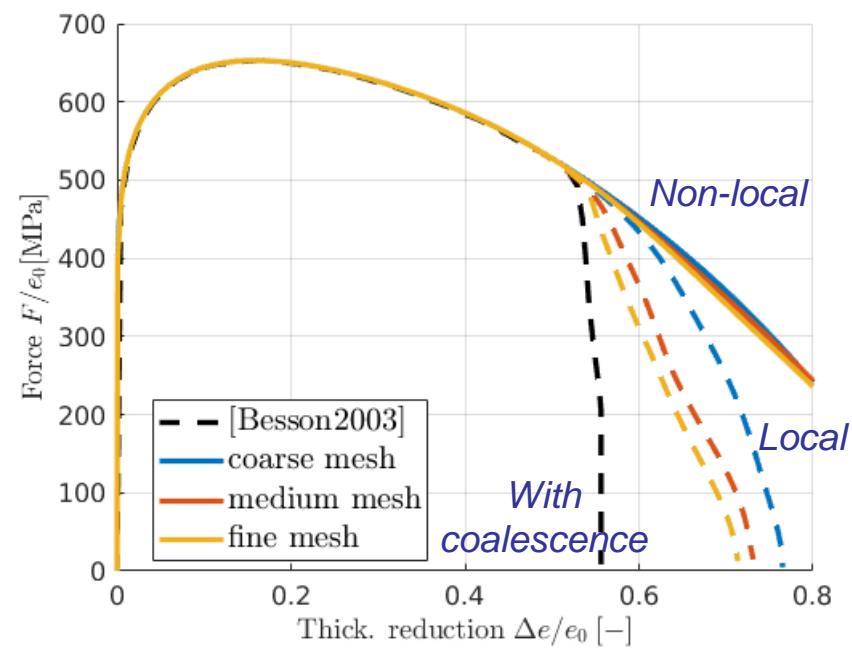
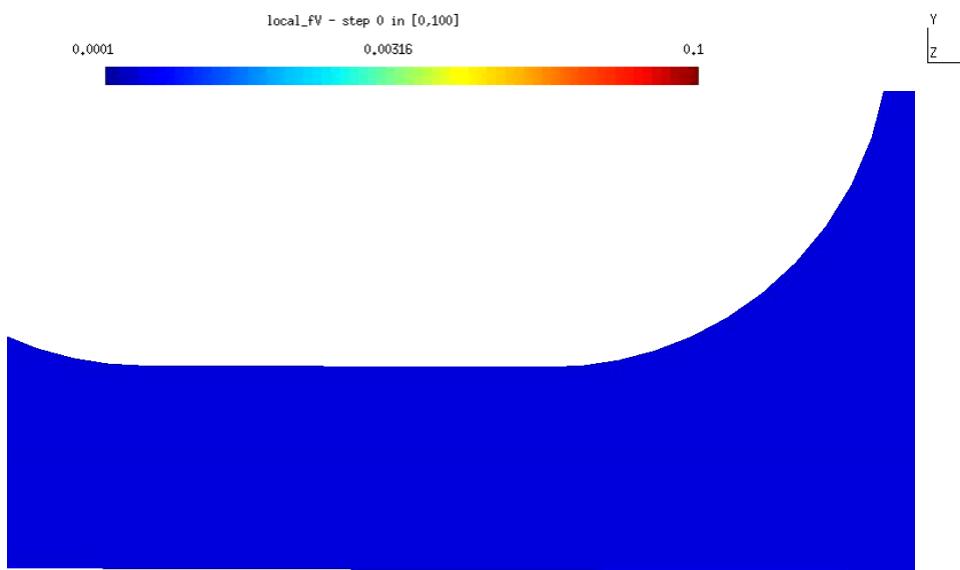
$$f(\boldsymbol{\sigma}) = \left(\frac{\sigma_e}{\sigma_p(\hat{\varepsilon}^p)} \right)^2 + 2qf_V^* \cosh \frac{\text{tr}(\boldsymbol{\sigma})}{2\sigma_p(\hat{\varepsilon}^p)} - q^2 f_V^{*2} - 1 \leq 0$$

- with $f_V^* = \begin{cases} f_V & \text{if } f_V < f_C \\ f_C + \frac{\frac{1}{q} - f_C}{f_F - f_C} (f_V - f_C) & \text{if } f_V > f_C \end{cases}$

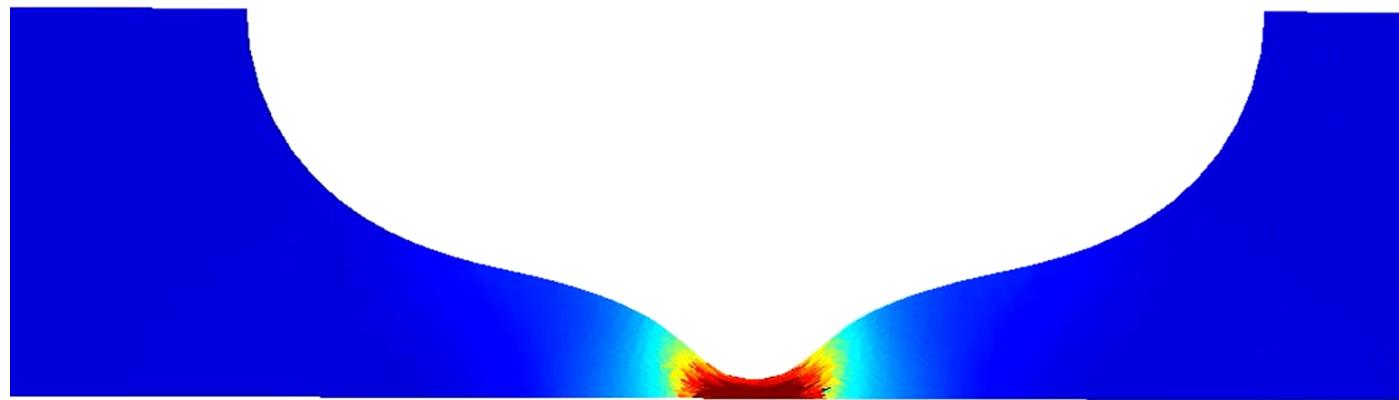
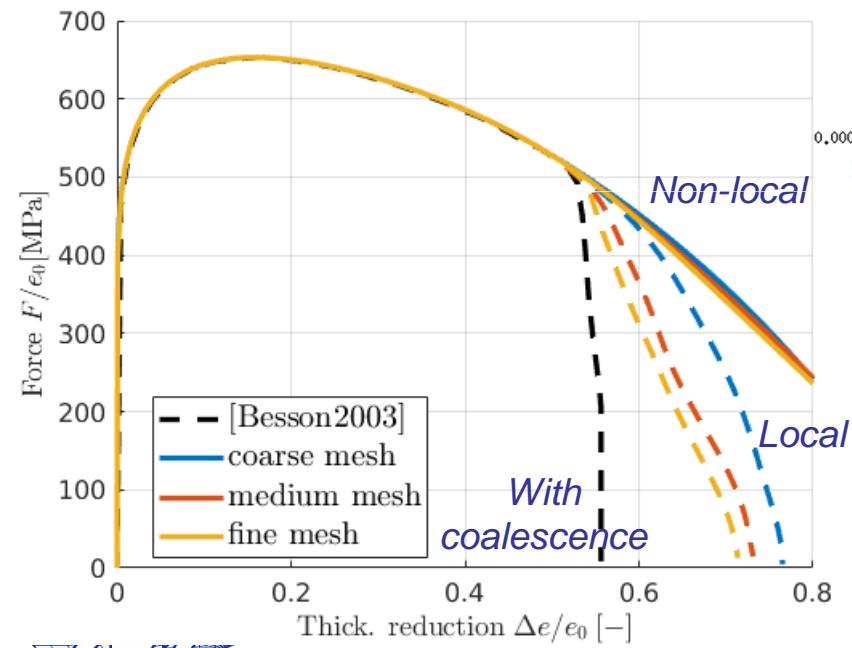
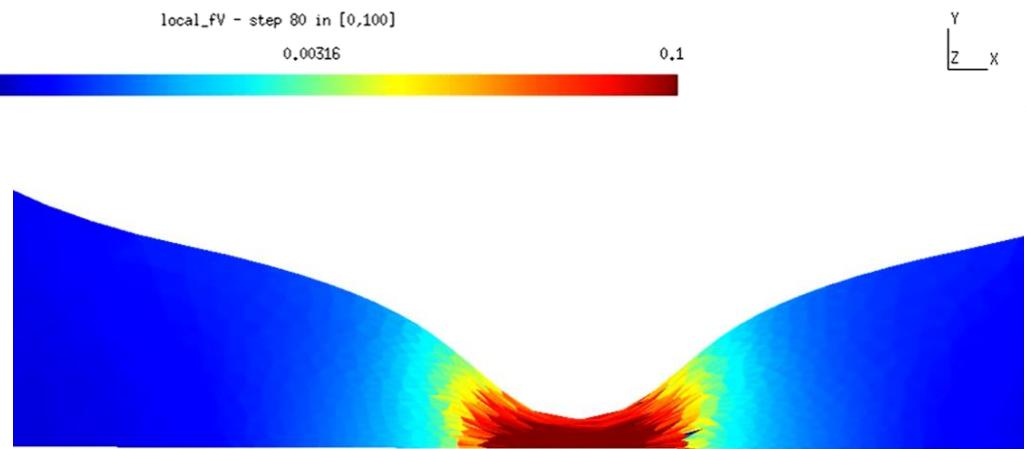
- Softening response
 - Loss of solution uniqueness mesh dependency



