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A B S T R A C T

This paper specifies the multiple timescale spectral analysis to the structural analysis of a single degree-of-
freedom structure including a fractional derivative constitutive term. Unlike usual existing models for this kind
of structure, the excitation is also assumed to be colored, in a low-frequency range compared to that of the
structural system, but not necessarily as an integer autoregressive filter. This problem further extends the domain
of applicability of the multiple timescale spectral analysis. The solution is developed as a sum of background and
resonant components. Because of the specific shape of the frequency response function of a system equipped with
a fractional viscoelastic device, the background component is not simply obtained as the variance of the loading
divided by the stiffness of the system. On the contrary the resonant component is expressed as a simple extension
of the existing formulation for a viscous system, at least at leading order. As a validation case, the proposed
solution is shown to recover similar results (in the white noise excitation case) as former studies based on a
stochastic averaging approach. A better accuracy is however obtained in case of very small fractional exponent.
Another example related to the buffeting analysis of a linear fractional viscoelastic system demonstrates the
accuracy of the proposed formulation for colored excitation. This paper is mostly illustrated with the structural
analysis of systems equipped with fractional dampers, but it could be re-interpreted in any of the many other
fields of engineering where applications are governed by the same equation.

1. Introduction

Fractional calculus has attracted considerable attention over the last
decades, partly due to the versatility of fractional-order tools to model
biological [1,2], biomedical [3], financial [3] as well as mechanical
and structural engineering applications. In mechanics, fractional deriva-
tives are used to model viscoelastic devices [4], whose properties are
extracted from dedicated experimental procedures [5]. The stochastic
dynamic analysis of systems with fractional viscoelastic devices has been
extensively covered, from linear to nonlinear systems and in various
cases of stationarity and Gaussianity limitations, and with various type
of loadings.

The linearity of the Riemann–Liouville operator [6] makes it rather
straightforward to combine viscoelastic devices with others existing fea-
tures of stochastic dynamics, like frequency dependent parameters [7]
or linear systems control theory [8]. It makes it also rather straightfor-
ward to generalize the convolution integral [9,10] or the augmented
state formulation [11] to that class of problems. The nonstationary
solution of linear systems might also be expressed in closed form [12].
As soon as nonlinear stochastic dynamical systems are considered, the
exact solution is usually not obtained in closed form, even for wide-band
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(usually white noise) excitation. Approximations similar to or derived
from the stochastic linearization and stochastic averaging methods
[13–16], or those based on a Fokker–Planck equation of the process
envelope [17] appear to be the most classical ways to deal with such
problems. Narrow band excitations and complex dynamical interactions
can be simplified with similar multiple scales approaches [18]. Other
more realistic types of loadings [19] or even earthquake loadings of
linear and nonlinear systems equipped with viscoelastic devices have
been considered [20,21].

Beside these approximations of the exact solution of the problem,
other numerical techniques have been proposed to deal with the
structural analysis of systems with fractional derivatives. In particular,
Monte Carlo simulation methods are consistently used to validate
approximations. There exist also ad hoc simulation methods [12,22]
which are computationally efficient, methods based on Wiener path
integral approaches [23–26] and weak formulations based on wavelet
transforms [27]. These techniques, together with exact assembling
procedures of structural analysis [28], or finite element approaches [29–
31], make it possible to study more realistic structures composed of
several beams and columns, and several viscoelastic devices.
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This review of the literature reveals two trends. On one side, there
are simple dynamical systems with linear (or linearized) behavior and
white noise excitation, which possess closed form solutions. On the other
side, there are numerical techniques to deal with more realistic loadings
(sometimes nonstationary), more realistic structures and/or slight non-
linearities. The missing gap in-between is related to the understanding
(via simple analytical solutions) of the behavior of complex structures
subjected to more realistic loadings. As a first step towards this goal,
we consider the stochastic analysis of a linear system subjected to a
low frequency loading specified by its arbitrary power spectral density.
This problem could be studied by means of the usual time domain
multiple scales approach, or the stochastic averaging approach, but
would require the consideration of three interacting timescales as well as
fractional models —similar to those used to simulate realizations of wind
fields [32]—for the augmented state coloring the excitation. This seems
possible to solve the problem in this way, although no track evidences
of this type of problem has been found in the literature. Instead, we
take advantage of the linearity of the problem to derive a simplified
solution in a frequency domain. It is based on the Multiple Timescale
Spectral Analysis [33] which seeks the same objectives as the stochastic
averaging, with slightly more versatility. This method has already been
applied in the context of non Gaussian loading [34], nonstationary
loading [35] slightly nonlinear systems [36] or multi degree-of-freedom
structures [37,38]. The problem considered in this paper is just a little
extension of the method and further studies could combine viscoelastic
devices with slight nonlinearities or multiple degrees-of-freedom, for
instance.

