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Abstract5

This paper specifies the multiple timescale spectral analysis to the structural analysis of a single degree-of-
freedom structure including a fractional derivative constitutive term. Unlike usual existing models for this
kind of structure, the excitation is also assumed to be colored, in a low-frequency range compared to that of
the structural system, but not necessarily as an integer autoregressive filter. This problem further extends
the domain of applicability of the multiple timescale spectral analysis. The solution is developed as a sum of
background and resonant components. Because of the specific shape of the frequency response function of a
system equipped with a fractional viscoelastic device, the background component is not simply obtained as
the variance of the loading divided by the stiffness of the system. On the contrary the resonant component
is expressed as a simple extension of the existing formulation for a viscous system, at least at leading order.
As a validation case, the proposed solution is shown to recover similar results (in the white noise excitation
case) as former studies based on a stochastic averaging approach. A better accuracy is however obtained in
case of very small fractional exponent. Another example related to the buffeting analysis of a linear fractional
viscoelastic system demonstrates the accuracy of the proposed formulation for colored excitation. This paper
is mostly illustrated with the structural analysis of systems equipped with fractional dampers, but it could
be re-interpreted in any of the many other fields of engineering where applications are governed by the same
equation.
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1. Introduction8

Fractional calculus has attracted considerable attention over the last decades, partly due to the versatility9

of fractional-order tools to model biological [25, 31], biomedical [22], financial [22] as well as mechanical and10

structural engineering applications. In mechanics, fractional derivatives are used to model viscoelastic devices11

[32], whose properties are extracted from dedicated experimental procedures [41]. The stochastic dynamic12

analysis of systems with fractional viscoelastic devices has been extensively covered, from linear to nonlinear13

systems and in various cases of stationarity and Gaussianity limitations, and with various type of loadings.14

The linearity of the Riemann-Liouville operator [20] makes it rather straightforward to combine viscoelastic15

devices with others existing features of stochastic dynamics, like frequency dependent parameters [39] or linear16

systems control theory [8]. It makes it also rather straightforward to generalize the convolution integral [2, 4]17

or the augmented state formulation [34] to that class of problems. The nonstationary solution of linear systems18

might also be expressed in closed form [35]. As soon as nonlinear stochastic dynamical systems are considered,19

the exact solution is usually not obtained in closed form, even for wide-band (usually white noise) excitation.20

Approximations similar to or derived from the stochastic linearization and stochastic averaging methods [9,21

23, 45, 46], or those based on a Fokker-Planck equation of the process envelope [1] appear to be the most22

classical ways to deal with such problems. Narrow band excitations and complex dynamical interactions can23

be simplified with similar multiple scales approaches [44]. Other more realistic types of loadings [7] or even24

earthquake loadings of linear and nonlinear systems equipped with viscoelastic devices have been considered25

[29, 40].26

Beside these approximations of the exact solution of the problem, other numerical techniques have been27

proposed to deal with the structural analysis of systems with fractional derivatives. In particular, Monte Carlo28

simulation methods are consistently used to validate approximations. There exist also ad hoc simulation methods29
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[35, 11] which are computationally efficient, methods based on Wiener path integral approaches [26, 27, 30, 33]30

and weak formulations based on wavelet transforms [28]. These techniques, together with exact assembling31

procedures of structural analysis [19], or finite element approaches [3, 17, 18], make it possible to study more32

realistic structures composed of several beams and columns, and several viscoelastic devices.33

This review of the literature reveals two trends. On one side, there are simple dynamical systems with linear34

(or linearized) behaviour and white noise excitation, which possess closed form solutions. On the other side,35

there are numerical techniques to deal with more realistic loadings (sometimes nonstationary), more realistic36

structures and/or slight nonlinearities. The missing gap in-between is related to the understanding (via simple37

analytical solutions) of the behavior of complex structures subjected to more realistic loadings. As a first step38

towards this goal, we consider the stochastic analysis of a linear system subjected to a low frequency loading39

specified by its arbitrary power spectral density. This problem could be studied by means of the usual time40

domain multiple scales approach, or the stochastic averaging approach, but would require the consideration of41

three interacting timescales as well as fractional models —similar to those used to simulate realizations of wind42

fields [12],— for the augmented state coloring the excitation. This seems possible to solve the problem in this43

way, although no track evidences of this type of problem has been found in the literature. Instead, we take44

advantage of the linearity of the problem to derive a simplified solution in a frequency domain. It is based45

on the Multiple Timescale Spectral Analysis [15] which seeks the same objectives as the stochastic averaging,46

with slightly more versatility. This method has already been applied in the context of non Gaussian loading47