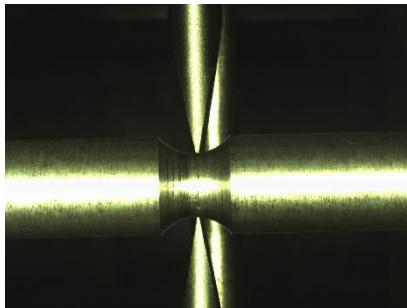
- Softening response (2)
 - Requires non-local models



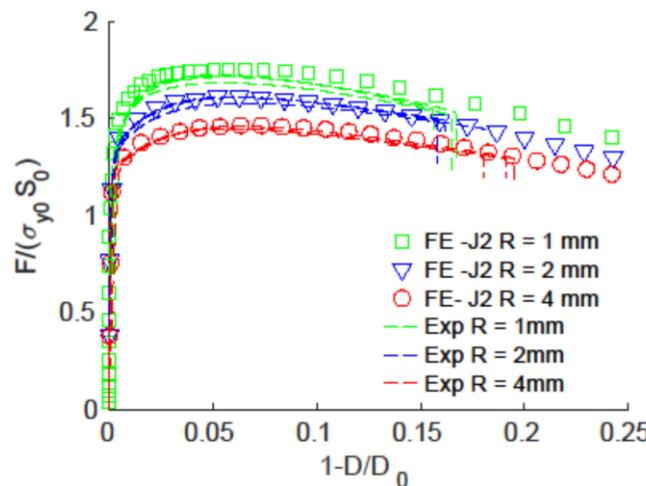
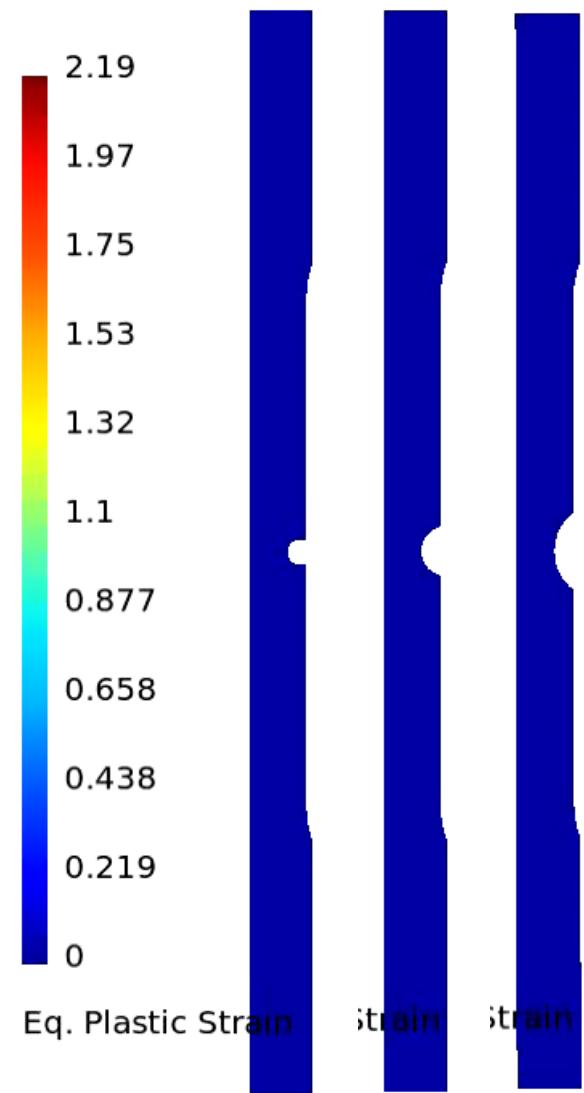
- Softening response (2)
 - Requires non-local models



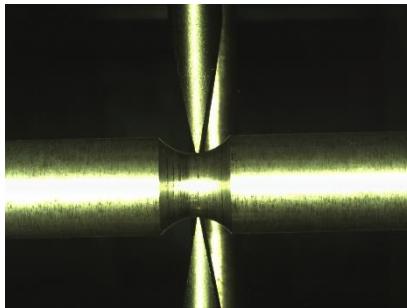
- Complex calibration
 - Experimental tests at different triaxiality states



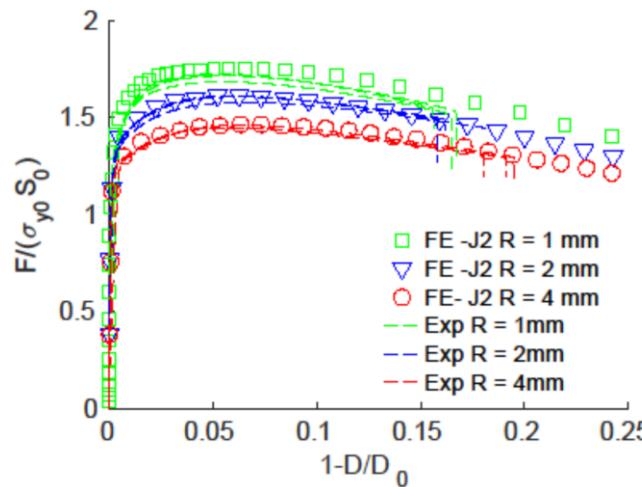
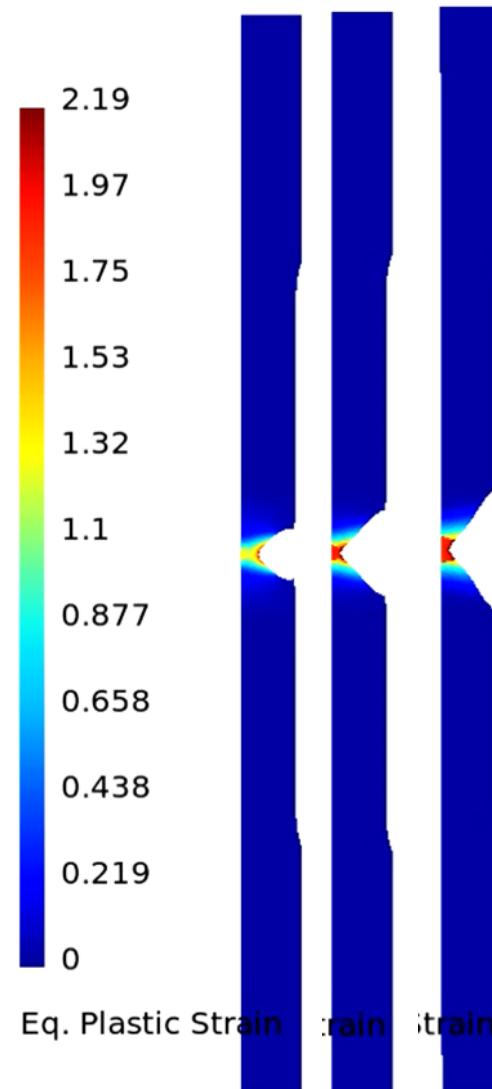
- Calibration
 - During plastic localization
 - During voids coalescences
 - For different loading
 - Completed by cell simulations



