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Abstract

The sustained growth of the industrial sector requires high-efficiency electro-me-
chanical energy converters, in particular electrical rotating machines, at the lowest
possible cost. The use of modern power electronics converters at all levels of elec-
trical power applications, involves, on the other hand, switching components with
very low switching times and always increasing current levels. Passive components
in these devices (busbars, inductors, transformers) must be designed to be com-
pact without compromising their performance (e.g. power losses, electromagnetic
interference/compatibility). Automated design optimization methods, in particu-
lar shape and topology optimization, used so far mostly in the field of structural
engineering, offer a major step evolution in the design of such electro-mechanical
and electric energy converters. The objective of this thesis is to provide engineers
and practitioners of the field with appropriate methods which allow to carry out
such design tasks by numerical optimization in an efficient way, and to extend the
design capabilities to electro-mechanical converters.

This thesis exploits a computer aided design (CAD) representation of indus-
trial systems and the finite element method (FEM) to solve the partial differential
equations (PDEs) that govern their behavior under certain physical conditions.
This thesis addresses three main subjects. First, the sensitivity analysis of elec-
tromagnetic PDEs solution is revisited in view of being used with gradient-based
methods. Classical scalar formulations are extended to a general rigorous frame-
work, and expressed analytically prior to discretization, to treat the vector case.
Secondly, an iterative solver is designed so as to solve efficiently the large-scale
linear systems arising from the design problem. Third, the design improvement
capabilities are extended by developing an integrated and unified formalism for
simultaneous shape and topology optimization of a system.
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Résumé

La croissance soutenue du secteur industriel exige des convertisseurs d’énergie
électromécaniques à haut rendement, en particulier des machines électriques tour-
nantes, au coût le plus bas possible. L’utilisation de convertisseurs d’électronique
de puissance modernes à tous les niveaux d’applications de conversion de puissance
électrique implique d’autre part des composants de commutation avec des temps de
commutation très courts et des niveaux de courant toujours plus élevés. Les com-
posants passifs de ces dispositifs (busbars, bobines, transformateurs) doivent être
conçus pour être compacts sans compromettre leurs performances (telles que les
pertes de puissance, interférences/compatibilité électromagnétiques). Les méth-
odes automatisées de conception optimale, en particulier l’optimisation de forme et
l’optimisation de la topologie, utilisées jusqu’à présent principalement dans le do-
maine de l’ingénierie structurelle, offrent une évolution majeure dans la conception
de tels convertisseurs d’énergie électromécanique et électrique. L’objectif de cette
thèse est de fournir aux ingénieurs et aux praticiens du domaine des méthodes
appropriées qui permettent d’effectuer de telles tâches de conception par optimi-
sation numérique de manière efficace, et d’étendre les capacités de conception aux
convertisseurs électromécaniques.

Cette thèse exploite une représentation assistée par ordinateur (CAO) de sys-
tèmes industriels et la méthode des éléments finis (FEM) pour résoudre les équa-
tions aux dérivées partielles (EDP) qui régissent leur comportement dans certaines
conditions physiques. Cette thèse aborde trois sujets principaux. Dans un premier
temps, l’analyse de sensibilité de la solution d’EDP électromagnétique est revue de
manière à être utilisée avec des méthodes basées sur le gradient. Les formulations
scalaires classiques sont étendues à un cadre général rigoureux, et exprimées analy-
tiquement avant la discrétisation, pour traiter le cas vectoriel. Deuxièmement, un
solveur itératif est conçu de manière à résoudre efficacement les systèmes linéaires
de grande taille résultant du problème de conception. Troisièmement, les capac-
ités de la conception sont étendues en développant un formalisme intégré et unifié
pour l’optimisation simultanée de la forme et de la topologie d’un système.
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Overview

Industrial design issues can in general be formulated mathematically as optimiza-
tion problems aiming at achieving specific performance criteria while handling a
number of technical design constraints within predefined limits. Therefore, au-
tomated design optimization methods have been developed since the early 1970’s
mainly in the field of structural engineering. They provide engineers with adapted
procedures in which computers greatly help in the search for the optimal design
of systems.