2. Problem formulation

The governing equation of motion of a linear single-degree-of-
freedom system equipped with a viscoelastic device reads

𝑚�̈�(𝑡) + 𝑔𝛼𝑦(𝑡) + 𝑘𝑦(𝑡) = 𝑓 (𝑡) (1)

where 𝑚 is the mass, 𝑘 is the stiffness, 𝑔 is the fractional damping co-
efficient and 𝛼 is the Riemann–Liouville fractional derivative operator
defined as

𝛼𝑦(𝑡) = 1
𝛤 (1 − 𝛼) ∫

𝑡

0

�̇�(𝑡)
(𝑡 − 𝑡)𝛼

𝑑𝑡. (2)

The fractional exponent 𝛼 is assumed to be in the range [0, 1]. The two
limiting cases correspond to a viscous damping (𝛼 = 1) and to a stiffness
term (𝛼 = 0). The stationary external forcing is specified through its
power spectral density function 𝑆𝑓 (𝜔) and is assumed to vary on a slow
timescale, compared to the dynamics of the structure. This condition is
formalized in the sequel. In wind engineering, such a slow loading is
typically attributable to the buffeting loading for which several models
exist [39]. For instance, one such model reads

𝑆𝑓

(

𝜔; 𝑈
𝐿

)

= 𝜎𝑓
0.546 𝐿

𝑈
(

1 + 1.64 𝐿
𝑈 |𝜔|

)5∕3
(3)

where 𝑈 and 𝐿 respectively correspond to the mean wind velocity and
the turbulence length scale. The ratio 𝑈∕𝐿 is a small characteristic
frequency that is typical of buffeting excitations [40]. This power
spectral density model is used in the following illustrations. This is
just an example; any other low-frequency excitation could be used to
illustrate the following developments.

A dimensionless version of the governing equation is obtained by
introducing the characteristic time and the characteristic response

𝑡⋆ =
√

𝑚
𝑘

and 𝑦⋆ =
𝜎𝑓
𝑘

(4)

and by defining the dimensionless time 𝜏 and the scaled response 𝑥(𝜏)
as

𝜏 = 𝑡
𝑡⋆

and 𝑥(𝜏) =
𝑦(𝑡⋆𝜏)
𝑦⋆

. (5)

Noticing that 𝛼𝑦(𝑡⋆𝜏) = 𝑦⋆ 𝑡⋆−𝛼𝛼𝑥(𝜏), the governing equation be-
comes

𝑥′′(𝜏) + 2𝜉𝛼𝑥(𝜏) + 𝑥(𝜏) = 𝑢(𝜏) (6)

where the prime symbol denotes derivatives with respect to 𝜏, where

𝜉 =
𝑔

2𝑘 𝑡⋆𝛼
=

𝑔
2𝑚 𝑡⋆𝛼−2

(7)

is the dimensionless fractional coefficient and where 𝑢(𝜏) = 𝑓 (𝜏𝑡⋆)∕𝜎𝑓 is
the unit-variance dimensionless external forcing whose power spectral
density is given by 𝑆𝑢(𝛺) = 𝑆𝑓 (𝛺∕𝑡⋆)∕𝜎2𝑓 𝑡

⋆ as a function of the dimen-
sionless frequency 𝛺 = 2𝜋∕𝜏 (notice that this non-dimensionalization
needs to be reviewed in case of white noise loading, in that case, 𝜎𝑓
can be replaced by 𝑆1∕2

𝑓 ∕𝑡⋆). The dimensionless version of the power
spectral density of the loading given in (3) reads

𝑆𝑢 (𝛺; 𝛽) = 1
𝑡⋆

𝑆𝑓

(

𝛺
𝑡⋆

;
𝛽
𝑡⋆

)

= 0.546

𝛽
(

1 + 1.64 |𝛺|

𝛽

)5∕3
(8)

with 𝛽 = 𝑈𝑡⋆∕𝐿 ≪ 1 the dimensionless characteristic frequency of the
turbulence velocity. Again, we repeat this is just an example and any
other loading characterized by power spectral densities whose frequency
content is centered on a small frequency 𝛽 would perfectly fit the scope
of this paper.

The Fourier transform of (6) reads
(

1 + 2𝜉|𝛺|

𝛼 −𝛺2 − 2𝜉𝑖|𝛺|

𝛼)𝑋(𝛺) = 𝑈 (𝛺) (9)

where  = cos 𝛼𝜋
2 and  = sin 𝛼𝜋

2 , so that the power spectral density of
the response is given by

𝑆𝑥(𝛺) =
𝑆𝑢(𝛺)

(

1 + 2𝜉|𝛺|

𝛼 −𝛺2
)2 +

(

2𝜉|𝛺|

𝛼)2
∶= 𝐾(𝛺)𝑆𝑢(𝛺). (10)

In this expression, we have defined the kernel (frequency response
function) 𝐾(𝛺) of this problem. It is illustrated in Fig. 1 for several
values of 𝛼. It has some peculiarities: (i) the resonance peak located near
𝛺 = ±1 in the viscous case (𝛼 = 1) regularly moves to higher frequencies
as 𝛼 → 0, i.e. as the fractional derivative term tends to correspond to
a stiffness term. In the limiting case 𝛼 = 0, the fractional derivative
corresponds to a usual stiffness term and the peak is located at abscissa
𝛺𝑝 =