[14], nonstationary loading [6] slightly nonlinear systems [16] or multi degree-of-freedom structures [13, 5]. The48

problem considered in this paper is just a little extension of the method and further studies could combine49

viscoelastic devices with slight nonlinearities or multiple degrees-of-freedom, for instance.50

2. Problem Formulation51

The governing equation of motion of a linear single-degree-of-freedom system equipped with a viscoelastic52

device reads53

mÿ(t) + gDαy(t) + ky(t) = f(t) (1)

where m is the mass, k is the stiffness, g is the fractional damping coefficient and Dα is the Riemann–Liouville54

fractional derivative operator defined as55

Dαy(t) =
1

Γ(1− α)

tˆ

0

ẏ(t̃)

(t− t̃)α
dt̃. (2)

The fractional exponent α is assumed to be in the range [0, 1]. The two limiting cases correspond to a viscous56

damping (α = 1) and to a stiffness term (α = 0). The stationary external forcing is specified through its power57

spectral density function Sf (ω) and is assumed to vary on a slow timescale, compared to the dynamics of the58

structure. This condition is formalized in the sequel. In wind engineering, such a slow loading is typically59

attributable to the buffeting loading for which several models exist [38]. For instance, one such model reads60

Sf

(
ω;
U

L

)
= σf

0.546LU(
1 + 1.64LU |ω|

)5/3 (3)

where U and L respectively correspond to the mean wind velocity and the turbulence length scale. The ratio61

U/L is a small characteristic frequency that is typical of buffeting excitations [37]. This power spectral density62

model is used in the following illustrations. This is just an example; any other low-frequency excitation could63

be used to illustrate the following developments.64

65

A dimensionless version of the governing equation is obtained by introducing the characteristic time and the66

characteristic response67

t? =

√
m

k
and y? =

σf
k

(4)

and by defining the dimensionless time τ and the scaled response x(τ) as68

τ =
t

t?
and x(τ) =

y(t?τ)

y?
. (5)

Noticing that Dαy(t?τ) = y? t?−αDαx(τ), the governing equation becomes69

x′′(τ) + 2ξDαx(τ) + x(τ) = u(τ) (6)
2
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Figure 1: Representation of the kernel K(Ω) for various values of the fractional exponent α. Other parameters: ξ = 0.2,

where the prime symbol denotes derivatives with respect to τ , where70

ξ =
g

2k t?α
=

g

2mt?α−2
(7)

is the dimensionless fractional coefficient and where u(τ) = f(τt?)/σf is the unit-variance dimensionless external71

forcing whose power spectral density is given by Su(Ω) = Sf (Ω/t?)/σ2
f t
? as a function of the dimensionless72

frequency Ω = 2π/τ (notice that this non-dimensionalization needs to be reviewed in case of white noise73

loading, in that case, σf can be replaced by S1/2
f /t?). The dimensionless version of the power spectral density74

of the loading given in (3) reads75

Su (Ω;β) =
1

t?
Sf

(
Ω

t?
;
β

t?

)
=

0.546

β
(

1 + 1.64 |Ω|β

)5/3
(8)

with β = Ut?/L � 1 the dimensionless characteristic frequency of the turbulence velocity. Again, we repeat76

this is just an example and any other loading characterized by power spectral densities whose frequency content77

is centered on a small frequency β would perfectly fit the scope of this paper.78

The Fourier transform of (6) reads79 (
1 + 2ξC |Ω|α − Ω2 − 2ξiS |Ω|α

)
X(Ω) = U(Ω) (9)

where C = cos απ2 and S = sin απ
2 , so that the power spectral density of the response is given by80

Sx(Ω) =
Su(Ω)

(1 + 2ξC |Ω|α − Ω2)
2

+ (2ξS |Ω|α)
2 := K(Ω)Su(Ω). (10)

