Point of care testing of GBS, isn’t it obvious?

BACKGROUND

- **Burden**
 - Transmission - Prevention strategies

- **POCT for GBS, isn’t it clinically obvious?**
 - Risk-based or antenatal screening-based
 - Intra-partum antibiotic prophylaxis
 - Reduction of incidence of EOD, advantages & drawbacks
 - Room for improvement

- **POCT for GBS, is it technically obvious?**
 - Advantages & drawbacks
 - Expected characteristics
 - Available or coming POCTs

- **Take home message**

Group B streptococcus or GBS (Streptococcus agalactiae)

- Since the 1970s, leading cause of life-threatening infections in newborns
 - Neonatal illness/death
 - Early & Late Onset Disease (EOD, LOD)
 - Long-term disabilities
 - **GBS EOD**
 - Before mid-1990s: 2-3/1000 live births
 - Today, prevention era: 0.2 – 1/1,000 live births
 - Meningitis: 10%
 - Mortality: 4 - 10% (20-30% if premature)
 - **GBS LOD**
 - 0.3 – 0.5/1,000 live births

Neonatal GBS EOD

Vertical transmission

- Leading cause of life-threatening infections in newborns
 - Neonatal illness/death
 - Long-term disabilities
 - Vertical transmission during labor & birthing

GBS colonized mothers

Colonized newborns

Non-colonized newborns

50 - 40 %

40 - 60 %

(\(^*\)) : carriage 10-35% of pregnant women (transient, intermittent or chronic)

Additional Risk Factors for Early-Onset GBS Disease

- Obstetric factors*:
 - Prolonged rupture of membranes,
 - Preterm delivery,
 - Intrapartum fever
 - GBS bacteriuria
 - Previous infant with GBS disease*
 - Immunologic:
 - Low specific IgG to GBS capsular polysaccharide

*: No difference in occurrence either in GBS Positive or Negative women, except intrapartum fever

Primary risk factor for GBS EOD: vaginal GBS colonization at delivery

- Leading cause of life-threatening infections in newborns
 - Neonatal illness/death
 - Long-term disabilities
 - Vertical transmission during labor & birthing

GBS colonized mothers

Colonized newborns

Non-colonized newborns

50 - 40 %

40 - 60 %

Risk factors

2 - 4 %

Early onset disease (> 50% no RF)

96 - 98 %

Asymptomatic

Sepsis

Pneumonia

Meningitis

Long term sequelae

Strategies for prevention of neonatal GBS EOD

Antibiotic prophylaxis

Preventing transmission

Colonyed newborns

40 - 60 %
Point of care testing of GBS, isn’t it obvious? ECCMID 2018

Strategies for prevention of neonatal GBS EOD

- **Intrapartum antibioprophylaxis**
 - > 4 hours before delivery
 - Highly effective in preventing GBS EOD (1st clinical trials in late 80s)
 - To mitigate transmission and reduce chance of invasive infection.

Challenge:

- Identification of woman at risk
- Risk-based strategy?
- Screening-based strategy?

Impact of prevention practices Early- and Late-onset GBS Diseases, U.S.

- *Early-onset GBS*
 - CDC’s 1st consensus guidelines:
 - Screening
 - Risk-based
 - Universal screening
 - Improved screening method

- *Late-onset GBS*
 - No effect on GBS LOD

European strategies for prevention of GBS EOD

- **Intrapartum antibioprophylaxis recommended**
- **Screening-based strategy**
 - (issued by prof.societies; by public health authorities)
 - France, 2001, 2017
 - Belgium, 2003, revised 2015
 - Germany, 1996, revised 2008
 - Switzerland, 2007

- **Risk-based strategy**
 - UK, the Netherlands, Denmark

- **No guidelines**
 - Bulgaria, …

Guidelines for prevention

- Efficacy, concerns & drawbacks
- Room for improvement

POCT FOR GBS, ISN’T IT CLINICALLY OBVIOUS?
Point of care testing of GBS, isn’t it obvious? ECCMID 2018
Point of care testing of GBS, isn't it obvious? ECCMID 2018

About analytically reliable diagnostic devices/systems for Real-time NAAT GBS LB assays

Impact on diagnostics?
Impact on patient management, care?
Impact on Turn-around-time?