√

1 + 2𝜉 ≃ 1+𝜉; (ii) the frequency response function passes through
a common crossing point, at abscissa 𝛺 = 1, no matter the fractional
exponent 𝛼 (this is readily observed by replacing 𝛺 by 1 in the definition
of the kernel); (iii) in the range 𝛺 ∈ [−1; 1] the kernel is comprised in
the area generated by the two limiting cases 𝛼 = {0, 1} with 𝛼 = 0 being
the lower bound and 𝛼 = 1 being the upper bound; (iv) the coordinate at
the origin is 𝐾(0) = 1 provided 𝛼 ≠ 0. As 𝛼 → 0, a short boundary layer,
whose extent is of order 𝛼, develops in the neighborhood of the origin
and creates the transition from the upper bound 𝐾(0) = 1 to the lower
bound 𝐾(𝛺) ≃ 1

(1+2𝜉)2
. For 𝛼 → 0, the size of this transition zone tends

to zero; for 𝛼 = 0, there is no transition anymore and 𝐾(0) = 1
(1+2𝜉)2

.
As a result of the fractional powers of 𝛺 appearing in 𝐾(𝛺), the

response of the system, its variance, defined as

𝜎2𝑥 = ∫

+∞

−∞
𝑆𝑥(𝛺)𝑑𝛺, (11)

is unfortunately not available in a simple closed form, even for simple
forms of the power spectral density of 𝑢(𝜏).

In the sequel we assume that 𝜉 ≪ 1. This is very similar to the de-
velopments based on stochastic averaging, van der Pol transformations,
quasi-Hamiltonian systems and the likes and results in three timescales
in the problem : (i) the slow timescale of the loading 𝛽−1, (ii) the slow
timescale associated with the energy of the system 𝜉−1 and (iii) the fast
(unit) timescale associated with the phase of the system. Unlike existing
approaches exploiting the smallness of 𝜉 in the time domain, we also
recognize the existence of the different scales and exploit it, but in the
frequency domain. As shown next, this allows a very simple derivation
of the approximate solution of the problem. The method is based on
the Multiple Timescale Spectral Analysis, which is briefly summarized
before tackling the problem at hand.
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Fig. 1. Representation of the kernel 𝐾(𝛺) for various values of the fractional
exponent 𝛼. Other parameters: 𝜉 = 0.2.

3. Multiple timescale spectral analysis

The multiple timescale spectral analysis is a general framework de-
veloped to derive approximate responses of stochastic systems involving
various well separated timescales [33]. In this paper, we only need the
steady-state 1-D version of the method, which is summarized as follows.
Let us consider a (linear, for the sake of this study; but it could be slightly
nonlinear) structural system subjected to a stationary stochastic input.
The steady-state variance of the response is given by

𝜎2𝑥 = ∫

+∞

−∞
𝐾(𝛺)𝑆𝑢(𝛺)𝑑𝛺. (12)

Instead of the numerical computation of this integral, one might
be interested in an approximate closed form expression, by taking
advantage of the timescale separation. To do so, the multiple timescale
spectral analysis consists first in identifying all different contributions
to the integral. They might be either global, i.e. on a domain of order
1 or more, or local in which case they look like a peak over a short
domain. The existence of one or several small numbers in the problem
might be used to justify the distinctness of the peaks and is useful
to estimate the order of magnitude of each contribution. In a second
step, these contributions to the integral are evaluated, in a sequential
manner, starting with the domain or peak that contributes the most
to the integral. This evaluation develops in several steps: (i) provide
a local approximation �̂�(𝛺)�̂�𝑢(𝛺) of the integrand 𝐾(𝛺)𝑆𝑢(𝛺) that is
accurate over the considered domain or peak, and that drops to zero in
the far field, in order to be integrable (this condition is very similar to
the management of Poincaré’s secular terms in the time domain version
of the multiple timescale method). This approximation should also be
simple enough so that the integral

𝜎2𝑥,1 = ∫

+∞

−∞
�̂�(𝛺)�̂�𝑢(𝛺)𝑑𝛺 (13)

corresponding to the first contribution might be evaluated in an explicit
way; (ii) once this is done, subtract (13) from (12), in order to obtain
a remainder 𝑟1 = 𝜎2𝑥 − 𝜎2𝑥,1 which is evaluated as the integral of
𝐾(𝛺)𝑆𝑢(𝛺) − �̂�(𝛺)�̂�𝑢(𝛺). This integrand does not have any significant
contribution anymore, in the neighborhood of the peak(s) that has/have
already been treated. The sequence then follows with the next con-
tribution. When the process is over, the last remainder is neglected.
It provides the order of magnitude of the error committed with the
approximation. Please refer to [33] for more details and examples.

Fig. 2. Examples of the power spectral density of the structural response for
various values of the fractional exponent 𝛼. Other parameters: 𝜉 = 0.2, 𝛽 = 0.05.

Fig. 3. Local approximation of the kernel in the neighborhood of the origin,
represented for various values of the fractional exponent 𝛼. Illustration given
for 𝜉 = 0.2.

4. Solution of the problem and discussion

Fig. 2 shows some examples of the power spectral density of the
structural response given by (10). This function features two distinct
types of peaks: one in the low-frequency range around 𝛺 ≃ 0 and over
a domain whose extent is of order 𝛽 (the background component) and
the other in the order-one frequency range (the resonant component).
We successively focus on these two types of peaks in the sequel. They
are well distinct because 𝛽 ≪ 1.