With the development of computers, numerical models have expanded along the
years in a quasi exponential fashion. In particular, the one and two-dimensional
models of the first ages of CAD have now been massively replaced by three-dimen-
sional models which offer a much better representation of reality in many cases.
Numerical models of industrial devices nowadays may have typically several mil-
lions of discretized state variables and a computation time of several hours or even
days. Optimization based on such models requires solving them repeatedly (sev-
eral tens or hundreds of times), which is not practicable at this time. Two paths
must therefore be followed to make optimization available to industrial design: (1)
direct models can be made faster; (2) the number of model evaluations needed by
optimization algorithms can be reduced. Both paths correspond to very active
research fields in engineering and applied mathematics. This work focuses on the
latter and is organized along a number of complementary axes:

1. We focus on two particular optimization problems: shape optimization and
topology optimization. The former uses selected geometrical parameters of
the CAD description as optimization design variables, whereas with the lat-
ter, the design variables, which are called densities, represent the presence or
absence of material at each point of the region where it is applied. However,
there is nowadays an increasing interest in combining both methods, so as
to determine the CAD configuration while optimizing, at the same time,
the material usage of the system. We have therefore developed a tool which
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viii Overview

handles appropriately the two representations, and allows hence to carry out
an optimization in an extended design space involving shape and topology
design variables.

2. The physical behavior of the optimized system is governed by a PDE model,
possibly nonlinear, discretized by means of, e.g., the finite element method
(FEM). The performance functions of the optimization problem are therefore
a function of the physical problem solution and their evaluation is hence time
consuming since it requires solving repeatedly the PDEs for a sequence of ge-
ometries of the system. The solution of such complex optimization problems
is obtained with methods developed in the field of nonlinear mathematical
programming since the early 1960’s. In structural optimization the state-
of-the-art solvers are the so called sequential convex programming approach
with the two famous methods: the method of moving asymptotes (MMA) by
Svanberg [1987] and the convex linearization (CONLIN) method by Fleury
[1989]. Industrial design issues are formulated however as optimization prob-
lems which involve, in realistic cases, a high dimensional design space with
often a number of constraints of same order of magnitude as the number of
design variables. The computational effort involved in solving such problems
becomes comparable to the effort involved in solving the PDEs, hence mak-
ing the method prohibitively expensive for handling the largest industrial
design problems. This work aims at revisiting the classical solvers so as to
obtain the optimal solution in an affordable time.

3. In the context of the gradient-based optimization method, the concept of sen-
sitivity is pivotal and must account for the implicit variation of performance
functions, as well as the solution of the PDEs with respect to the design vari-
ables. However, its calculation can be time consuming, especially if a naive
approach based on finite differences is implemented, since it requires solv-
ing the time-consuming and possibly nonlinear PDEs anew for each slightly
modified geometry as the design variables are perturbed. Much effort has
been devoted over the years to the derivation of efficient methods for sen-
sitivity calculation, mostly in the area of structural mechanics, which take
benefit, in their most successful approaches, from the structure of the op-
timization problem. The calculation of sensitivity becomes however rather
complex for other disciplines, such as electromagnetic applications, which
involve an unknown vector field. We have therefore developed systematic
tools to handle the unknown vector field, and recover, in addition, the previ-
ously obtained sensitivity by other authors as particular cases. We have also
extended the sensitivity calculation of problems with time-harmonic PDEs.

We have integrated the corresponding gradient-based automated optimization
tool to the open-source software GetDP ( Dular et al. [1998]), and Gmsh ( Geuzaine
and Remacle [2009]) through the ONELAB interface which can be downloaded
from the following website: http://onelab.info. The proposed framework al-
lows for an optimization in an extended shape and topology design space, with

http://onelab.info
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an efficient gradient-based optimization algorithm. The tool has been devoted
to successfully determine the geometry of electro-mechanical energy converters of
great industrial relevance: electrical rotating machines, Fig. O1, and multiplanar
busbars, Fig. O2, so as to minimize the torque ripple of the former while ensur-
ing the mechanical resistance of the rotor submitted to centrifugal forces, and to
minimize the mismatch of impedances which occurs in the latter.

Figure O1: Top: A prototype of a fractional 12-slot and permanent-magnet (PM)
assisted synchronous reluctance machine is considered, left, as well as its rotor,
right, with laminations in which are inserted the PMs. This type of machine
exhibits high torque ripple(Pictures from Boglietti et al. [2014]) Bottom: Several
pragmatic approaches have been implemented to reduce cogging torque, right, as
well as the torque ripple, left, by means of laminations with small PMs added so
as to saturate the steel bridge and to increase the power factor of the considered
electrical machine are considered. However these designs lead in general to a
decrease of the average torque and do not take into account the strength of the
structure. Both aspects can be combined in an automated design. (Pictures
from Bianchi et al. [2009], left, and Bianchi and Bolognani [2002], right.)
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Figure O2: A classical connection of a power converter with an electrical motor,
left, is considered. The power converter involves switching components, e.g. IGBT
and a multi-layer busbar, right, to replace the cable wiring. The design of the
busbar can greatly benefit from automated design techniques so as to determine
a geometry of the plates that exhibits a low stray inductance, e.g. by widening
conductive sections, in a shape optimization approach, or alternatively by filling at
most a given volume fraction of the available domain, in a topology optimization
approach, e.g. for minimizing the mismatch of currents that goes through the
power switches. (Pictures from Guichon et al. [2006])