Clinical significance of results?
Cost-benefits?

When to use which techniques?
For selected patients?
Alone or combined with conventional methods?
Will results be able to change behaviour?

Antenatal GBS culture-based screening

Goal of GBS screening
To predict GBS vaginal (rectal) colonization at the time of delivery

§ Crucial factors influencing accuracy
§ Swabbed anatomic sites
§ Timing of sampling (35-37 wks)
§ Screening methods
§ Culture
§ Procedure
§ Media
§ Non-culture
§ Nucleic Acid Amplification Test (NAAT)

Remainng burden of streptococcal early onset disease
Missed opportunities / False negative screening (antenatal culture based screening)
Negative and positive predictive values to be improved

Intra-venous IAP

Cost-benefits?
For lab/global?
Country, reimbursement, availability of human resources, quality of culture procedures, etc.

Impact on Turn-around-time?
Up to 48h shorter, but not essential as antenatal. Elegant, streamlined solution.
Concerns about potential adverse / unintended events related to IAP

- Allergies
 - Anaphylaxis occurs but extremely rare
- Changes in incidence or resistance of other pathogens causing EOD
 - Data are complex …
 - BUT Most studies: stable rates of « other » sepsis
- Impact on development of the neonatal intestinal microbiome.

- Changes in GBS antimicrobial resistance profile
 - Increase of resistance to clindamycin (10 to 40% in Europe, USA; up to 70% in Asia)
 - Very very rare decrease of susceptibility to penicillin

Concerns about preventive strategies & IAP

Risk-based approach

- A lot of missed opportunities
 - Lack of adherence
 - Incomplete assessment of risks
- Up to 65% of cases not associated to RF

Antenatal screening-based approach

- Some missed opportunities
 - Change of GBS status
 - Colonization dynamics
- False Negative screening
 - Change of GBS status
 - Colonization dynamics

Unnecessary IAP

- Half up to 80% of women with RF are not GBS colonized (except intrapartum fever)
- False Positive screening
 - Change of GBS status
 - Colonization dynamics

Up to 30 % of antenatal positive
Towards a « European Consensus »

Decision taken by a European working party (Neonatologists, obstetricians, microbiologists)

including countries with screening-based IAP, with risk-based IAP strategies or no strategy at all (June 2013, Florence, Italy)

Main recommendations

- **Universal screening at time of delivery** (when appropriate POCT available)
 - POCT with high PPV and NPV
 - Real time PCR or other methods
 - TAT < 1 hour
- **IAP for all GBS positive pregnant women**
 - documented by intrapartum testing (or late pregnancy test if performed)
- **Late pregnancy antenatal screening in known penicillin allergic women**
 - Determination of clindamycin susceptibility if GBS positive screening

Intrapartum screening

Expected advantages & drawback

- Inclusion of women without antenatal screening / care
- Identification of women with change of GBS status after 35-37 wks gestation
- Increased accuracy of vaginal GBS colonization status at time of labor & delivery
- No antimicrobial susceptibility results

→ in case of penicillin allergy, antenatal screening

IAP addressed to right target

- Reduction of inappropriate / unnecessary IAP
- Broader coverage of « at GBS risk women »

Improvement of prevention

POCT FOR GBS, IS IT TECHNICALLY OBVIOUS ?

Old or new tools to detect GBS?
Response to a 30 year “dream” but also an obvious need.