4.1. Background component

Following the general method of the multiple timescale spectral
analysis, we first focus on the background component, in the low-
frequency range, and define a local approximation of 𝑆𝑥(𝛺). Similarly
to what is done for the oscillator with viscous damping [33], only 𝐾(𝛺)
is approximated. The stretched coordinate 𝜁 , defined as

𝛺 = 𝛽𝜁 ⟺ 𝜁 = 𝛺
𝛽
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is introduced in order to rescale the range 𝛺 = ord(𝛽) to an order-one
interval when 𝜁 = ord(1). Using this scaling, the kernel is expressed as

𝐾 [𝛺 (𝜁 )] = 1
(

1 + 2𝜉𝛽𝛼|𝜁 |𝛼 − 𝛽2𝜁2
)2 +

(

2𝜉𝛽𝛼|𝜁 |𝛼
)2

. (14)

An approximation of this exact kernel is necessary to establish a closed-
form expression of the background component. Evoking the smallness
of 𝛽 ≪ 1, while the stretched coordinate 𝜁 is of order 1, we can drop
the term 𝛽2𝜁2 in the first term of the denominator and approximate the
exact kernel by

�̂� [𝛺 (𝜁 )] = 1
1 + 4𝜉𝛽𝛼|𝜁 |𝛼 + 4𝜉2𝛽2𝛼|𝜁 |2𝛼

. (15)

This is the frequency response function of a low pass fractional filter
[41]. This approximation is represented in Fig. 3, for several values
of 𝛼. This figure also shows 𝐾 [𝛺 (𝜁 )] for 𝛼 = 0 and shows that the
singular behavior at 𝜁 = 0 is well captured. A Taylor series expansion
for 𝛽 around 0 would certainly not have provided such an accurate
approximation. Expression (15) fits the requirements of the multiple
timescale spectral analysis since it is seen to be locally accurate even
when 𝛼 = 0; furthermore it is bounded in the far field and has a
more or less simple analytical expression. Using this approximation, the
background component of the response is finally expressed as

𝜎2𝑥,𝑏 = ∫

+∞

−∞
𝑆𝑢(𝛺)�̂� (𝛺) 𝑑𝛺 = ∫

+∞

−∞

𝑆𝑢(𝛺)

1 + 4𝜉|𝛺|

𝛼 + 4𝜉2|𝛺|

2𝛼
𝑑𝛺. (16)

For 𝛼 ≃ 1 and 𝜉 ≪ 1, this dimensionless background component is a
small perturbation of 1 as a result of our choices for the scaling of the
problem. The integral in (16) requires numerical integration as soon as
𝛼 ≠ 1. We notice however that this integral only depends on the loading
parameters 𝜉 and 𝛼 and is independent of the properties of the dynamical
system. This integral could therefore be determined once and for all, for
a given loading 𝑆𝑢(𝜔).

Nevertheless there are two alternative solutions to avoid the numeri-
cal computation of this integral. First, the kernel might be approximated
as �̃� (𝛺) ≃ 1 and the background component could be approximated as

�̃�2𝑥,𝑏 = ∫

+∞

−∞
𝑆𝑢(𝛺)𝑑𝛺 = 1. (17)

This approximation is much simpler, consistent with viscous damping
[33] but does not capture the rapid decrease of the kernel for 𝛼 ≪ 1 in
the neighborhood of the origin. This is further discussed next.

Instead, driven by the fact the we would like to recover �̂� [𝛺 (𝜁 )] ≃
(1+2𝜉)−2 in the limit case 𝛼 = 0, we could determine a Padé approximant
(a rational fraction approximation in 𝜉) by redefining �̂� [𝛺 (𝜁 )] as
(1 + 2𝜉)−2 multiplied by the series expansion of (1 + 2𝜉)2�̂� [𝛺 (𝜁 )]. For
consistency, this series is truncated after the second term. After some
developments, this results in the new approximation

𝐾(𝛺) =
1 + 4𝜉

(

1 − |𝛺|

𝛼) + 4𝜉2
(

1 − 4|𝛺|

𝛼 − (1 − 42)|𝛺|

2𝛼)

(1 + 2𝜉)2
(18)

which yields

𝜎2𝑥,𝑏 = ∫

+∞

−∞
𝑆𝑢(𝛺)𝐾 (𝛺) 𝑑𝛺 = 1 −

4𝜉 (1 + 4𝜉)
(1 + 2𝜉)2

𝑚𝑢,𝛼

−
4𝜉2(1 − 42)
(1 + 2𝜉)2

𝑚𝑢,2𝛼 (19)

where 𝑚𝑢,𝛼 = ∫ +∞
−∞ 𝑆𝑢(𝛺)|𝛺|

𝛼𝑑𝛺 is the 𝛼-fractional spectral moment
of 𝑆𝑢(𝛺). Depending on the high-frequency behavior of the external
forcing, its 𝛼- and 2𝛼-fractional spectral moments might not be defined.
In case one of them (or even 𝑚𝑢,0 = 1 , the first term in the expression)
is unbounded, they should not be included in the expression of the
background component. This other approximation is interesting but has
limited applicability for this reason.

In the following section, we continue the derivation with the more
accurate expression 𝜎2𝑥,𝑏 defined in (16).