- Complex calibration
 - Experimental tests at different triaxiality states



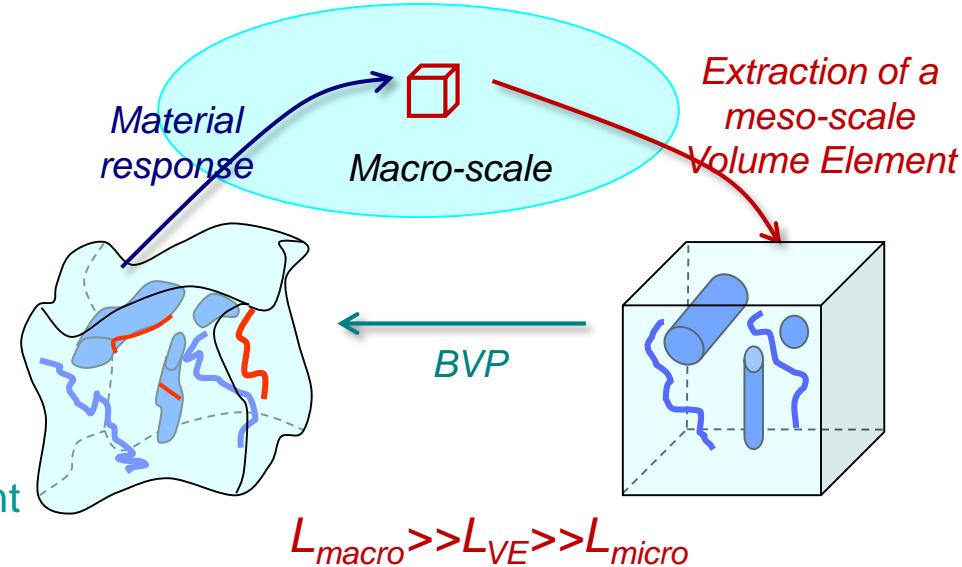
- Calibration
 - During plastic localization
 - During voids coalescences
 - For different loading
 - Completed by cell simulations



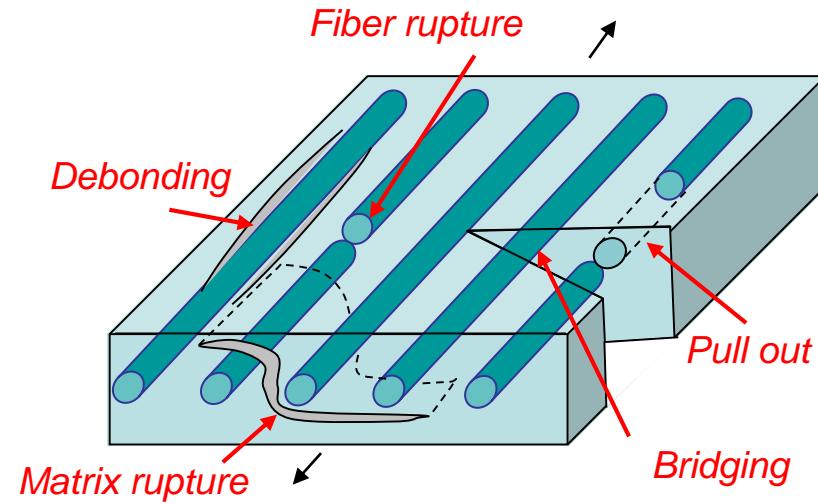
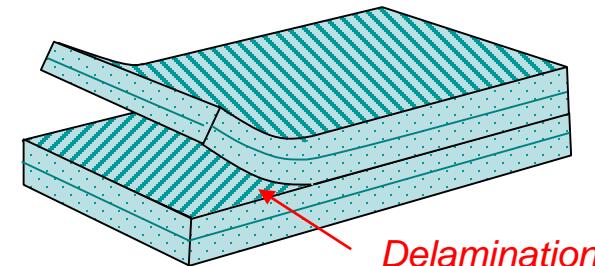
- Some fracture mechanics principles
 - Brittle/ductile materials & Fatigue
 - Linear elastic fracture mechanics
- Computational fracture mechanics for brittle materials
 - Crack propagation
 - Cohesive models
 - XFEM
- Computational fracture mechanics for ductile materials
 - Damage models
- Multiscale methods
 - Composite materials
 - Atomistic models

- Principle

- Simulate what is happening at small scale with correct physical models
- 2 BVPs are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)
- Requires two steps
 - Downscaling: BC of the mesoscale BVP from the macroscale deformation-gradient field
 - Upscaling: The resolution of the mesoscale BVP yields an homogenized macroscale behavior
- Gurson's model is actually a multiscale model



- Example: Failure of composite laminates
 - Heterogeneous materials: failure involves complex mechanisms



- Intralaminar failure

- Fiber rupture (1)
 - If no matrix
 - Fiber would not be able to carry any loading
 - Fiber would become useless
 - In reality
 - Matrix transmits the load between the two broken parts
 - Fiber can still (partially) carry the loading

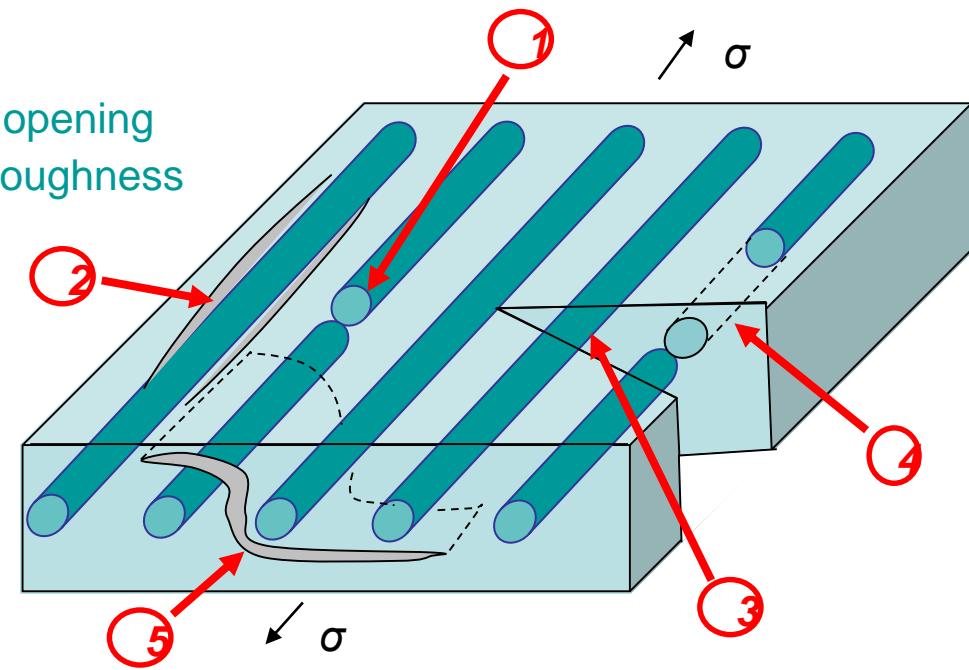
- Fiber/matrix debonding (2)

- Fiber bridging (3)
 - Prevents the crack from further opening
 - Corresponds to an increase of toughness

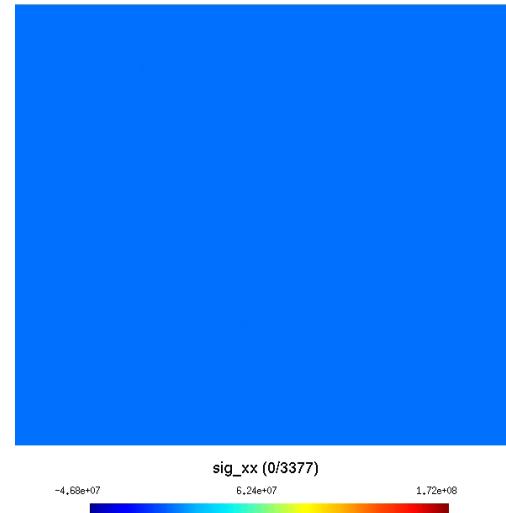
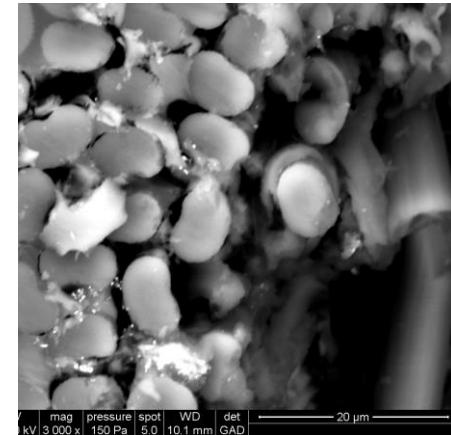
- Fiber Pullout (4)