GBS POCT
performed on vaginal specimen
at admission for delivery

= Valuable alternative method for accurate identification of GBS colonized women at delivery

Improvement of prevention
XXIst century, Medical evolutionary background

Factors impacting on development and daily practice of microbiology

- Medical environment
 - Increasing emphasis on evidence-based medicine and adherence to guidelines
- Economic environment
 - Cost-effective use of available resources
 - Reimbursement system, regulation
- Evolution of technological background
 - Exponential progress: molecular biology and robots
 - New platforms from “sample-in / result-out”
 - Continuation of advance to accelerate in the near future
- Quality assurance, traceability, LIS
- Global increase of antimicrobial resistance

Theranostic approach
Alternative to GBS prenatal screening: intrapartum screening

- Turnaround time
 - Collect specimen at admission
 - Optimal management of patient
 - Results
 - Sensitivity > 90%
 - Specificity > 95%
 - Full automation
 - With internal QC
 - Easy to perform, to interpret
 - Training!

A POCT in the delivery room
INTRAPARTUM SCREENING FOR GBS

Fully automated and robust test & platform
- Sensitivity >90%, specificity>95%, negative and positive predictive values
- Turn Around Time (TAT) < 1 hour
- Internal QC / embedded process control / control for presence of specimen on board
- Workflow; very limited hands-on-time
- Easyness to perform and to interprete (clear-cut result)
 - Low rate of invalid / error results
 - Availability 24h/7d
 - Limited training (high turnover among nurses/midwives)
 - Cost-effective
 - Traceability, connectivity to electronic medical files
 - Small footprint, low noise level
 - Minimized waste

Benitz et al. 1999, Pediatrics, Vol 183 (6)
Xpert® GBS for intrapartum screening

Diagnostic Accuracy of a Rapid Real-Time Polymerase Chain Reaction Assay for Universal Intrapartum Group B Streptococcus Screening
Najoua El Helali, Jean-Claude Nguyen, Aïcha Ly, Yves Giovangrandi and Ludovic Trinquart
Clinical Infectious Diseases 2009;49:417–23

- 968 Pregnant women
- Intrapartum Xpert GBS, Cepheid (performed in lab)
 - vs intrapartum culture
 - antenatal culture (French recom.) (vaginal swab/CNA-BA)
 - Sensitivity 98.5%
 - Specificity 99.6%
 - PPV 97.8% PPV 58.3%
 - NPV 99.7% NPV 92.1%

Xpert® GBS results (Liege, 2014)
Intrapartum (IP) culture as gold standard

<table>
<thead>
<tr>
<th>Pre-study</th>
<th>Study</th>
<th>Revision</th>
<th>Following period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number tested / Number GBS Positive IP Culture</td>
<td>112 / 16</td>
<td>225 / 32</td>
<td>89 / 15</td>
</tr>
<tr>
<td>Sensitivity Excluding enrichment</td>
<td>78.6%</td>
<td>46.7%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Specificity</td>
<td>98.9%</td>
<td>100%</td>
<td>98.5%</td>
</tr>
<tr>
<td>PPV</td>
<td>91.7%</td>
<td>100%</td>
<td>93.3%</td>
</tr>
<tr>
<td>NPV</td>
<td>96.7%</td>
<td>91.7%</td>
<td>98.5%</td>
</tr>
<tr>
<td>Error + Invalid results</td>
<td>3% - 11%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Xpert® GBS
POC test in the delivery room study

Objectives
Study in CHU Liège / UZ Antwerp, Belgium (900 patients), 2014-2015

1. To assess the practical aspects and analytical performances
 - Tests performed by midwives
 - Evolving team of +/- 50 midwives/hospital
 - For screening all women at onset of labor
2. To evaluate the cost-effectiveness of the intrapartum screening strategy

→ To consolidate the proposal of the European Expert Group

Xpert® GBS results (Liege, 2014)
Intrapartum (IP) culture as gold standard

<table>
<thead>
<tr>
<th>Pre-study</th>
<th>Study</th>
<th>Revision</th>
<th>Following period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number tested / Number GBS Positive IP Culture</td>
<td>112 / 16</td>
<td>225 / 32</td>
<td>89 / 15</td>
</tr>
<tr>
<td>Sensitivity Excluding enrichment</td>
<td>78.6%</td>
<td>46.7%</td>
<td>93.3%</td>
</tr>
<tr>
<td>Specificity</td>
<td>98.9%</td>
<td>100%</td>
<td>98.5%</td>
</tr>
<tr>
<td>PPV</td>
<td>91.7%</td>
<td>100%</td>
<td>93.3%</td>
</tr>
<tr>
<td>NPV</td>
<td>96.7%</td>
<td>91.7%</td>
<td>98.5%</td>
</tr>
<tr>
<td>Error + Invalid results</td>
<td>3% - 11%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Point of care testing of GBS, isn’t it obvious ? ECCMID 2018
Key message