Fig. 4. Remainder after subtraction of the background component, represented
for various values of the fractional exponent 𝛼. Other parameters: 𝜉 = 0.2,
𝛽 = 0.05.

4.2. Resonant component

The remainder is obtained by subtracting this first approximation
from the original function to integrate, that is

𝑟1 = ∫

+∞

−∞
𝑆𝑥(𝛺) − 𝑆𝑢(𝛺)�̂� (𝛺) 𝑑𝛺 = ∫

+∞

−∞
𝑆𝑢(𝛺) (𝐾 (𝛺)

−�̂� (𝛺)
)

𝑑𝛺. (20)

The function to be integrated features two symmetrical peaks which will
equally contribute the resonant part of the response. They first need to
be accurately localized, at least in terms of orders of magnitude. In a
second step, the local approximation will be derived (see Fig. 4).

Assuming that the power spectral density of the loading varies
smoothly in the neighborhood of the peaks of the frequency response
function of the system (located at ±𝛺𝑝), the peaks in the response are
located at the same abscissa as the peaks in the kernel. The actual
position of these peaks is then obtained by canceling the first derivative
of the denominator of the kernel 𝐾(𝛺). It is therefore given by

𝛺𝑝

(

1 + 2𝜉||
|

𝛺𝑝
|

|

|

𝛼
−𝛺2

𝑝

)

(

𝛼𝜉||
|

𝛺𝑝
|

|

|

𝛼−2
− 1

)

+ 2𝛼𝜉22|
|

|

𝛺𝑝
|

|

|

2𝛼−1
= 0. (21)

Unfortunately, because of the fractional derivatives, this expression does
not accept any explicit solution. Instead, we take advantage of the
smallness of 𝜉 and use the first iteration of an iterative scheme [42]
to obtain an approximation of the root. Initializing the iterative scheme
with 𝛺(1) = 1, defining the iterative scheme by

𝛺(𝑘)

(

1 + 2𝜉||
|

𝛺(𝑘)
|

|

|

𝛼
−𝛺2

(𝑘+1)

)

(

𝛼𝜉||
|

𝛺(𝑘)
|

|

|

𝛼−2
− 1

)

+2𝛼𝜉22|
|

|

𝛺(𝑘)
|

|

|

2𝛼−1
= 0 (22)

and retaining the positive root, we obtain an explicit solution for 𝛺(2)

𝛺(2) =
(

1 + 2𝜉 +
2𝛼𝜉22

𝛼𝜉 − 1

)1∕2

. (23)

The Maclaurin series expansion of that solution for 𝜉 yields an explicit
approximation of the position of the peak 𝛺𝑝 ≃ 𝛺(2) that reads

𝛺𝑝 = 1 + 𝜉 −
[

𝛼 +
( 1
2
− 𝛼

)

2
]

𝜉2 + (𝜉2). (24)

The position of the peak is a perturbation of 1 (again, as a result of
the scaling). The peak in R− is symmetrically located. For 𝛼 ≃ 1, the
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Fig. 5. Remainder after subtraction of the background component, represented
for various values of the fractional exponent 𝛼. Other parameters: 𝜉 = 0.2,
𝛽 = 0.05.

fractional derivative resembles a viscous effect,  = cos 𝛼𝜋
2 ≪ 1 and the

position of the peak is very close to 1 − 𝜉2, the peak of the viscously
damped system. For 𝛼 ≃ 0,  ≃ 1 and the position of the peak is
located close to abscissa 1 + 𝜉; this is consistent with what has been
announced earlier. This is also consistent with existing results obtained
with a stochastic averaging approach, at least at leading order in 𝜉 [16].

Now that the position of the peak is determined, we can introduce
a stretched coordinate 𝜂 to focus on the resonant contribution to the
response. It is expected that the more accurate the localization of
the peak, the more accurate the final solution. However, to make the
solution more accurate has a certain cost and it might not be optimal to
keep a second-order accurate solution in 𝜉. In this paper we will develop
two solutions in parallel: in the first one, we assume that the position of
the peak is located at 𝛺𝑝 = 1 while, in the second, we assume that the
position of the peak is located at 𝛺𝑝 = 1 + 𝜉, which is more accurate
but results in longer expressions, at least during the developments.

In the first case, the stretched coordinate 𝜂1 is naturally chosen as

𝛺 = 1 + 𝜉𝜂1 ⟺ 𝜂1 =
𝛺 − 1
𝜉

while in the latter, it is chosen as

𝛺 = 1 + 𝜉 + 𝜉𝜂2 ⟺ 𝜂2 =
𝛺 − 1 − 𝜉

𝜉
.