- Matrix cracking (5)
 - Facilitates moisture absorption
 - May initiate delamination between plies

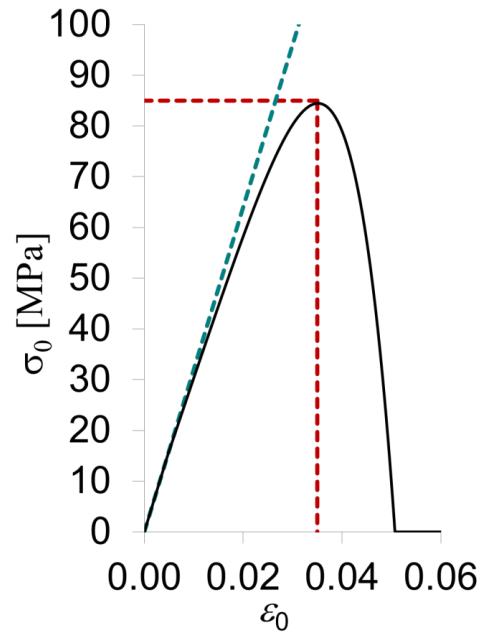
- Ultimate tensile failure
 - Several of these mechanisms



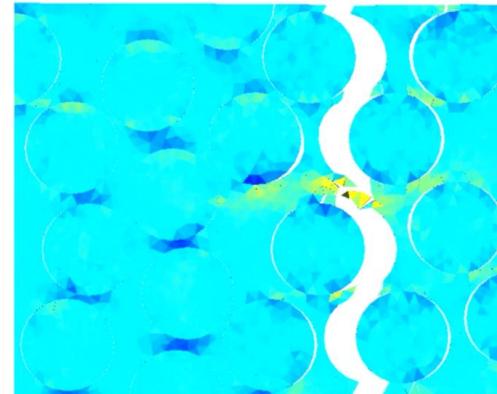
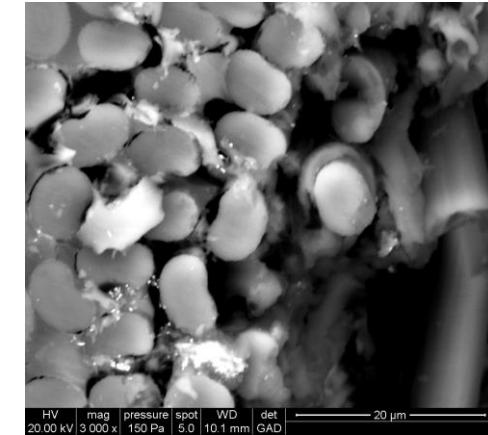
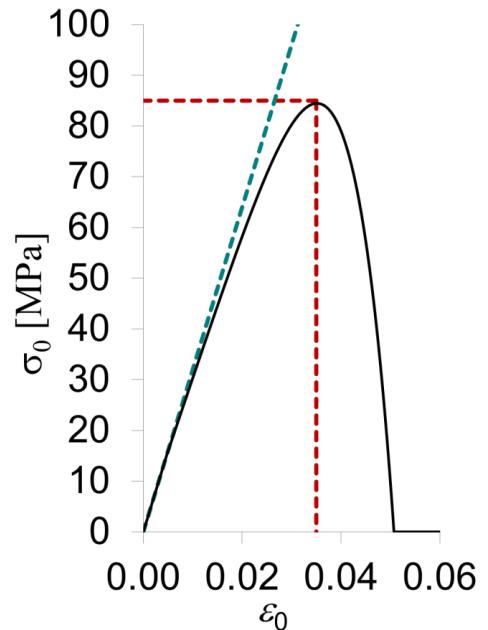
- Intralaminar failure
 - Requires multi-scale approach
 - Micro-Meso damage models
 - Computational homogenization
 - Mean-Field-Homogenization
 -
 - A lot of theoretical issues



- Experimental calibration
 - Complicated because of several modes
 - Ideally from constituents
 - Representative?
 - Ex: 60%-UD Carbon-fiber reinforced epoxy
 - Carbon fiber:
 - » Use of transverse isotropic elastic material
 - Elasto-plastic matrix with damage
 - » Use manufacturer Young's modulus
 - » Use manufacturer strength

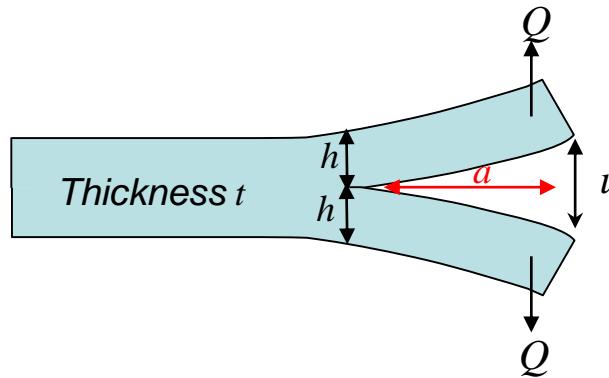
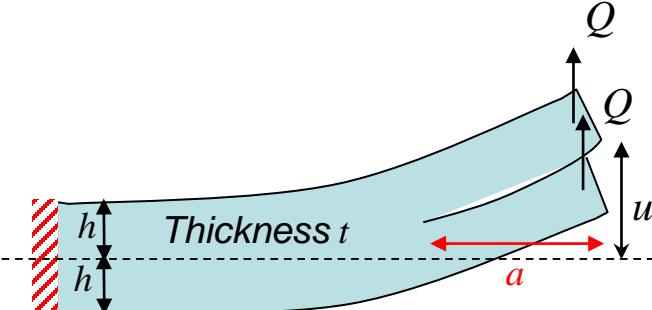


- Intralaminar failure
 - Requires multi-scale approach
 - Micro-Meso damage models
 - Computational homogenization
 - Mean-Field-Homogenization
 -
 - A lot of theoretical issues
 - Experimental calibration
 - Complicated because of several modes
 - Ideally from constituents
 - Representative?
 - Ex: 60%-UD Carbon-fiber reinforced epoxy
 - Carbon fiber:
 - » Use of transverse isotropic elastic material
 - Elasto-plastic matrix with damage
 - » Use manufacturer Young's modulus
 - » Use manufacturer strength



- Interlaminar fracture

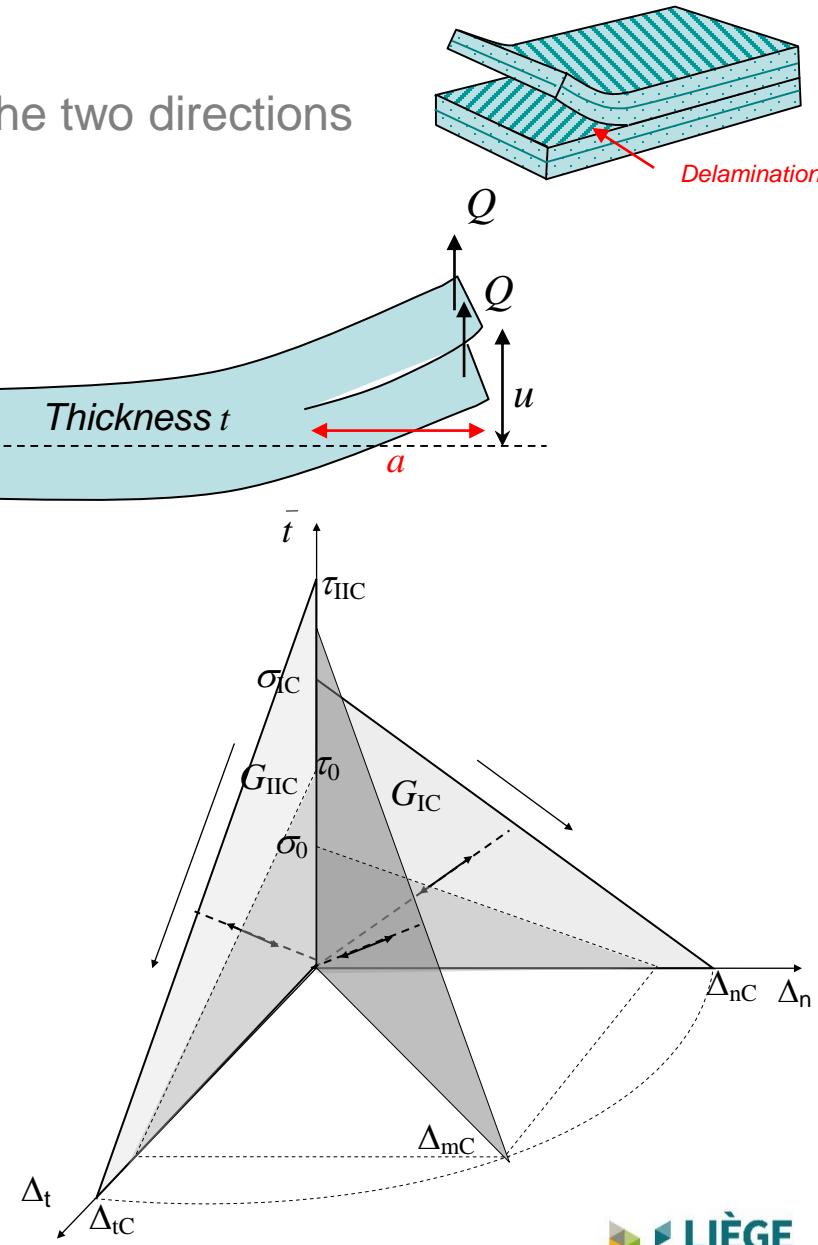
- Due to anisotropy, G_c is not the same in the two directions
 - Mode I and mode II