In this expression, we have defined the kernel (frequency response function)K(Ω) of this problem. It is illustrated81

in Figure 1 for several values of α. It has some peculiarities: (i) the resonance peak located near Ω = ±1 in the82

viscous case (α = 1) regularly moves to higher frequencies as α→ 0, i.e. as the fractional derivative term tends83

to correspond to a stiffness term. In the limiting case α = 0, the fractional derivative corresponds to a usual84

stiffness term and the peak is located at abscissa Ωp =
√

1 + 2ξ ' 1 + ξ; (ii) the frequency response function85

passes trough a common crossing point, at abscissa Ω = 1, no matter the fractional exponent α (this is readily86

observed by replacing Ω by 1 in the definition of the kernel); (iii) in the range Ω ∈ [−1; 1] the kernel is comprised87

in the area generated by the two limiting cases α = {0, 1} with α = 0 being the lower bound and α = 1 being88

the upper bound; (iv) the coordinate at the origin is K(0) = 1 provided α 6= 0. As α → 0, a short boundary89

layer, whose extent is of order α, develops in the neighborhood of the origin and creates the transition from the90

upper bound K(0) = 1 to the lower bound K(Ω) ' 1
(1+2ξ)2

. For α→ 0, the size of this transition zone tends to91

zero; for α = 0, there is no transition anymore and K(0) = 1
(1+2ξ)2

.92

As a result of the fractional powers of Ω appearing in K(Ω), the response of the system, its variance, defined93

as94

σ2
x =

+∞ˆ

−∞

Sx(Ω)dΩ, (11)

3



is unfortunately not available in a simple closed form, even for simple forms of the power spectral density of95

u(τ).96

In the sequel we assume that ξ � 1. This is very similar to the developments based on stochastic averaging,97

van der Pol transformations, quasi-Hamiltonian systems and the likes and results in three timescales in the98

problem : (i) the slow timescale of the loading β−1, (ii) the slow timescale associated with the energy of the99

system ξ−1 and (iii) the fast (unit) timescale associated with the phase of the system. Unlike existing approaches100

exploiting the smallness of ξ in the time domain, we also recognize the existence of the different scales and exploit101

it, but in the frequency domain. As shown next, this allows a very simple derivation of the approximate solution102

of the problem. The method is based on the Multiple Timescale Spectral Analysis, which is briefly summarized103

before tackling the problem at hand.104

3. Multiple Timescale Spectral Analysis105

The multiple timescale spectral analysis is a general framework developed to derive approximate responses of106

stochastic systems involving various well separated timescales [15]. In this paper, we only need the steady-state107

1-D version of the method, which is summarized as follows. Let us consider a (linear, for the sake of this study;108

but it could be slightly nonlinear) structural system subjected to a stationary stochastic input. The steady-state109

variance of the response is given by110

σ2
x =

+∞ˆ

−∞

K(Ω)Su(Ω)dΩ. (12)

Instead of the numerical computation of this integral, one might be interested in an approximate closed form111

expression, by taking advantage of the timescale separation. To do so, the multiple timescale spectral analysis112

consists first in identifying all different contributions to the integral. They might be either global, i.e. on a113

domain of order 1 or more, or local in which case they look like a peak over a short domain. The existence114

of one or several small numbers in the problem might be used to justify the distinctness of the peaks and is115

useful to estimate the order of magnitude of each contribution. In a second step, these contributions to the116

integral are evaluated, in a sequential manner, starting with the domain or peak that contributes the most to117

the integral. This evaluation develops in several steps: (i) provide a local approximation K̂(Ω)Ŝu(Ω) of the118

integrand K(Ω)Su(Ω) that is accurate over the considered domain or peak, and that drops to zero in the far119

field, in order to be integrable (this condition is very similar to the management of Poincaré’s secular terms in120

the time domain version of the multiple timescale method). This approximation should also be simple enough121

so that the integral122

σ2
x,1 =

+∞ˆ

−∞

K̂(Ω)Ŝu(Ω)dΩ (13)

corresponding to the first contribution might be evaluated in an explicit way; (ii) once this is done, subtract123

(13) from (12), in order to obtain a remainder r1 = σ2
x−σ2

x,1 which is evaluated as the integral of K(Ω)Su(Ω)−124

K̂(Ω)Ŝu(Ω). This integrand does not have any significant contribution anymore, in the neighborhood of the125

peak(s) that has/have already been treated. The sequence then follows with the next contribution. When the126

process is over, the last remainder is neglected. It provides the order of magnitude of the error committed with127

the approximation. Please refer to [15] for more details and examples.128

4. Solution of the problem and discussion129

Figure 2 shows some examples of the power spectral density of the structural response given by (10). This130

function features two distinct types of peaks: one in the low-frequency range around Ω ' 0 and over a domain131

whose extent is of order β (the background component) and the other in the order-one frequency range (the132

resonant component). We successively focus on these two types peaks in the sequel. They are well distinct133

because β � 1.134

4.1. Background component135

Following the general method of the multiple timescale spectral analysis, we first focus on the background136

component, in the low-frequency range, and define a local approximation of Sx(Ω). Similarly to what is done137

for the oscillator with viscous damping [15], only K(Ω) is approximated. The stretched coordinate ζ, defined as138