With the first stretching, the factor in the parenthesis in (20) becomes
after some simplifications

(𝜂1) ∶=
1
4𝜉2

1
𝜂21 (1 +

1
2 𝜂1𝜉)

2 + (1 + 𝜂1𝜉)2𝛼 − 𝜂1(2 + 𝜉𝜂1)(1 + 𝜉𝜂1)𝛼

−�̂�
[

𝛺
(

𝜂1
)]

. (25)

No matter the chosen approximation for the background component
(𝜎2𝑥,𝑏 or �̃�2𝑥,𝑏), the last term might be dropped since it is composed of
terms which are two to three orders of magnitude smaller than the first
term. Further considering that 𝜂1𝜉 ≪ 1, we can derive an approximation
for the new kernel that reads

̂(𝜂1) ∶=
1
4𝜉2

1
𝜂21 − 2𝜂1 + 1

. (26)

Notice that we could easily get rid of the fractional powers. This
approximation is simple, locally accurate (for 𝜂1 = ord(1)) and bounded
in the far field. Fig. 5 shows a comparison of the exact integrand

Fig. 6. Remainder after subtraction of the background component, represented
for various values of the fractional exponent 𝛼. Other parameters: 𝜉 = 0.2,
𝛽 = 0.05.

(𝜂1) in the remainder and this first approximation. The corresponding
approximation of the remainder is

�̂�1 = ∫

+∞

−∞
𝑆𝑢

[

𝛺
(

𝜂1
)]

̂(𝜂1)𝜉𝑑𝜂1 (27)

which is further simplified by assuming that 𝑆𝑢
[

𝛺
(

𝜂1
)]

does not vary
significantly in the neighborhood of 𝜂1 = ord(1), which yields

�̂�1 = 𝑆𝑢 (1)∫

+∞

−∞
̂(𝜂1)𝜉𝑑𝜂1 =

𝑆𝑢 (1)
4𝜉

⌊

arctan
(

𝜂1 + 1
𝜂1 − 1

tan 𝛼𝜋
4

)⌋+∞

−∞

=
𝜋𝑆𝑢 (1)
4𝜉

. (28)

The resonant component of the response is then obtained by multiplying
this approximation by 2, in order to account for the two symmetrical
peaks,

�̃�2𝑥,𝑟 =
𝜋𝑆𝑢 (1)
2𝜉

. (29)

For 𝛼 ≃ 1, the fractional derivative term in the governing equation
resembles a viscous damping,  ≃ 1, and the resonant term corresponds
to the well-known response of a linear viscous oscillator subject to
white noise excitation [43]. For 𝛼 ≃ 0, the fractional derivative term
resembles a stiffness term, in which case the considered problem tends
to an undamped oscillator which is known to have no steady state
solution and requires being studied with other approaches [44,45]. The
approximation in (29) is therefore very simple and compact and recovers
some well-known limiting cases. As anticipated before, it might however
be inaccurate when 𝛼 → 0 since the location of the peak might be too
different from 1, which was the assumption to derive this first solution.

Using the second stretching, the factor in the parenthesis in (20)
becomes after dropping the last term (for same reason as before)

(𝜂2) ∶= 1
4𝜉2

[[


(

1 + 𝜉 + 𝜉𝜂2
)𝛼 −

(

1 + 1
2
𝜉 + 1

2
𝜉𝜂2

)

(

 + 𝜂2
)

]2

+2(1 + 𝜉 + 𝜉𝜂2
)2𝛼

]−1
. (30)

Expanding the square and using the binomial theorem stating that
(1 + 𝜖)𝛼 = 1 + 𝛼𝜖 + ord(𝜖2)

(𝜂2) ∶= 1
4𝜉2

[(

1 + 1
2
𝜉 + 1

2
𝜉𝜂2

)2
(

 + 𝜂2
)2 +

(

1 + 2𝛼𝜉 + 2𝛼𝜉𝜂2
)

−2
(

1 + 𝛼𝜉 + 𝛼𝜉𝜂2
)

(

1 + 1
2
𝜉 + 1

2
𝜉𝜂2

)

(

 + 𝜂2
)

]−1
. (31)
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This expression of the kernel is still a little too long and might require
further simplification. The denominator of (𝜂2) is a fourth order
polynomial in 𝜂2, which yields four poles in the complex plane and the
two peaks located at 𝛺 = ±𝛺𝑝 on the real axis. A much better job is
done by focusing on one peak at a time. To do so, we are free to drop
the degree of the polynomial from 4 to 2, by discarding all terms of the
denominator involving third and fourth powers of 𝜂2, and making sure
only one peak on the real axis remains. This approach is similar to what
was done with the first stretching when simplifying (25) into (26); it is
also deeply discussed in [33].

After a bit of standard algebra and some simplifications, we finally
obtain the local approximation

̂(𝜂2) ∶=
1
4𝜉2

1
𝑐2𝜂22 + 𝑐1𝜂2 + 𝑐0

(32)

where the coefficients 𝑐0 = 2 (1 + 2𝜉𝛼), 𝑐1 =
1
2 𝜉(1 + (1 − 4𝛼) (1 − 22))

and 𝑐2 = 1 + 2𝜉(1 − 𝛼) are truncated to their first order terms in
their respective Maclaurin series expansion for 𝜉. This approximation
is a little bit more complicated than (26) but has a somewhat similar
format. However, as 𝛼 → 1, i.e.  → 0 and  → 1, coefficients 𝑐0, 𝑐1 and
𝑐2 respectively tend to 1, 2𝜉 and 1 which is slightly different from the
coefficients 1, −2 and 1 in ̂(𝜂1). This difference should be manageable
as long as both 𝜉 and  remain small (compared to one); it also highlights
the limitations of the first approximation.