Overview xi

Outline

The manuscript is organized as follows. In Chapter 1, we review state-of-the-art
techniques for the subjects that are the foundation of our research: (1) shape,
topology and combined shape and topology optimizations; (2) the sensitivity
analysis of performance functions in the context of such constrained optimization
problems which involve PDEs; and (3) the numerical techniques used to solve the
optimization problem. In Chapter 2, we detail our contributions. They have been
the topics of several publications which are appended in their original published
form at the end of the thesis:

1. A framework to express analytically sensitivity analysis of systems governed
by PDEs with respect to design variables which control the shape of the
systems, based on the Lie derivative (Appendix A);

2. A suitably preconditioned iterative solver to handle the large-scale problems
which involve at least as many design variables as constraints (Appendix C)

3. A strategy to perform simultaneous shape and density based topology opti-
mization following the previously developed sensitivity as well as an adequate
mapping for handling the complex interactions between the material distri-
bution of topology and the geometry modifications of shape optimization
(Appendix D);

4. The extension of the Lie derivative in the time-harmonic domain in order
to tackle more involved applications, such as eddy-current problems (Ap-
pendix B).

In Chapter 3, we provide numerical applications representative of industrial prac-
tice. The first showcase deals with the simultaneous shape and topology opti-
mization of the rotor layout of an interior permanent-magnet machine in order to
smooth the torque profile with respect to the angular positions of the rotor, while
ensuring its mechanical strength. The second showcase considers the optimal de-
sign of a three dimensional multiplanar busbar so as to minimize the impedance
mismatch. Finally, conclusions as well as our perspectives are presented in the
last Chapter.
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Chapter

1
State-of-the-Art

1.1. Shape optimization

Shape optimization has been an active research area that one often traces back
to the seminal work of Zienkiewicz and Campbell [1973]. In early works of shape
optimization, as summarized in Bletzinger et al. [2010], the design variables were
selected among the nodal coordinates of the finite element mesh. However, the
quality of the mesh of the structure undergoing shape optimization was deterio-
rated throughout the optimization process, resulting in a dramatic loss of accuracy
of the numerical method, as reported in Haftka and Grandhi [1986], see Fig 1.1.

Figure 1.1: The structural shape optimization of a plate with a hole is considered.
The design variables are set as the nodal coordinates of the finite element mesh in
order to maximize the maximum Von-Mises stress which appears in the vicinity
of the hole. Their variation brings distortion throughout the successive boundary
updates. (Pictures from Haftka and Grandhi [1986])

As summarized in Olhoff et al. [1991], an efficient representation of shape op-
timization avoids the one-to-one dependence between the design variables and the
finite element mesh by using a CAD model description of the geometry. Polyno-
mial or rational representations of the boundaries have been used early on, e.g.
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1
Bezier or B-spline in Braibant and Fleury [1984], or NURBS in Beckers [1991].
The design variables were selected among the geometrical parameters of the model
such as the control points that govern the shape of the geometric entities of the
structural boundaries. This approach naturally provided a consistency between
the design and CAD models, see Fig. 1.2.

The latter parameterization has been followed in the context of the optimization
of electrical rotating machines, in which design variables are set classically as
the thickness of permanent magnets (PMs) of a permanent-magnet synchronous
machine (PMSM), their position, the slot opening, the width of rotor yoke, the
angle of one pole magnet, see for instance Kim et al. [2008], or Kioumarsi et al.
[2006]. Shape optimization has also been successfully applied to determine either
the stator shoes that minimize cogging torque, e.g. Choi et al. [2011], or the rotor
pole designs in interior permanent-magnet (IPM) motors to obtain a sinusoidal
flux density distribution in the air-gap, as in Choi et al. [2012]. In this context,
a multi-phase level-set model represents the various material properties of the
objects in the rotor, e.g. Lim et al. [2012]. A classical level set based shape
optimization that determines the radial component of the air gap flux density
waveform has also been used, as in De La Ree and Boules [1992], Borghi et al.
[1999] and more recently by Dajaku and Gerling [2012], or Oh et al. [2013].

