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Motivation and context

Previous work on the Ensemble propagation (EP) [Phipps, 2017], [D’Elia, 2017]:

I Symmetric positive definite system ⇒ Conjugate Gradient,
I Reduced and not reduced norms and inner products, BLAS and preconditioners.

In sampling-based uncertainty quantification (UQ), instead of individually evaluating each
instance of the model, EP consists of simultaneously evaluating a subset of samples of
the model.

Model Model

This work: going towards EP for mechanical contact problems

I Samples of a same ensemble can have different activities,
I Non-symmetric saddle-point system ⇒ GMRES,
I Reduced and not reduced norms and inner products, BLAS and preconditioners,
I Towards industrial problems.
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Mechanical contact problem
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Algorithm 1: Active set strategy

1 k ← 0
2 Choose an initial guess for the active set Ak

3 do
4 Given Ak , compute the solution of
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5 Ak+1 ←

{
q ∈ Ph,s

c : λk+1
q + c eTq

(
Duk+1

c − g0

)
> 0
}

6 k ← k + 1

7 while Ak 6= Ak−1

Inner nodes: i, potential contact nodes: c, at iteration k , inactive set: Ik , and active set: Ak .
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Preconditioners: Full multigrid approach

Introduced in [Wiesner, 2015] for contact problem.

I Main idea: use coarser representations of fine
level problems in order to speed up the solution
process,

I Uses the multigrid approach on the full matrix,
preserving the saddle-point structure on all
levels,

I Algebraic multigrid: no special information is
necessary to build the mutligrid hierarchies,

I Mutligrid hierarchies are independent of the
activity of the Lagrange multipliers.

I Allows the use of a direct solver on the coarsest
level.
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Ensemble propagation for mechanical contact problem

Instead of individually solving the mechanical contact problem for each instance of the
model, we have to solve simultaneously the mechanical contact problem for a subset of
samples of the model.

Advantages of the EP:

I Reuse of common variables,
I Improved probability of auto-vectorization,
I Improved memory usage,
I Reduction of Message Passing Interface (MPI) latency per sample.

Improve throughput.

Difficulties of the EP for mechanical contact problem:

I Different samples can have different active Lagrange multipliers,

I Samples may require a different number of active set iterations,

I For a given active set iterations, they may require different number
of Krylov iterations.
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The algebraic full form as a way to handle activities

The matrix of the system:

I has a constant size but its graph varies with the active set,
I can be stored using an extended graph which is the union of all the possible graphs,
I has a saddle-point structure,
I is not positive definite (if at least one Lagrange multiplier is active).
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GMRES with Ensemble propagation

Instead of individually solving the GMRES for each instance of the model, we have to solve
simultaneously the GMRES for a subset of samples of the model.

= =

GMRES is based on the notion of inner products and norms.

What is an inner product (and its associated norm) of vectors of ensemble type?

9 / 27



Reduced and not reduced inner products

I Reduced inner product and its associated norm were the first one introduced,
implemented, and tested in the EP [Phipps, 2017]:

= + + +

I Not reduced inner product and its associated norm were first introduce for grouping
purpose [D’Elia, 2017]:

=
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GMRES using reduced and not reduced inner products

Algorithm 2: Not reduced norm GMRES

1 r` = b` − A` x (0)
` , ` = 1, . . . , s

2 β` = ‖r`‖, ` = 1, . . . , s

3 v1,` = r`/β`, ` = 1, . . . , s

4 for j = 1, . . . ,m do

5 w` = A` v j,`, ` = 1, . . . , s

6 hij,` = 〈v i,`,w`〉, ` = 1, . . . , s, i = 1, . . . , j

7 v̂` = w` −
∑j

i=1 hij,`v i,`, ` = 1, . . . , s

8 h(j+1)j,` = ‖v̂`‖, ` = 1, . . . , s

9 v (j+1),` = v̂`/h(j+1)j,`, ` = 1, . . . , s

10 if h(j+1)j,`/β` ≤ ε, ∀` ∈ {1, . . . , s} then
11 m = j
12 break

13 miny`
‖β` e1 −H`y`‖, ` = 1, . . . , s

14 x (m)
` = x (0)

` + V ` y`, ` = 1, . . . , s

Algorithm 3: Reduced norm GMRES

1 r` = b` − A` x (0)
` , ` = 1, . . . , s

2 β =
√∑s

`=1 ‖r`‖2

3 v1,` = r`/β, ` = 1, . . . , s

4 for j = 1, . . . ,m do

5 w` = A` v j,`, ` = 1, . . . , s

6 hij =
∑s

`=1〈v i,`,w`〉, i = 1, . . . , j

7 v̂` = w` −
∑j

i=1 hijv i,`, ` = 1, . . . , s

8 h(j+1)j =
√∑s

`=1 ‖v̂`‖2

9 v (j+1),` = v̂`/h(j+1)j , ` = 1, . . . , s

10 if h(j+1)j/β ≤ ε then
11 m = j
12 break

13 miny ‖β e1 −Hy‖

14 x (m)
` = x (0)

` + V ` y , ` = 1, . . . , s
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GEMM operations in orthogonalization of the GMRES

Componentwise orthogonalization:

Algorithm 4: Not reduced orthogonalization
6 hij,` = 〈v i,`,w`〉, ` = 1, . . . , s, i = 1, . . . , j

7 v̂` = w` −
∑j

i=1 hij,`v i,`, ` = 1, . . . , s

Algorithm 5: Reduced orthogonalization
6 hij =

∑s
`=1〈v i,`,w`〉, i = 1, . . . , j

7 v̂` = w` −
∑j

i=1 hijv i,`, ` = 1, . . . , s

Writting with matrix vector multiplications:

Algorithm 6: Not reduced orthogonalization

6 hj,` = VT
` w`, ` = 1, . . . , s

7 v̂` = w` − V ` hj,`, ` = 1, . . . , s

Algorithm 7: Reduced orthogonalization

6 hj =
∑s

`=1 VT
` w`

7 v̂` = w` − V ` hj , ` = 1, . . . , s

these operations can be implemented with GEMV routines or, more generally, with GEMM
to support multiple right-hand sides, however, these implementations are not trivial and
require to take into account the memory layout of the ensemble type.
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Pros and cons of both approaches

Not reduced norm:
Pros:

I At the end of the GMRES, the stop
criterion is fulfilled by every sample
individually.

I The spectrums are not gathered.

I Convergence rates controlled by the
slowest sample.

Cons:

I Divisions by norms need to be done
with caution to avoid underflow and
division by zeros due to happy
breakdown.

I No current implementation of the
needed BLAS routines in the MKL.

Reduced norm:
Pros:

I No division by zero when we divide
by the norm of a non-zero residual.

I Use of standard libraries such as
MKL.

Cons:

I At the end of the GMRES, the stop
criterion may not be fulfilled by
every sample individually.

I The spectrum of the ensemble
matrix is the union of the spectrum
of each sample matrix: to have a
good preconditioner is more complex.

I Increase the number of iterations. 13 / 27
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Code

I The full mechanical contact simulation is implemented and fully templated in a
homemade code heavily based on Trilinos [Heroux, 2005] which provides a
full-templated solver stack.

I The C++ code is embedded in a Python interface [Boman]. This eases the looping
around samples, group samples together, etc.

I The software has hybrid parallelism based on Tpetra with MPI for distributed memory
and Kokkos [Edwards, 2012] with OpenMP for shared memory.

I It uses Gmsh [Geuzaine, 2009] to import 3D meshes and VTK to write the output files.

I The code has already generated preliminary results for industrial thermomechanical
contact problems.
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Speed-Up and R

I Speed-Up: relative gain in CPU cost (architecture dependent):

S(e) =

∑
`∈e Time`
Timee

, S =

∑
e

∑
`∈e Time`∑

e Timee
.
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I R: relative increase in computational work (architecture independent):

R(e) =
s #iterationse∑
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, R =
s
∑
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e

∑
`∈e #iterations`

.
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Speed-Up of the GMRES with not reduced norm

I Default GEMM: naive implementation with three nested loops.
I Explicit Template Instantiation (ETI): improves optimization of the code by the

compiler.
I BLAS optimization made using threaded loops around the vector kernel [Kim, 2017].

The matrices are split into submatrices sufficiently small to be loaded in higher level
caches, each thread treats one submatrix at a time with the kernel.

I Tested on a SPD problem of size 14 739 (local balance of momentum on a cube).
I One MPI process on a Xeon Phi KNL with 256 OpenMP threads.
I Replicated samples without preconditioner.
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Beam contact problem

I Size: L = 50 cm,W = 5 cm,H = 5 cm,d = 1 cm,

I Elements: 60× 6× 6 hexahedra,

I Number of Dofs: 9 394 = 3× 61× 72 + 61× 7,

I Depending on the pressure p∼ U(5, 25) [MPa], the contact
is fully open or partially closed.

I Material:

I Young’s modulus: E ∼ U(205, 215) [GPa].
I Poisson coefficient: 0.29.

I Quantity of Interest: displacement along z on the center
point of the face x = L,

I 256 Halton Quasi Monte Carlo samples,

I One MPI process on a Xeon Phi KNL with 256 OpenMP
threads.
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Quantity of Interest
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Speed-Up of the preconditioner: main average CPU cost contribution

Average CPU cost contributions without EP

Preconditioner V-cycle

Apply the matrix

Setup the preconditioner

Orthogonalization

Matrix assembly

Graph assembly
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Convergence: reduced norm
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Convergence: not reduced norm
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Ensemble size: 8 and 16
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Ensemble size: 8 and 16
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Ensemble size: 8 and 16
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Speed-Up of the full simulation
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Conclusion and future work

Conclusion:

I Contributions towards EP for mechanical contact problems including strategy to
handle activities and the influence of the norms on the GMRES.

I Two norms can currently be used in the GMRES: the reduced and the not reduced,

I Promising first results: the choice of the norm influences the performance and the
precision of the solutions,

I The convergence of the reduced norm is not already fully understood.

Future work:

I Finish the optimization of the BLAS implementation for ensemble type,

I Continue to study theoretically how the norm influences the convergence of GMRES,

I Study how to use this method in uncertainty quantification of contact problems with
local surrogate model and grouping,

I Apply the method on engineering problems relevant for ITER in collaboration with
FZ. Jülich.
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