Fig. 6 shows (𝜂2) and ̂(𝜂2). As expected, with this second stretch-
ing, the peaks in the stretched coordinate system are almost centered
on 𝜂2 = 0 no matter the value of the fractional exponent 𝛼, while the
first stretching provides peaks centered on 𝜂1 = 0 only as 𝛼 → 1. Also,
the integrand and the local approximation are virtually superimposed
in the range [−4, 4], which announces an accurate result.

Assuming again that the power spectral density of the loading does
not significantly vary in the neighborhood of 𝛺 = 𝛺𝑝, the corresponding
approximation of the remainder is

�̂�1 = 𝑆𝑢 (1 + 𝜉)∫

+∞

−∞
̂(𝜂2)𝜉𝑑𝜂2 =

𝑆𝑢 (1 + 𝜉)
4𝜉2

𝜉
⌊

2
𝜌
arctan

𝑐1 + 2𝑐2𝜂
𝜌

⌋+∞

−∞

=
𝜋𝑆𝑢 (1 + 𝜉)

2𝜌𝜉
(33)

where 𝜌 =
√

4𝑐0𝑐2 − 𝑐21 =
[

4 (1 + 2𝜉)2 + ord
(

𝜉2
)]1∕2. Truncating

again 𝜌 to its leading order terms, and multiplying �̂�1 by 2 to take both
peaks into account, the resonant contribution to the response finally
reads

𝜎2𝑥,𝑟 =
𝜋𝑆𝑢 (1 + 𝜉)

2𝜉
√

1 + 2𝜉
. (34)

This approximation is slightly richer than (29) in the sense that (29) was
not designed for 𝛼 different from 1 (i.e.  different from 0), while (34)
was designed to provide an approximation in the more general case.
Because (34) is not much more complicated than (29), it is naturally
recommended to use (34) and consider �̃�2𝑥,𝑟 as a (simpler) variant of
the resonant contribution. The only major difference is that the algebra
required to establish (34) was a bit more involved.

4.3. Summary

To summarize, the background/resonant decomposition of the vari-
ance of a linear oscillator with fractional derivatives is given by

𝜎2𝑥 = 𝜎2𝑥,𝑏 + 𝜎2𝑥,𝑟

= ∫

+∞

−∞

𝑆𝑢(𝛺)

1 + 4𝜉|𝛺|

𝛼 + 4𝜉2|𝛺|

2𝛼
𝑑𝛺 +

𝜋𝑆𝑢 (1 + 𝜉)

2𝜉
√

1 + 2𝜉
. (35)

We have also derived two variants, one for the background and one
for the resonant components. The variant for the background, �̃�2𝑥,𝑏 = 1,
although a little less accurate than 𝜎2𝑥,𝑏 might prove interesting since
it avoids the computation of the fractional low passed energy of the

Fig. 7. Variance of the response of a fractional oscillator subjected to a unit
white noise excitation. (Please see online version for colors).

loading 𝑢(𝑡). The variant for the resonant component �̃�2𝑥,𝑟 is not much
simpler but was obtained with a simpler derivation. It is not really worth
being considered in practical applications.

Substituting back with the original variables of the problem

𝜎2𝑦 = 1
𝑘2 ∫

+∞

−∞

𝑆𝑓 (𝜔0)d𝜔

1 + 4𝜉
|

|

|

|

𝜔
𝜔0

|

|

|

|

𝛼
+ 4𝜉2

|

|

|

|

𝜔
𝜔0

|

|

|

|

2𝛼
+ 1

𝑘2
𝜋𝜔0𝑆𝑓

[

𝜔0 (1 + 𝜉)
]

2𝜉
√

1 + 2𝜉
(36)

where 𝜔0 = 1∕𝑡⋆ =
√

𝑘∕𝑚 is the natural circular frequency of the
undamped system.

5. Validation, illustrations and discussion

The accuracy of the proposed formulation will be assessed by
comparison with the exact result. The exact result is obtained by
numerical integration of the exact power spectral density of the re-
sponse. Integration is performed with the adaptive algorithm proposed
in Wolfram Mathematica [46], with default integration parameters of
Version 11.0.1.0.

5.1. Validation: white noise excitation

As a validation case, the response of an oscillator equipped with
a viscoelastic device and subjected to a delta correlated excitation is
considered. This problem has already been tackled with a stochastic
averaging approach, e.g. [16]. Both the stochastic averaging and the
multiple timescale spectral analysis are based on the same assumption
that the damping ratio (or fractional coefficient 𝜉) is a small parameter.
To compare them both therefore borders more on the confrontation than
validation, which is considered in a second step by comparison with the
exact solution.