- Model
 - Cohesive zone model
 - Mixed mode fracture criterion

$$\left(\frac{G_I}{G_{Ic}}\right)^m + \left(\frac{G_{II}}{G_{IIc}}\right)^n = 1$$

where m & n are empirical parameters



- Interlaminar fracture: Mode I
 - Crack propagates in the matrix (resin)
 - $G_{Ic} = G_c$ of resin?
 - Due to the presence of the fibers
 - $G_{Ic} \neq G_c$ of the pure resin
 - Fiber bridging
 - Increases toughness
 - Fiber/matrix debonding
 - Brittle matrix
 - » Crack surface is not straight as it follows the fibers
 - » More surface created
 - » Higher toughness
 - Tough matrix
 - » Fibers may prevent the damage zone in the matrix from extending far away
 - » Smaller surface created
 - » Lower toughness

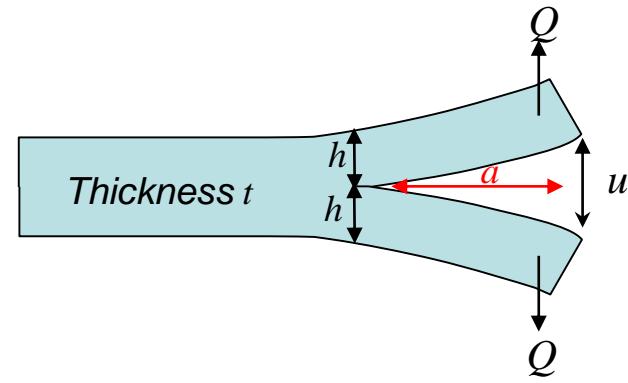
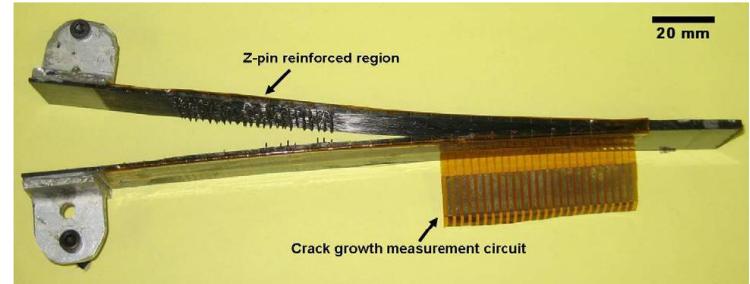
- Interlaminar fracture: Mode I (2)

- Measure of G_{Ic}

- DCB

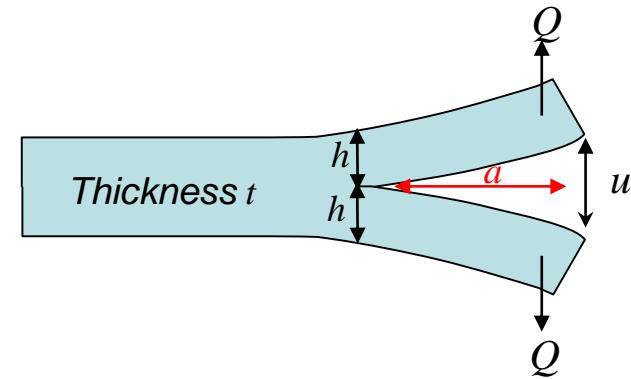
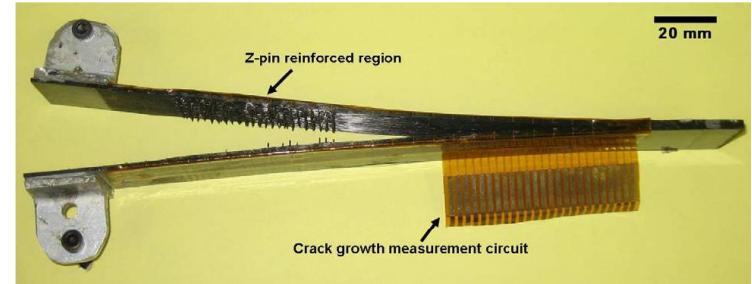
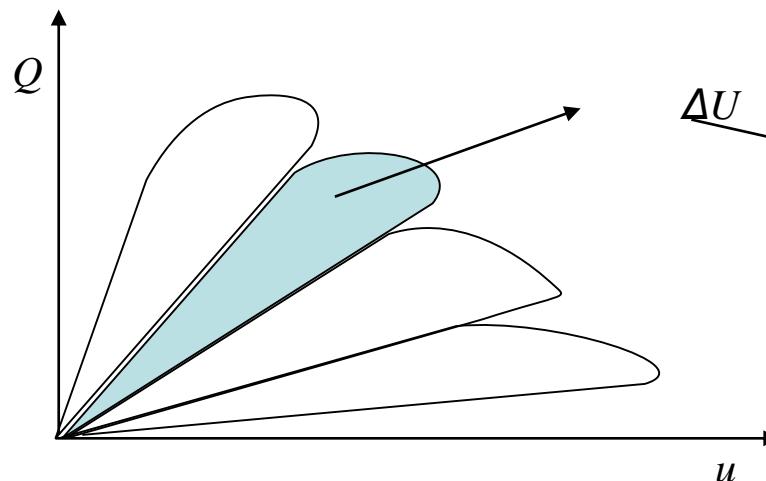
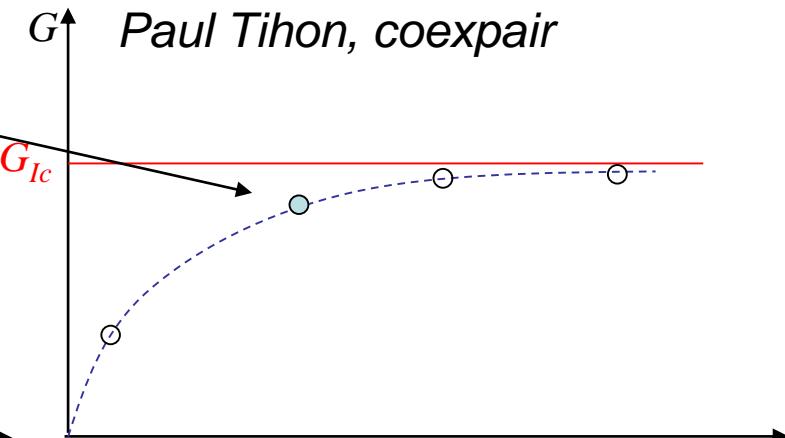
$$\left\{ \begin{array}{l} u = \frac{8Qa^3}{Eth^3} \\ G = \frac{12Q^2a^2}{Et^2h^3} = \frac{3u^2Eth^3}{16a^4} = \frac{3uQ}{2at} \end{array} \right.$$

- At fracture $G_{Ic} = \frac{3u_c Q_c}{2at}$
- The initial delaminated zone is introduced by placing a non-adhesive insert between plies prior to molding