Ω = βζ ⇐⇒ ζ =
Ω

β
4
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Figure 2: Examples of the power spectral density of the structural response for various values of the fractional exponent α. Other
parameters: ξ = 0.2, β = 0.05.
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Figure 3: Local approximation of the kernel in the neighborhood of the origin, represented for various values of the fractional
exponent α. Illustration given for ξ = 0.2.
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is introduced in order to rescale the range Ω = ord(β) to an order-one interval when ζ = ord(1). Using this139

scaling, the kernel is expressed as140

K [Ω (ζ)] =
1

(1 + 2ξCβα |ζ|α − β2ζ2)
2

+ (2ξβαS |ζ|α)
2 . (14)

An approximation of this exact kernel is necessary to establish a closed-form expression of the background141

component. Evoking the smallness of β � 1, while the stretched coordinate ζ is of order 1, we can drop the142

term β2ζ2 in the first term of the denominator and approximate the exact kernel by143

K̂ [Ω (ζ)] =
1

1 + 4ξCβα |ζ|α + 4ξ2β2α |ζ|2α
. (15)

This is the frequency response function of a lowpass fractional filter [42]. This approximation is represented in144

Figure 3, for several values of α. This figure also shows K [Ω (ζ)] for α = 0 and shows that the singular behavior145

at ζ = 0 is well captured. A Taylor series expansion for β around 0 would certainly not have provided such an146

accurate approximation. Expression (15) fits the requirements of the multiple timescale spectral analysis since147

it is seen to be locally accurate even when α = 0; furthermore it is bounded in the far field and has a more148

or less simple analytical expression. Using this approximation, the background component of the response is149

finally expressed as150

σ2
x,b =

+∞ˆ

−∞

Su(Ω)K̂ (Ω) dΩ =

+∞ˆ

−∞

Su(Ω)

1 + 4ξC |Ω|α + 4ξ2 |Ω|2α
dΩ. (16)

For α ' 1 and ξ � 1, this dimensionless background component is a small perturbation of 1 as a result of151

our choices for the scaling of the problem. The integral in (16) requires numerical integration as soon as α 6= 1.152

We notice however that this integral only depends on the loading parameters ξ and α and is independent of the153

properties of the dynamical system. This integral could therefore be determined once and for all, for a given154

loading Su(ω).155

Nevertheless there are two alternative solutions to avoid the numerical computation of this integral. First,156

the kernel might be approximated as K̃ (Ω) ' 1 and the background component could be approximated as157

σ̃2
x,b =

+∞ˆ

−∞

Su(Ω)dΩ = 1. (17)

This approximation is much simpler, consistent with viscous damping [15] but does not capture the rapid158

decrease of the kernel for α� 1 in the neighborhood of the origin. This is further discussed next.159

Instead, driven by the fact the we would like to recover K̂ [Ω (ζ)] ' (1 + 2ξ)−2 in the limit case α = 0,160

we could determine a Padé approximant (a rational fraction approximation in ξ) by redefining K̂ [Ω (ζ)] as161

(1 + 2ξ)−2 multiplied by the series expansion of (1 + 2ξ)2K̂ [Ω (ζ)]. For consistency, this series is truncated after162

the second term. After some developments, this results in the new approximation163

K(Ω) =
1 + 4ξ (1− C |Ω|α) + 4ξ2

(
1− 4C |Ω|α − (1− 4C2) |Ω|2α

)
(1 + 2ξ)2

(18)

which yields164

σ2
x,b =

+∞ˆ

−∞

Su(Ω)K (Ω) dΩ = 1− 4ξC (1 + 4ξ)

(1 + 2ξ)2
mu,α −

4ξ2(1− 4C2)

(1 + 2ξ)2
mu,2α (19)

where mu,α =
´ +∞
−∞ Su(Ω) |Ω|α dΩ is the α-fractional spectral moment of Su(Ω). Depending on the high-165

frequency behavior of the external forcing, its α- and 2α-fractional spectral moments might not be defined.166

In case one of them (or even mu,0 = 1 , the first term in the expression) is unbounded, they should not be167

included in the expression of the background component. This other approximation is interesting but has limited168

applicability for this reason.169

In the following section, we continue the derivation with the more accurate expression σ2
x,b.170
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Figure 4: Remainder after subtraction of the background component, represented for various values of the fractional exponent α.
Other parameters: ξ = 0.2, β = 0.05.

