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Motivation

� Predicting Antarctica’s contribution to future sea-level rise in a warming world (∼200
million people at risk in coastal regions).

� Understanding and identifying the physical processes, feedbacks and instability
mechanisms that govern Antarctica’s response to climate changes.

� Robust policy response strategies to tackle climate changes should rely on integrated
risk and uncertainty assessment in climate change projections [IPCC, 2013].
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The f.ETISh model: overview
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Numerical ice-sheet models

� High-fidelity ice-sheet models:

I Solve the Stokes equations or high-order ice flow models;

I Capable of simulating ice flow with high accuracy at high resolution (∼100 m);

I Relevant for simulations on regional scales and multidecadal periods.

� Essential ice-sheet models (ISMs):

I Based on shallow-ice approximations of the Stokes equations;

I Focus on the essential mechanisms (e.g. MISI) and feedbacks of ice-sheet flow (through
appropriate parameterizations);

I Can simulate large ice sheets at low resolution (∼10 km) on millennial time scales;

I Computationally tractable for large ensemble analysis;

I Computationally tractable for integration into Earth system models.

This talk: UQ of multicentennial Antarctica’s response with essential ISMs.
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Predicting Antarctica’s response with f.ETISh

� Input data: ice thickness, bedrock topography, snow accumulation, geothermal heat
flux, calving rate, bedrock relaxation time,. . .

� Computation:

(1) Initialization: Identification of the basal friction coefficient to match present-day conditions;

(2) Forward run over several centuries under climate change conditions (outputs: volume above
floatation (VAF) + grounding-line position).

Bedrock topography [Fretwell, 2013] Optimized basal friction coefficient
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Model initialization: Data assimilation of ice-sheet geometry

� Basal sliding is a pivotal process governing ice-sheet motion. However, the friction
coefficient can not be determined directly ⇒ Need for efficient calibration methods.

� Algorithm [Pollard, 2012]:

1. Solve continuity equation + flow equations till equilibrium (with fixed grounding line);

2. Adjust basal friction coefficient to match present-day surface elevation;

3. Repeat 1. & 2. till convergence is reached (fixed-point iteration).
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Marine ice sheet instability mechanism

� Step 1: Steady state on an upward sloping bed (qin = qout).
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Marine ice sheet instability mechanism

� Step 2: Initiation of grounding-line retreat (qin < qout).
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Marine ice sheet instability mechanism

� Step 3: Self-sustained grounding-line retreat (qin � qout).

∗
∗ ∗∗ qin

qout

7 / 22



Outline

(1) Motivation

(2) Ice-sheet modeling

(3) UQ for ice-sheet models

(4) Application: the f.ETISh ice-sheet model

• Methodology

• Results

(5) Conclusion

8 / 22



Uncertainties in ice-sheet models

� Intrinsic variability/uncertainty in the climate system +

Noisy data:

I Climate forcing: atmospheric (natural and
anthropogenic) and oceanic forcings;

I Present-day configuration: bedrock topography,
geothermal flux, ocean temperature,. . . ;

I Basal friction condition.

� Modeling errors:

I Choice of models for ice rheology, basal friction, ice
dynamics, bedrock response, sub-shelf melting, . . . ;

I Initialization (formulation, numerical approximation,
noisy observations);

I Parameterizations of complex processes (with free
parameters);

I Numerical errors (discretization, numerical noise);

� Parametric uncertainty in physical models (e.g. Glen’s
exponent) and parameterizations.

Uncertainty in global mean temperature [IPCC, 2013]

Uncertainty in bedrock topography [Fretwell, 2013]

9 / 22



Challenges about UQ in ice-sheet models

� Characterization of uncertainties:

I Publicly available observational datasets [Rignot, 2011; Fretwell, 2013; An, 2015];

I Spatially nonhomogeneous fields (identification);

I Schematic representation of uncertainties: RCP scenarios, sliding laws;

I Correction factors in parameterizations (based on expert assessment).

� Propagation of uncertainties:

I Spatially nonhomogeneous responses (propagation, representation, visualization);

I Global (∆VAF) vs local (surface elevation, grounding-line position) quantities of interest;

I Complex dynamics: strong nonlinearities, multiphysics coupling, instability mechanisms,
feedbacks, tipping points, multi-scale processes, strong interactions with the Earth system.

� Implementation:

I Computational cost:
• High computational cost for high-fidelity ISMs prohibits their use for UQ analysis;

• Essential ISMs allow to generate large numbers of samples for UQ analysis (1 simulation over
1000 yrs with 20 km resolution ∼10 hours with f.ETISh).
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UQ in ice-sheet models: Review

� Initialization methods:

I Spin-up methods [Golledge, 2015];

I Assimilation of observed surface velocity [Morlighem, 2010; Petra, 2012];

I Assimilation of observed surface elevation [Pollard, 2012];

I Bayesian inverse methods [Isaac, 2015].