Paul Tihon, coexpair

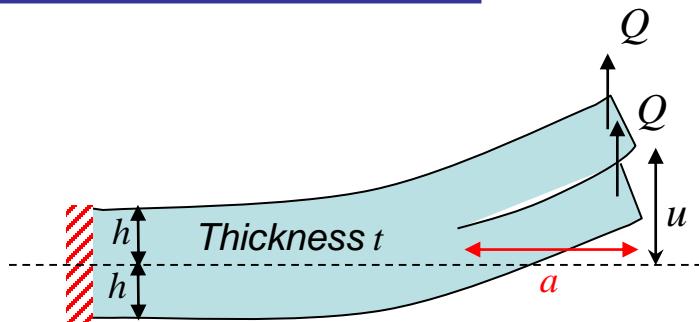
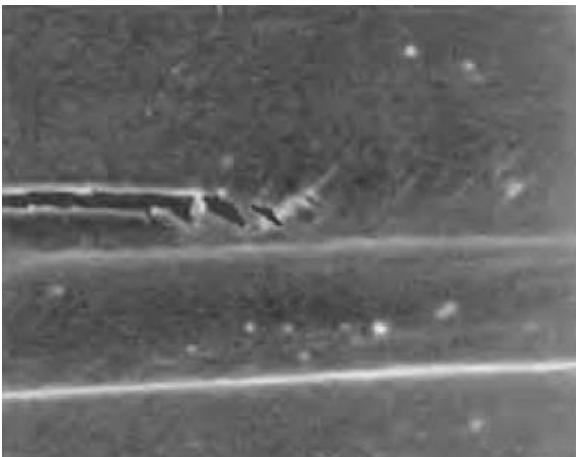
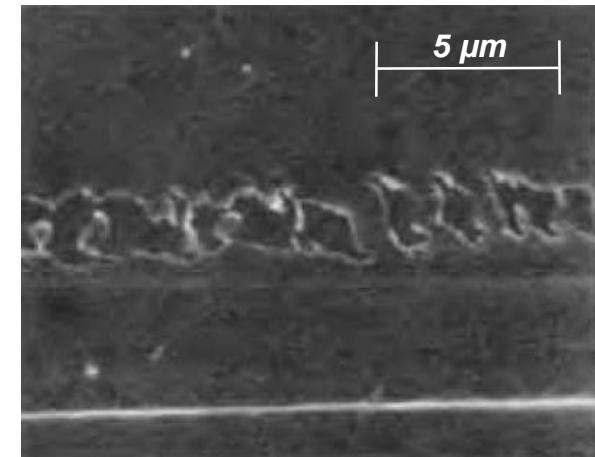
- Interlaminar fracture: Mode I (3)
 - Measure of G_{Ic} (2)
 - Linear beam theory may give wrong estimates of energy release rate
 - The area method is an alternative solution
 - Periodic loading with small crack propagation increments
 - The loading part is usually nonlinear prior to fracture
 - Since G is the energy released per unit area of crack advance: $G = \frac{\Delta U}{t \Delta a}$



- Interlaminar fracture: Mode II

- G_{IIc}

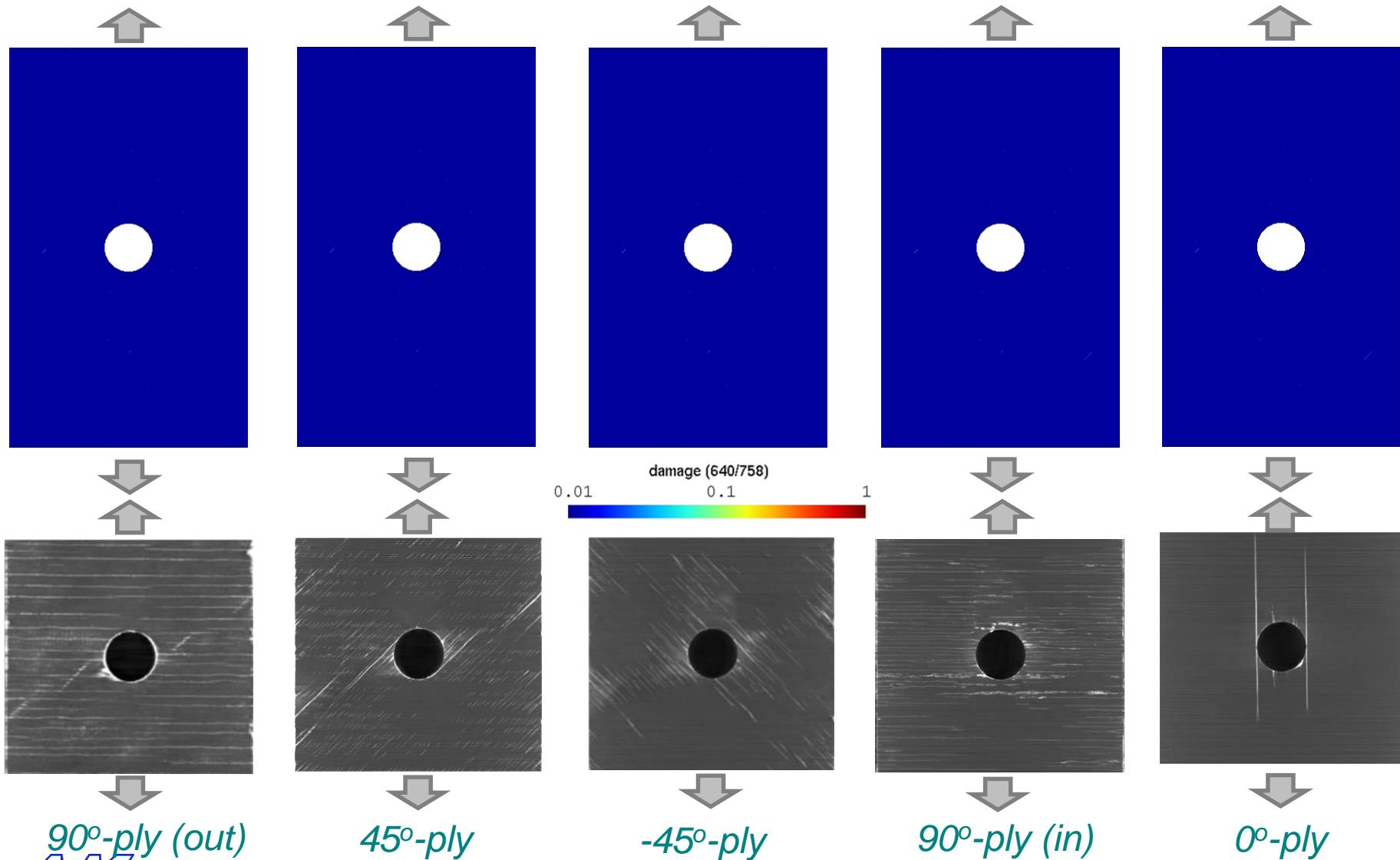
- Usually 2-10 times higher than G_{Ic}
 - Especially for brittle matrix
 - In mode II loading
 - Extended damage zone, containing micro-cracks, forms ahead of the crack tip
 - The formation of this damaged zone is energy consuming
 - » High relative toughness in mode II



- Note that micro-cracks are 45°-kinked
 - Since pure shearing is involved, this is the direction of maximal tensile stress
 - Thus the micro-cracks are loaded in mode I