Xpert® GBS POCT in the delivery room

- High specificity but varying sensitivities!
- Some invalid or error results
 - Time, cost to retest ???
 - Some expected improvements to secure the result AND the patient management (specimen control)
- Mucus interference
- Higher Ct when test perform immediately after collection: better results a few hours later

Commutability from lab to POC:
Not always an unconditional success story!
→ Clinical validation of GBS POCT:
crucial to be performed on site, by midwives and on fresh specimens

GenePOC™ GBS DS test for intrapartum screening

- Real Time PCR on revogene™ instrument
 - Detection of a cfb gene sequence specific of the GBS genome
- On vaginal or vagino/rectal swab
- Fully automated
- Easy to use: 3 steps in 1 min
- Result in 70 minutes
- Single-use microfluidic cartridges
 - Testing 1 up to 8 samples in one run
- Embedded process control to monitor sample processing conditions
 - Internal control to monitor PCR conditions and the absence of reaction inhibition

GenePOC™ GBS DS Assay, validation by the Belgian NRC GBS
- Currently tested in parallel with reference culture
- Results: so far so good, evaluation still ongoing

GenePOC™ GBS DS test for intrapartum screening

Clinical performances characteristics of the GBS DS Assay in comparison to reference method

<table>
<thead>
<tr>
<th>Overall performance</th>
<th>Reference Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
</tr>
<tr>
<td>GBS DS Assay</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>107</td>
</tr>
<tr>
<td>Negative</td>
<td>4^</td>
</tr>
<tr>
<td>Total</td>
<td>111</td>
</tr>
</tbody>
</table>

Sensitivity: 96.4%
Specificity: 93.5%
PPV: 89.9%
NPV: 98.5%

^: GBS DNA detected in ½ false negative specimens tested using a second NAAT method
^: GBS DNA detected in 13/15 false positive specimens tested using a second NAAT method

Limit of detection

- GBS Strain
 - L4 in simulated matrix
 - µg/mL
 - Serotype III (ATCC 12403): 700
 - Non-hemolytic (ATCC 13813): 275

Intrapartum group B Streptococcus (GBS) detection by point-of-care real-time PCR testing (POCT)
Luiz Von Müller*, Germany

GenePOC™ GBS DS test, CE-marked, 2017
& the revogene™ instrument, CE-marked & FDA cleared

INTRAPARTUM SCREENING FOR GBS

Point of care testing of GBS, isn’t it obvious? ECCMID 2018
CONCLUSION
Take home messages

Summary

Neonatal GBS diseases & prevention

- GBS still a perinatal threat
- EOD and LOD, a public health concern
- Immunoprophylaxis, highly desirable but not yet available
- IAP efficient for prevention of EOD
 - Up to 80% reduction of EOD
 - Best strategy still a matter of debate
 - Antenatal screening >> risk factors ??
- IAP not widely recommended
- Towards European consensus 2014
 - Universal screening, intrapartum when appropriate GBS POCT available

Summary

Intrapartum GBS POCT

- Clinically OBVIOUS to reduce
 - Missed opportunities of IAP
 - Unnecessary IAP
 - Inappropriate management of newborn
- Clinically OBVIOUS
 - To better address the right target for IAP
 - But no AST result for penicillin allergic woman
 - A lot of papers relating the superiority of intrapartum GBS POCT–based IAP (Xpert® GBS)
 - Which “reference method”?
 - Testing in lab versus on delivery site ?
 - Room for technical improvement ?
- Hope in the new GenePOC™ GBS DS test & coming others still in the pipeline of development

Point of care testing of GBS, isn’t it obvious? ECCMID 2018