� Ensemble modeling: Run the model with different parameter values to span the entire
range of model outputs [Bindschadler, 2013; Pollard, 2016].

� Gaussian process modeling: Build a Gaussian process emulator to reduce the
computational cost + ensemble modeling [McNeall, 2013; Pollard, 2016].

� Sensitivity analysis:

I Adjoint-based methods [Heimbach, 2009];

I Sampling methods [Larour, 2012];

I Local reliability methods [Larour, 2012]
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UQ Methodology: Characterization of input uncertainties

� Spatially nonhomogeneous fields are replaced by global
input parameters.

� Uncertain climate forcings: Representative scenarios
relevant for policymakers.

� Poorly constrained parameters:

I Extremal and nominal cases:

• Lower computational cost;

• Consistent with practice for friction [Ritz, 2015];

• OK for weakly nonlinear models.

I Stochastic modeling (random variables):

• Higher computational cost;

• Span the entire range of input parameters and
model outputs (with associated pdf);

• OK for nonlinear models;

• Expert assessment of intervals (uniform) or
hyperparameters (Gaussian).

2200 2400
0

5

10

RCP2.6

RCP4.5

RCP6.0

RCP8.5

∆
T

[K
]

Parameter min nominal max

m 1 2 3

Parameter Distribution

Fcalv U [0.5, 1.5]

Fmelt U [0.1, 0.8]

Eshelf U [0.2, 1]

τEAISw U [1000, 3000] yrs

τWAIS
w U [1000, 5000] yrs

13 / 22



UQ Methodology: Propagation of uncertainties

� Spatially nonhomogeneous responses (propagation, representation, visualization):

I Global outputs (reduction) (e.g. ∆VAF for the Antarctic ice sheet):

• Global (large-scale) outputs smooth out local (small-scale) non-smooth responses.

• Stochastic expansions (through regression or Bayesian-based regression [Sargsyan, 2017] to
accomodate noisy data and occasional faults) or Gaussian metamodeling (surrogate models);

• Sensitivity analysis: Sobol indices, HSIC indices,. . .

I Local outputs (ice thickness, grounding-line position):

• Potentially highly nonlinear (non-smooth) outputs (especially where MISI can occur);

• Monte-Carlo sampling (or similar);

• Confidence region for excursion sets and contours (grounded ice, grounding-line position).

I Regional outputs (partial reduction) (e.g. ∆VAF for major Antarctic basins):

• Output regularity depends on the size and position (marine or grounded) of the region;

• Weakly nonlinear outputs: see global outputs;

• Highly nonlinear outputs: see local outputs.
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Stochastic expansion: Comparison of global and local outputs
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Confidence regions for excursion sets

� Sea-level rise depends on grounded ice ⇒ Need to
quantify grounded-ice retreat.

� Determine a confidence region with probability
level 1− α where height above floatation is above
zero (HAF> 0):

I Marginal set:

D+
α = {x : P(HAF(x) > 0) > 1− α} .

I Excursion set:

E+
α = arg max

D

{
|D| : P(D ⊆ A+(HAF)) > 1− α

}
where

A+(HAF) = {x : HAF(x) > 0} .

D+
0.05

E+
0.05
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Algorithm for excursion sets

� Algorithm [Bolin, 2015]: Build a parametric
family of sets and select the set that gives the
best approximation for E+

α .

Algorithm 1: Calculate excursion sets

Data: Monte-Carlo realizations
Result: Excursion set

1 Initialization: Choose a parametric family D(ρ) such
that D(ρ1) ⊆ D(ρ2) if ρ1 < ρ2;

2 while P(D(ρi ) ⊆ A+(HAF)) > 1− α do
3 ρi → ρi+1, ρi+1 > ρi .
4 end
5 E+

α is given by the last set D(ρi ) with
P(D(ρi ) ⊆ A+(HAF)) > 1− α.

� Easy family: Chose D+
ρ for D(ρ).

E+
0.05 ∼ D+

0.02
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VAF projections with 33%-66% quantiles
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Sensitivity analysis: Sobol indices (t = 1000 yrs)
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E+
0.05 under nominal sliding conditions
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Conclusion

� Essential ice-sheet models:

I Focus on essential mechanisms (MISI, ocean interaction, shallow flow,. . . );

I Can be integrated in global Earth system;

I Allows to generate large numbers of samples for UQ analysis.

� UQ for ice-sheet models:

I Characterisation of uncertainties: spatially nonhomogenous fields, representative scenarios,
extreme and nominal cases, stochastic modeling.

I Propagation of uncertainties:

• Global outputs: MC sampling, surrogate models, sensitivity analysis;

• Local outputs: MC sampling, confidence region.

� Future perspectives:

I Stability analysis under stochastic perturbations;

I Gain deeper insight into the interactions of input parameters and their influence on
ice-sheet response.
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