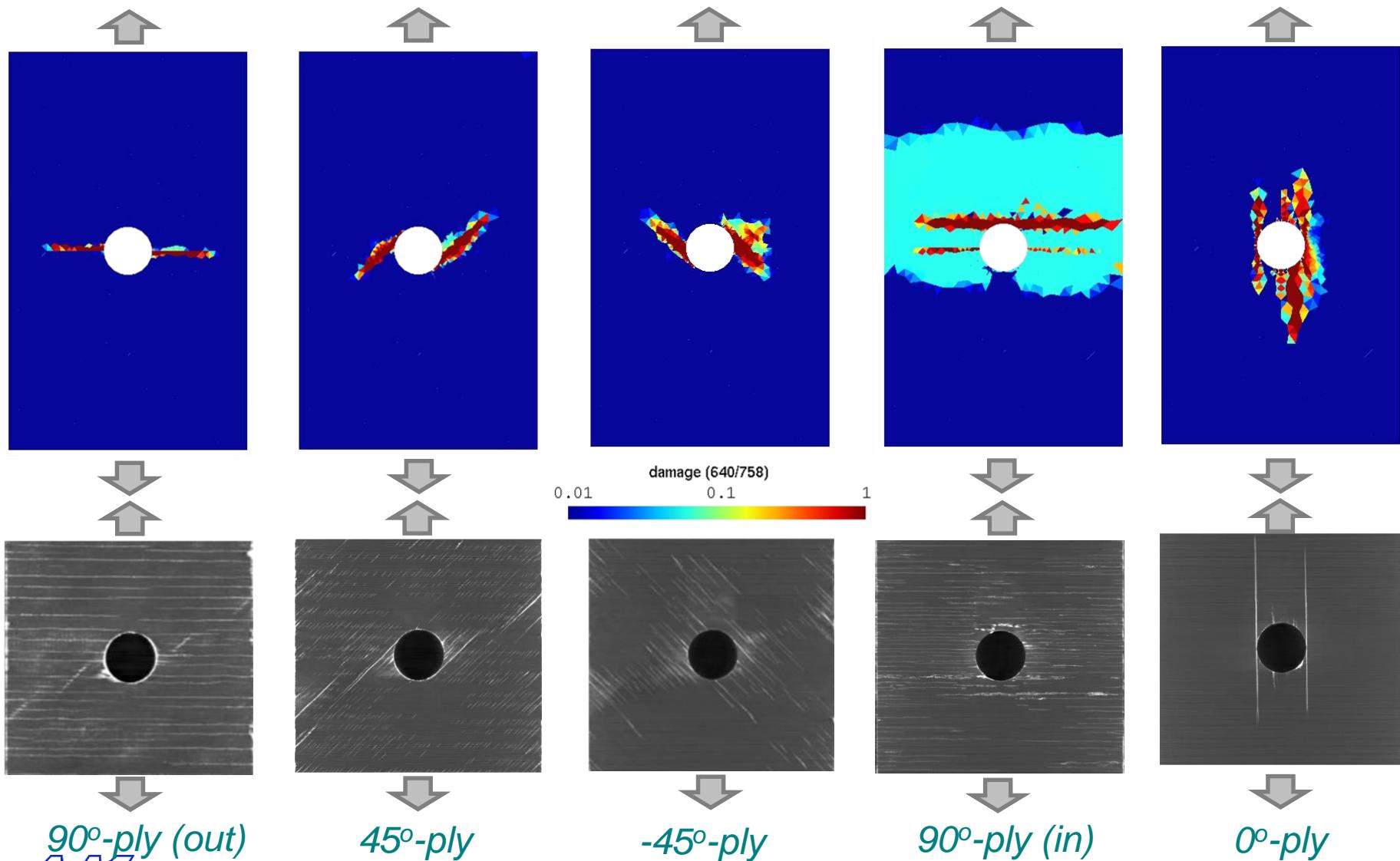
Composite materials

- Failure of composite $[90^\circ / 45^\circ / -45^\circ / 90^\circ / 0^\circ]_S$ - open hole laminate



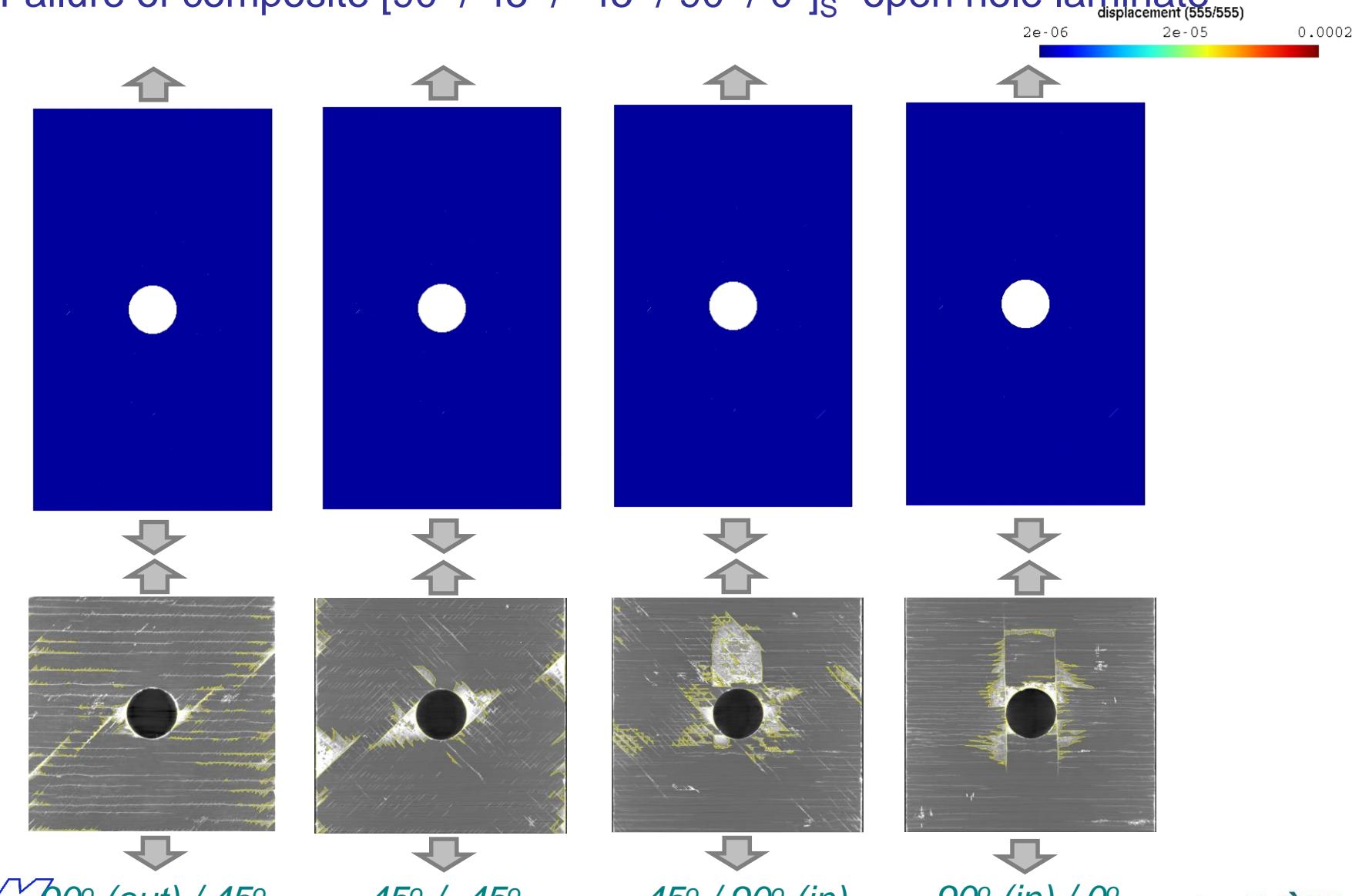
Composite materials

- Failure of composite $[90^\circ / 45^\circ / -45^\circ / 90^\circ / 0^\circ]_S$ - open hole laminate