In the multiple timescale spectral analysis (MTSA) formulation, the
background component needs to be discarded, since the variance of the
delta-correlated noise is infinite. We are therefore left with the resonant
component 𝜎2𝑥,𝑟 (or �̃�2𝑥,𝑟) where 𝑆𝑢(1 + 𝜉) is replaced by 1, which yields

2𝜉
𝜋

𝜎2𝑥 = 1
√

1 + 𝜉
or 2𝜉

𝜋
�̃�2𝑥 = 1, (37)

while the approximation derived in [16] reads, with our notations,

2𝜉
𝜋

𝜎2𝑥 = 1
1 + 𝜉

. (38)

First, we recognize that all three approximations have the same leading
order behaviors in 𝜉 and 𝛼, which are expressed by the leading product
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𝜉, repelled to the left-hand side. The slight differences on the right-
hand side are therefore associated with the second order terms. This
is a first validation of the appropriateness of the solutions we have
developed, since it recovers the same leading order solution as the
reputed stochastic averaging response. Fig. 7 shows these three results
(the right-hand side) and provides a comparison with the exact result,
represented with back dots. In all cases, the simple MTSA formulation
fails to finely capture the second-order dependency in 𝛼. For 𝜉 = 0.1,
both the MTSA and the stochastic averaging (Yang 2015) formulations
are almost perfect. For larger fractional coefficients, 𝜉 = 0.2 and 𝜉 = 0.4,
these two solutions capture the right trend but are naturally much
less accurate, since they are developed under the assumption 𝜉 ≪ 1.
However the multiple timescale spectral analysis method recovers the
exact result in the limit case 𝛼 = 0, while the stochastic averaging is
consistently underestimating the exact result.

5.2. Illustration: buffeting type excitation

The governing equation (6) is now considered together with the
buffeting loading described by (8). Figs. 8 and 9 show the variance of
the response obtained with the proposed formulation (MTSA) and by
numerical integration of the exact analytical formulation. The variance
is represented as a function of 𝛼 for given values of 𝜉, and as a function
of 𝜉 for given values of 𝛼. In both figures, the background component
𝜎2𝑥,𝑏 is shown with dashed lines. This is to illustrate two facts: (i) the
smaller 𝜉 and the larger 𝛼, the better the approximation �̃�2𝑥,𝑏 = 1; this
approximation seems reasonable for 𝜉 ≲ 10−2 (ii) the behavior of the
system is quasi-static for large 𝜉 or large 𝛼, since the total variance
(MTSA) is very close to the background component in those areas.

For 𝛽 = 0.01 (on the left), the proposed approximation provides a
very accurate estimation of the variance of the response, throughout
the different scales of 𝜉 and over the whole range [0, 1] for 𝛼. Fig. 10
represents the relative error realized with the proposed approximation
and indeed confirms that the error remains smaller than 1% for 𝜉 < 10−2,
no matter the value of 𝛼. The contours of the error curve up for small
values of 𝛼 which is, again, a consequence of the accuracy of the resonant
component (the only one that matters as 𝛼 → 0) in this limit case.
The central plot in Fig. 10 shows the relative error obtained with the
approximation �̃�2𝑥,𝑏 + 𝜎2𝑥,𝑟, i.e. by changing the way the background
contribution is computed. As expected, for 𝜉 ≲ 10−2, the response is
mostly resonant and the error is not affected by the way the background
component is estimated. For 𝜉 > 10−2, the response is mostly quasi-static
and the background component is more important. In that case, the error
grows slightly more proportionally than 𝜉. On the right, Fig. 10 shows
the relative error obtained with the approximation �̃�2𝑥,𝑏 + �̃�2𝑥,𝑟. In that
case, both the background and the resonant components are too roughly
estimated. This results in errors of a few percents as soon as 𝜉 > 5 ⋅10−3.

6. Conclusions

In this paper, we have applied the multiple timescale spectral
analysis to the structural analysis of a linear system equipped with a
viscoelastic device. Compared to the well-known solution of the linear
viscous problem, it has been shown that the background component
requires a little more attention, especially as soon as the fractional
coefficient 𝜉 is larger than or similar to 10−2. In that case, a low pass
fractional filter of the excitation needs to be considered to establish the
background component. The resonant component of the response is also

Fig. 8. Variances of the response of the system subjected to the buffeting type excitation, for 𝛽 = 0.01 (left) and 𝛽 = 0.1 (right). Represented as a function of the
fractional coefficient 𝜉 and for various values of the fractional exponent 𝛼. (Please see online version for colors).

Fig. 9. Variances of the response of the system subjected to the buffeting type excitation, for 𝛽 = 0.01 (left) and 𝛽 = 0.1 (right). Represented as a function of the
fractional exponent 𝛼 and for various values of the fractional coefficient 𝜉. (Please see online version for colors).
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Fig. 10. Relative error on the variance of the response of a fractional oscillator subjected to a low frequency turbulent loading, as a function of the fractional
exponent 𝛼 and the fractional coefficient 𝜉. (Please see online version for colors).

affected by the presence of the viscoelastic device. At first order, it is
simply obtained by dividing the classical response in the viscous case by
 = sin 𝛼𝜋

2 . Several solutions have been proposed and discussed. Among
them, (35)–(36) should be preferred.

The game of stretching and rescaling that rules the multiple timescale
spectral analysis offers more flexibility to derive approximate solutions
than standard time-domain methods. The resulting approximation might
not necessarily be optimal, in one (or some) sense, but at least may
features interesting advantages. For instance, the proposed solution is
shown to provide more accurate results than those obtained with the
stochastic averaging method, as the fractional exponent 𝛼 → 0.

Extrapolating on these promising results, further works should ex-
tend to slightly nonlinear or multiple degree-of-freedom structures.
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