4.2. Resonant component171

The remainder is obtained by subtracting this first approximation from the original function to integrate,172

that is173

r1 =

+∞ˆ

−∞

Sx(Ω)− Su(Ω)K̂ (Ω) dΩ =

+∞ˆ

−∞

Su(Ω)
(
K (Ω)− K̂ (Ω)

)
dΩ. (20)

The function to be integrated features two symmetrical peaks which will equally contribute the resonant part174

of the response. They first need to be accurately localized, at least in terms of orders of magnitude. In a second175

step, the local approximation will be derived.176

Assuming that the power spectral density of the loading varies smoothly in the neighborhood of the peaks177

of the frequency response function of the system (located at ±Ωp), the peaks in the response are located at the178

same abscissa as the peaks in the kernel. The actual position of these peaks is then obtained by canceling the179

first derivative of the denominator of the kernel K(Ω). It is therefore given by180

Ωp
(
1 + 2ξC |Ωp|α − Ω2

p

) (
αξC |Ωp|α−2 − 1

)
+ 2αξ2S2 |Ωp|2α−1

= 0. (21)

Unfortunately, because of the fractional derivatives, this expression does not accept any explicit solution. In-181

stead, we take advantage of the smallness of ξ and use the first iteration of an iterative scheme [21] to obtain182

an approximation of the root. Initializing the iterative scheme with Ω(1) = 1, defining the iterative scheme by183

Ω(k)

(
1 + 2ξC

∣∣Ω(k)

∣∣α − Ω2
(k+1)

)(
αξC

∣∣Ω(k)

∣∣α−2 − 1
)

+ 2αξ2S2
∣∣Ω(k)

∣∣2α−1
= 0 (22)

and retaining the positive root, we obtain an explicit solution for Ω(2)184

Ω(2) =

(
1 + 2ξC +

2αξ2S2

αξC − 1

)1/2

. (23)

The Mac Laurin series expansion of that solution for ξ yields an explicit approximation of the position of the185

peak Ωp ' Ω(2) that reads186

Ωp = 1 + Cξ −
[
α+

(
1

2
− α

)
C2

]
ξ2 +O(ξ2). (24)

The position of the peak is a perturbation of 1 (again, as a result of the scaling). The peak located in R− is187

symmetrically located. For α ' 1, the fractional derivative resembles a viscous effect, C = cos απ2 � 1 and the188

position of the peak is very close to 1− ξ2, the peak of the viscously damped system. For α ' 0, C ' 1 and the189

position of the peak is located close to abscissa 1 + ξ; this is consistent with what has been announced earlier.190

This is also consistent with existing results obtained with a stochastic averaging approach, at least at leading191

order in ξ [46].192
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Figure 5: Remainder after subtraction of the background component, represented for various values of the fractional exponent α.
Other parameters: ξ = 0.2, β = 0.05.

Now that the position of the peak is determined, we can introduce a stretched coordinate η to focus on the193

resonant contribution to the response. It is expected that the more accurate the localization of the peak, the194

more accurate the final solution. However, to make the solution more accurate has a certain cost and it might195

not be optimal to keep a second-order accurate solution in ξ. In this paper we will develop two solutions in196

parallel: in the first one, we assume that the position of the peak is located at Ωp = 1 while, in the second, we197

assume that the position of the peak is located at Ωp = 1 + Cξ, which is more accurate but results in longer198

expressions, at least during the developments.199

In the first case, the stretched coordinate η1 is naturally chosen as200

Ω = 1 + ξη1 ⇐⇒ η1 =
Ω− 1

ξ

while in the latter, it is chosen as201

Ω = 1 + Cξ + ξη2 ⇐⇒ η2 =
Ω− 1− Cξ

ξ
.