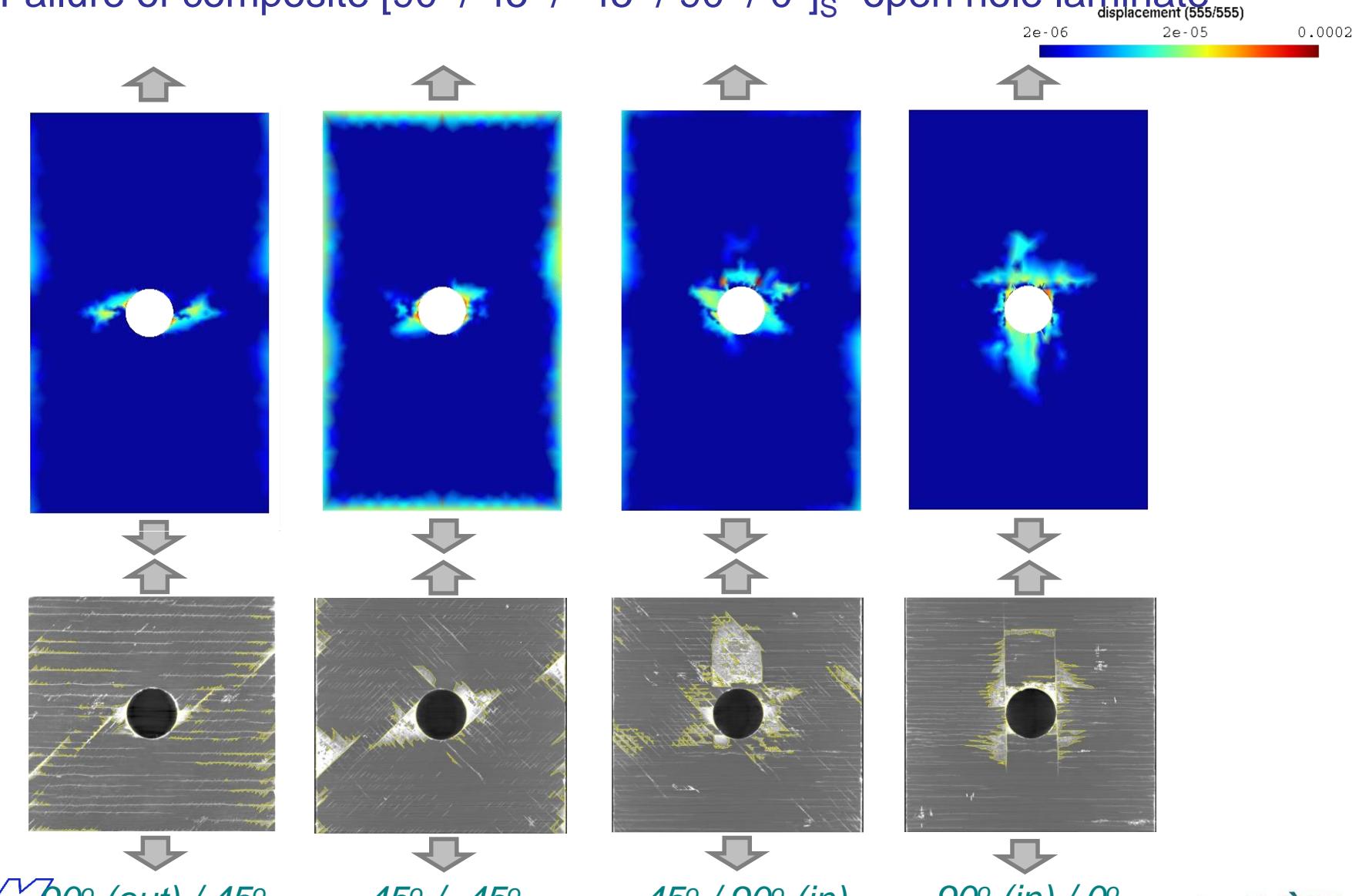
Composite materials

- Failure of composite $[90^\circ / 45^\circ / -45^\circ / 90^\circ / 0^\circ]_S$ - open hole laminate

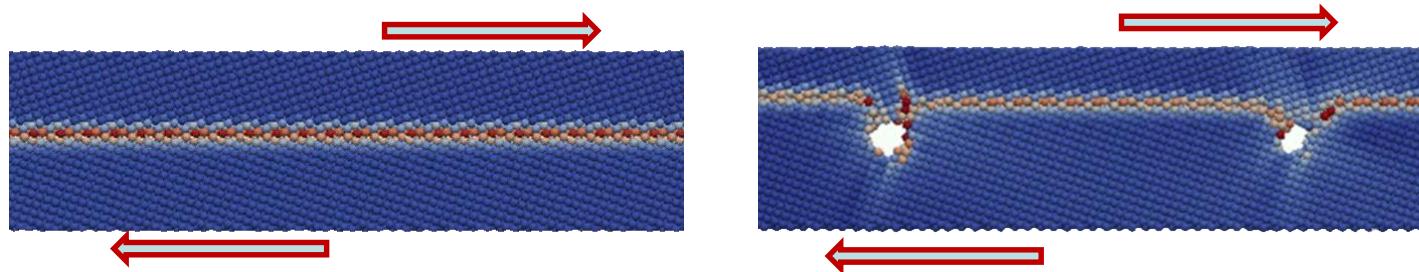


Composite materials

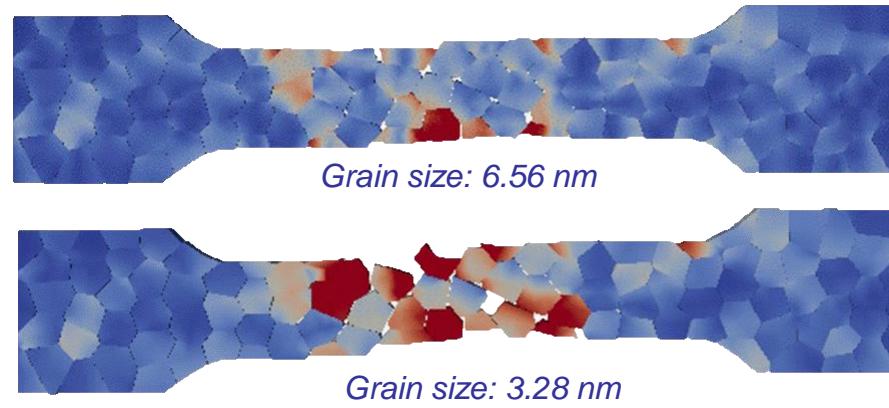
- Failure of composite $[90^\circ / 45^\circ / -45^\circ / 90^\circ / 0^\circ]_S$ - open hole laminate



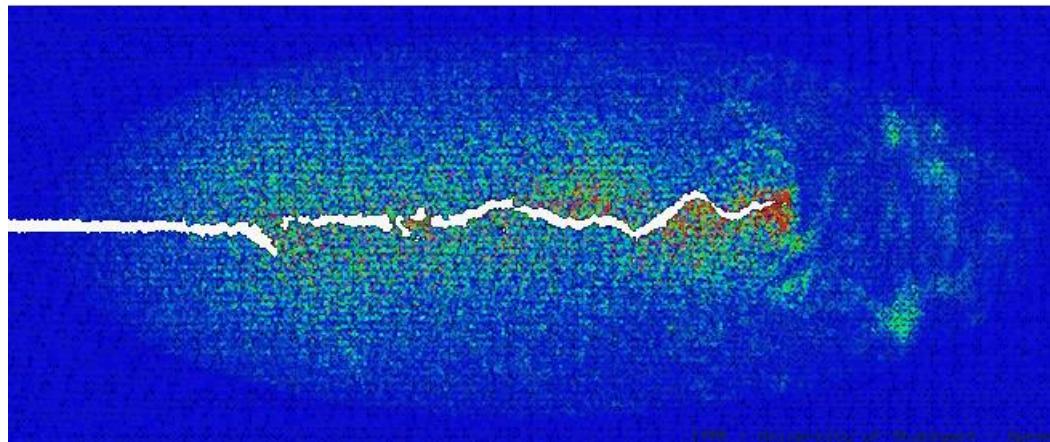
- Example: Failure of polycrystalline materials
 - The mesoscale BVP can also be solved using atomistic simulations



- Polycrystalline structures can then be studied
 - Finite element for the grains
 - Cohesive elements between the grains
 - Material behaviors and cohesive laws calibrated from the atomistic simulations



- Atomistic models: molecular dynamics
 - Newton equations of motion are integrated for classical particles
 - Particles interact via different types of potentials
 - For metals: Morse-, Lennard-Jones- or Embedded-Atom potentials
 - For liquid crystals: anisotropic Gay-Berne potential
 - The shapes of these potentials are obtained using ab-initio methods
 - Resolution of Schrödinger for a few (<100) atoms
 - Example:
 - Crack propagation in a two dimensional binary model quasicrystal
 - It consists of 250.000 particles and it is stretched vertically
 - Colors represent the kinetic energy of the atoms, that is, the temperature
 - The sound waves, which one can hear during the fracture, can be seen clearly



Prof. Hans-Rainer Trebin, [Institut für Theoretische und Angewandte Physik](#) Universität Stuttgart, www.itap.physik.uni-stuttgart.de/.../trebin.html

- *Lecture notes*
 - *Lecture Notes on Fracture Mechanics*, Alan T. Zehnder, Cornell University, Ithaca, <http://hdl.handle.net/1813/3075>
 - *Fracture Mechanics Online Class*, L. Noels, ULg, <http://www.ltas-cm3.ulg.ac.be/FractureMechanics>
 - *Fracture Mechanics*, Piet Schreurs, TUe, <http://www.mate.tue.nl/~piet/edu/frm/sht/bmsht.html>
- *Book*
 - *Fracture Mechanics: Fundamentals and applications*, D. T. Anderson. CRC press, 1991.