The geometry of a multi-layer busbar has also been determined by a shape
optimization, generally coupled with a circuit-based model of the busbar. The
method aims at minimizing the inductance of the busbar by reducing the com-
mutation loop size, e.g. by rearranging the layers disposition as in Buschendorf
et al. [2013], Chen et al. [2012] or Chen et al. [2014], widening conductive sections
as in Wen and Xiao [2012], or Khan et al. [2014], using symmetrical busbars, as
in Burtovoy and Galkin [2012], or Caponet et al. [2002], and the output current
can be balanced, as in Pasterczyk et al. [2005].
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Figure 1.2: Top: The structural shape optimization of support beam which car-
ries the floor in the fuselage of a civil aircraft is considered. The design variables
are set as the control points of the splines that represent the holes, and deter-
mined so as to minimize the volume of the structure under a prescribed maximum
deflection and maximum Von-Mises stress. (Pictures from Olhoff et al. [1991])
Middle: A synchronous permanent-magnet electric machine is considered. The
design variables are selected as the control points of splines are determined so as
to make the induction field in the airgap sinusoidal. (Pictures from Kim et al.
[2007a]). Bottom: A multi-layer busbar is considered. A circular hole is intro-
duced in the CAD and its radius is determined so as to minimize the inductance
of the busbar. (Pictures from Khan et al. [2014])
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1
Shape optimization often implies drastic changes of the structural geometry

as the design variables change and one requires hence mesh adaptations so as to
maintain a certain level of FEM solution accuracy, which in turn affects the con-
vergence of the optimization algorithm. As reported in Zhang et al. [1995], the
mesh topology is slightly modified as an a-priori refinement indicator is validated.
In the early days, when automatic mesh generators were not available, a Lapla-
cian smoothing was classically used to determine the location of inner nodes from
one optimization iteration to the next. In a more general setting, shape modi-
fications are reflected by means of a velocity field, for which various automatic
generation methods have been proposed in the literature, using either a geomet-
rical constructive approach such as the isoparametric mapping by Botkin [1982],
Imam [1982], Braibant and Fleury [1984], Yang and Botkin [1987], or an auxiliary
structure, such as the boundary displacement method by Choi [1987], Choi and
Yao [1987], Yao and Choi [1989] or the fictitious load method by Belegundu and
Rajan [1988], or Zhang and Belegundu [1992], or more recently a method based
on NURBS with distortion control by Silva and Bittencourt [2007].

Alternatively, some researches have tried to formulate shape optimization by in-
troducing different numerical methods and parameterizations so as to circumvent
the technical difficulties linked to the variation of the spatial discretization. Ap-
proaches based on a fixed mesh, such as the fictitious domain method of Daňková
and Haslinger [1996] or the projection methods by Norato et al. [2004] and more
recently the Eulerian shape optimization of Kim and Chang [2005] are among
successful approaches. Non-conventional mesh-free methods have also been ap-
plied to shape optimization in 2D and 3D geometries, e.g. Kim et al. [2002], and
a T-Spline finite element method by Ha et al. [2010] is based on the isogeometric
analysis developed by Hughes et al. [2005].

1.2. Topology optimization

Topology optimization was first successfully solved in structural mechanics in the
late 1980’s by Bendsøe and Kikuchi [1988] who proposed to formulate the problem
as the presence or not of a specific anisotropic porous material at each point of
the region where it is applied. The method was therefore able to introduce, or
remove, holes and blocks of material, changing the shape topology and exploring
new, and oftentimes unexpected, possibilities to the design of the systems under
consideration. The material properties of the early approach resulted from ho-
mogenization theory. The Simplified Isotropic Material with Penalization (SIMP)
model was proposed later on by Bendsøe [1989] in order to overcome some of the
weak points of the design method based on homogenization. Instead of consider-
ing each element of a discretized design space as a region of material composed by
a microstructure, the SIMP approach considers the design variables as a density
field, defined on the fixed region. The computation mesh is hence kept constant
throughout the optimization and identical to the finite element discretization of
the design domain for both state variables and the density field, thus avoiding any
mesh distortion and/or the use of mesh adaptation techniques.
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While the development of topology optimization is outstanding in the field
of structural engineering, which has historically pioneered its development, with
many industrial applications, as summarized in Rozvany [2001], Eschenauer and
Olhoff [2001] or Sigmund and Maute [2013], it is also sensible in the field of
electromagnetic design. As discussed in Bendsøe and Sigmund [1999], many in-
terpolation schemes relating the density design variables to the material properties
have been proposed for structural density based methods. The electromagnetic
domain received at first attention from Dyck and Lowther [1996], and the satura-
tion of ferromagnetic materials were also taken into account in Dyck and Lowther
[1997]. The authors present a geometric mapping between the steel proportion
and the magnetic permeability.