With the first stretching, the factor in the parenthesis in (20) becomes after some simplifications202

K(η1) :=
1

4ξ2

1

η2
1(1 + 1

2η1ξ)2 + (1 + η1ξ)2α − Cη1(2 + ξη1)(1 + ξη1)α
− K̂ [Ω (η1)] . (25)

No matter the chosen approximation for the background component (σ2
x,b or σ̃2

x,b), the last term might be203

dropped since it is composed of terms which are two to three orders of magnitude smaller than the first term.204

Further considering that η1ξ � 1, we can derive an approximation for the new kernel that reads205

K̂(η1) :=
1

4ξ2

1

η2
1 − 2Cη1 + 1

. (26)

Notice that we could easily get rid of the fractional powers. This approximation is simple, locally accurate (for206

η1 = ord(1)) and bounded in the far field. Figure 5 shows a comparison of the exact integrand K(η1) in the207

remainder and this first approximation. The corresponding approximation of the remainder is208

r̂1 =

+∞ˆ

−∞

Su [Ω (η1)] K̂(η1)ξdη1 (27)

which is further simplified by assuming that Su [Ω (η1)] does not vary significantly in the neighborhood of209

η1 = ord(1), which yields210

r̂1 = Su (1)

+∞ˆ

−∞

K̂(η1)ξdη1 =
Su (1)

4Sξ

⌊
arctan

(
η1 + 1

η1 − 1
tan

απ

4

)⌋+∞

−∞
=
πSu (1)

4Sξ
. (28)
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Figure 6: Remainder after subtraction of the background component, represented for various values of the fractional exponent α.
Other parameters: ξ = 0.2, β = 0.05.

The resonant component of the response is then obtained by multiplying this approximation by 2, in order to211

account for the two symmetrical peaks,212

σ̃2
x,r =

πSu (1)

2Sξ
. (29)

For α ' 1, the fractional derivative term in the governing equation resembles a viscous damping, S ' 1, and213

the resonant term corresponds to the well-known response of a linear viscous oscillator subject to white noise214

excitation [36]. For α ' 0, the fractional derivative term resembles a stiffness term, in which case the considered215

problem tends to an undamped oscillator which is known to have no steady state solution and requires being216

studied with other approaches [10, 43]. The approximation in (29) is therefore very simple and compact and217

recovers some well-known limiting cases. As anticipated before, it might however be inaccurate when α → 0218

since the location of the peak might be too different from 1, which was the assumption to derive this first219

solution.220

Using the second stretching, the factor in the parenthesis in (20) becomes after dropping the last term (for221

same reason as before),222

K(η2) :=
1

4ξ2
[
C (1 + Cξ + ξη2)

α −
(
1 + 1

2Cξ + 1
2ξη2

)
(C + η2)

]2
+ 4ξ2S2 (1 + Cξ + ξη2)

2α
. (30)

Expanding the square and using the binomial theorem stating that (1 + ε)α = 1 + αε+ ord(ε2),223

K(η2) =
1

4ξ2

1(
1 + 1

2Cξ + 1
2ξη2

)2
(C + η2)

2 − 2C (1 + αCξ + αξη2)
(
1 + 1

2Cξ + 1
2ξη2

)
(C + η2) + (1 + 2αCξ + 2αξη2)

.

(31)
This expression of the kernel is still a little too long and might require further simplification. The denominator224

of K(η2) is a fourth order polynomial in η2, which yields four poles in the complex plane and the two peaks225

located at Ω = ±Ωp on the real axis. A much better job is done by focusing on one peak at a time. To do so, we226

are free to drop the degree of the polynomial from 4 to 2, by discarding all terms of the denominator involving227

third and fourth powers of η2, and making sure only one peak on the real axis remains. This approach is similar228

to what was done with the first stretching when simplifying (25) into (26); it is also deeply discussed in [15].229

After a bit of standard algebra and some simplifications, we finally obtain the local approximation230

K̂(η2) :=
1

4ξ2

1

c2η2
2 + c1η2 + c0

(32)

where the coefficients c0 = S2 (1 + 2ξαC), c1 = 1
2ξ(1+(1− 4α) (1−2S2)) and c2 = 1+2ξ(1−α)C are truncated231

to their first order terms in their respective Mac Laurin series expansion for ξ. This approximation is a little232

bit more complicated than (26) but has a somewhat similar format. However, as α→ 1, i.e. C → 0 and S → 1,233

coefficients c0, c1 and c2 respectively tend to 1, 2ξ and 1 which is slightly different from the coefficients 1, −2C234

and 1 in K̂(η1). This difference should be manageable as long as both ξ and C remain small (compared to one);235

it also highlights the limitations of the first approximation.236
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Figure 6 shows K(η2) and K̂(η2). As expected, with this second stretching, the peaks in the stretched237

coordinate system are almost centered on η2 = 0 no matter the value of the fractional exponent α, while the238

first stretching provides peaks centered on η1 = 0 only as α→ 1. Also, the integrand and the local approximation239

are virtually superimposed in the range [−4, 4], which announces an accurate result.240

Assuming again that the power spectral density of the loading does not significantly vary in the neighborhood241

of Ω = Ωp, the corresponding approximation of the remainder is242

r̂1 = Su (1 + Cξ)
+∞ˆ

−∞

K̂(η2)ξdη2 =
Su (1 + Cξ)

4ξ2
ξ

⌊
2

ρ
arctan

c1 + 2c2η

ρ

⌋+∞

−∞
=
πSu (1 + Cξ)

2ρξ
(33)

where ρ =
√

4c0c2 − c21 =
[
4 (1 + 2ξC)S2 + ord

(
ξ2
)]1/2. Truncating again ρ to its leading order terms, and243

multiplying r̂1 by 2 to take both peaks into account, the resonant contribution to the response finally reads244

σ2
x,r =

πSu (1 + Cξ)
2Sξ
√

1 + 2ξC
. (34)

This approximation is slightly richer than (29) in the sense that (29) was not designed for α different from245

1 (i.e. C different from 0), while (34) was designed to provide an approximation in the more general case.246

Because (34) is not much more complicated than (29), it is naturally recommended to use (34) and consider247

σ̃2
x,r as a (simpler) variant of the resonant contribution. The only major difference is that the algebra required248

to establish (34) was a bit more involved.249

4.3. Summary250

To summarize, the background/resonant decomposition of the variance of a linear oscillator with fractional251

derivatives is given by252

σ2
x = σ2

x,b + σ2
x,r =

+∞ˆ

−∞

Su(Ω)

1 + 4ξC |Ω|α + 4ξ2 |Ω|2α
dΩ +

πSu (1 + Cξ)
2Sξ
√

1 + 2ξC
. (35)

We have also derived two variants, one for the background and one for the resonant components. The variant253

for the background, σ̃2
x,b = 1, although a little less accurate than σ2

x,b might prove interesting since it avoids the254

computation of the fractional low passed energy of the loading u(t). The variant for the resonant component255

σ̃2
x,r is not much simpler but was obtained with a simpler derivation. It is not really worth being considered in256

practical applications.257

Substituting back with the original variables of the problem258

σ2
y =

1

k2

+∞ˆ

−∞

Sf (ω0) dω

1 + 4ξC
∣∣∣ ωω0

∣∣∣α + 4ξ2
∣∣∣ ωω0

∣∣∣2α +
1

k2

πω0Sf [ω0 (1 + Cξ)]
2Sξ
√

1 + 2ξC
(36)

where ω0 = 1/t? =
√
k/m is the natural circular frequency of the undamped system.259

5. Validation, illustrations and discussion260

The accuracy of the proposed formulation will be assessed by comparison with the exact result. The exact261

result is obtained by numerical integration of the exact power spectral density of the response. Integration262

is performed with the adaptive algorithm proposed in Wolfram Mathematica [24], with default integration263

parameters of Version 11.0.1.0.264

5.1. Validation: white noise excitation265

As a validation case, the response of an oscillator equipped with a viscoelastic device and subjected to a266

delta correlated excitation is considered. This problem has already been tackled with a stochastic averaging267

approach, e.g. [46]. Both the stochastic averaging and the multiple timescale spectral analysis are based on268

the same assumption that the damping ratio (or fractional coefficient ξ) is a small parameter. To compare269

them both therefore borders more on the confrontation than validation, which is considered in a second step by270

comparison with the exact solution.271
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Figure 7: Variance of the response of a fractional oscillator subjected to a unit white noise excitation. (Please see online version
for colors)

In the multiple timescale spectral analysis (MTSA) formulation, the background component needs to be272

discarded, since the variance of the delta-correlated noise is infinite. We are therefore left with the resonant273

component σ2
x,r (or σ̃2

x,r) where Su(1 + Cξ) is replaced by 1, which yields274

2Sξ
π
σ2
x =

1√
1 + ξC

or
2Sξ
π
σ̃2
x = 1, (37)

while the approximation derived in [46] reads, with our notations,275

2Sξ
π
σ2
x =

1

1 + ξC
. (38)

First, we recognize that all three approximations have the same leading order behaviors in ξ and α, which are276

expressed by the leading product Sξ, repelled to the lefthand side. The slight differences on the righthand277

side are therefore associated with the second order terms. This is a first validation of the appropriateness of278

the solutions we have developed, since it recovers the same leading order solution as the reputed stochastic279

averaging response. Figure 7 shows these three results (the righthand side) and provides a comparison with280

the exact result, represented with back dots. In all cases, the simple MTSA formulation fails to finely capture281

the second-order dependency in α. For ξ = 0.1, both the MTSA and the stochastic averaging (Yang 2015)282

formulations are almost perfect. For larger fractional coefficients, ξ = 0.2 and ξ = 0.4, these two solutions283

capture the right trend but are naturally much less accurate, since they are developed under the assumption284

ξ � 1. However the multiple timescale spectral analysis method recovers the exact result in the limit case285

α = 0, while the stochastic averaging is consistently underestimating the exact result.286

5.2. Illustration: buffeting type excitation287

The governing equation (6) is now considered together with the buffeting loading described by (8). Figures288

8 and 9 show the variance of the response obtained with the proposed formulation (MTSA) and by numerical289

integration of the exact analytical formulation. The variance is represented as a function of α for given values290

of ξ, and as a function of ξ for given values of α. In both figures, the background component σ2
x,b is shown with291

dashed lines. This is to illustrate two facts: (i) the smaller ξ and the larger α, the better the approximation292

σ̃2
x,b = 1; this approximation seems reasonable for ξ . 10−2 (ii) the behavior of the system is quasi-static for293

large ξ or large α, since the total variance (MTSA) is very close to the background component in those areas.294

For β = 0.01 (on the left), the proposed approximation provides a very accurate estimation of the variance295

of the response, throughout the different scales of ξ and over the whole range [0, 1] for α. Figure 10 represents296

the relative error realized with the proposed approximation and indeed confirms that the error remains smaller297

than 1% for ξ < 10−2, no matter the value of α. The contours of the error curve up for small values of α which298

is, again, a consequence of the accuracy of the resonant component (the only one that matters as α→ 0) in this299

limit case. The central plot in Figure 10 shows the relative error obtained with the approximation σ̃2
x,b + σ2

x,r,300

i.e. by changing the way the background contribution is computed. As expected, for ξ . 10−2, the response is301

mostly resonant and the error is not affected by the way the background component is estimated. For ξ > 10−2,302

the response is mostly quasi-static and the background component is more important. In that case, the error303
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Figure 8: Variances of the response of the system subjected to the buffeting type excitation, for β = 0.01 (left) and β = 0.1 (right).
Represented as a function of the fractional coefficient ξ and for various values of the fractional exponent α. (Please see online
version for colors)
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version for colors)
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grows slightly more proportionally than ξ. On the right, Figure 10 shows the relative error obtained with the304

approximation σ̃2
x,b + σ̃2

x,r. In that case, both the background and the resonant components are too roughly305

estimated. This results in errors of a few percents as soon as ξ > 5 · 10−3.306

6. Conclusions307

In this paper, we have applied the multiple timescale spectral analysis to the structural analysis of a linear308

system equipped with a viscoelastic device. Compared to the well-known solution of the linear viscous problem,309

it has been shown that the background component requires a little more attention, especially as soon as the310

fractional coefficient ξ is larger than or similar to 10−2. In that case, a lowpass fractional filter of the excitation311

needs to be considered to establish the background component. The resonant component of the response is also312

affected by the presence of the viscoelastic device. At first order, it is simply obtained by dividing the classical313

response in the viscous case by S = sin απ
2 . Several solutions have been proposed and discussed. Among them,314

(35-36) should be preferred.315

The game of stretching and rescaling that rules the multiple timescale spectral analysis offers more flexibility316

to derive approximate solutions than standard time-domain methods. The resulting approximation might not317

necessarily be optimal, in one (or some) sense, but at least may features interesting advantages. For instance, the318

proposed solution is shown to provide more accurate results than those obtained with the stochastic averaging319

method, as the fractional exponent α→ 0.320

Extrapolating on these promising results, further works should extend to slightly nonlinear or multiple321

degree-of-freedom structures.322
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