The SIMP based topology optimization, in particular, has been successfully
applied to the design of electrical machines, e.g. by Wang et al. [2004], Choi
et al. [2011], Im et al. [2003], or Lee and Wang [2012], while the general ho-
mogenization approach seems to have been almost exclusive to Yoo et al. [2001].
The design of busbars, e.g. including the temperature effects, has been investi-
gated by Puigdellivol et al. [2017], while the interactions with fluids is studied
by Iga et al. [2009] or Matsumori et al. [2013] and the electromagnetic behavior
by Puigdellivol et al. [2016], see Fig. 1.3. More focused applications have also been
treated in a number of studies: the design of piezoelectric transducers by Silva
et al. [1997], perpendicular magnetic recording head by Okamoto et al. [2005],
dielectric waveguide filters by Byun and Park [2007], ultrasonic wave transducers
by Kim et al. [2007b], micro fluid mixers by Aage et al. [2008], acoustic devices
by Dühring et al. [2008], photonic bandgap fibers by Dühring et al. [2010] and
photonic crystals by Borel et al. [2005].

In any optimized system it is crucial to control the structural stress state so
as to ensure the mechanical robustness of the optimized structure. However such
problems are challenging from a computational point of view, since local crite-
ria like stresses are in general considered in each finite element of the mesh, and
hence lead to large-scale problems with possibly as many design constraints as
finite elements in the mesh. The solution of such problems can therefore require a
computational effort comparable to the effort spent on the solution of the physical
problem itself. Furthermore, in the context of a density based topology optimiza-
tion, the solution of the optimization problem with stress constraints comes to
some degenerated subdomains, as discussed in Cheng and Jiang [1992]. These are
hardly reached by mathematical programming algorithms based on KKT which
are not applicable in that case. The latter problem is addressed as the singularity
problem and can be alleviated by introducing a relaxation of the stress constraints,
such as the ϵ-relaxation proposed by Cheng and Guo [1997].

The stress constraints have been included in the density based topology opti-
mization problems mainly after the seminal work by Duysinx and Bendsøe [1998].
Based on the study of rank-2 microstructures, they suggested a macroscopic fail-
ure model for porous materials. The computational effort of the former approach
has been reduced by Duysinx and Sigmund [1998] who proposed to account for
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the local stress state by using an aggregated and integrated constraint approx-
imating the maximum stress through the p-norm or p-mean for instance. An
effective algorithm has also been proposed by Le et al. [2010] to handle the stress
constraints. An alternative technique to the ϵ-relaxation, the qp-relaxation, has
also been proposed by Bruggi [2008].

Figure 1.3: Top: The support beam presented in Fig. 1.2 is redesigned so as to
maximize the stiffness of the beam while filling at most a given volume fraction
of the available domain. The optimal design is determined without requiring
any a-priori guess. Middle: The design of the rotor of a switched reluctance
machine (SRM), initially completely filled with steel, left, is determined by a
density based topology optimization to lower the torque ripples of the machine.
The resulting design, right, results in a lighter rotor and exhibits a low torque
ripple. (Pictures from Lee et al. [2010]). Bottom: A busbar, i.e. a thick strip
of copper which interconnects the power switching devices, T1 and T2 to other
electronic components, is considered. The copper distribution is determined in
both plates so as to minimize the overall inductance. (Pictures from Puigdellivol
et al. [2016]).
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1.3. Sensitivity analysis of problems governed by PDEs

Both shape and topology optimization approaches can be formulated mathemati-
cally as an optimization problem which aims at determining a set of design vari-
ables. These describe the geometry using either existing boundaries or alterna-
tively a material distribution. The problem minimizes a cost function, subjected
to inequalities, ensuring the manufacturability or the feasibility of the design. The
PDEs that govern the physical behavior of the system are included as constraints
in a standard statement of the optimization problem. For a given geometrical con-
figuration (i.e. design variables), their solution is obtained in general by means of
FEM discretization. This is used to evaluate the performance functions. There is
therefore an implicit and nonlinear dependence of both the performance functions
and the solution of the PDEs in the design variables. Furthermore, the repeti-
tion of these evaluations for successive configurations of the design variables is, in
general, expensive from a computational point of view, especially for large-scale
applications.

The sensitivity of the optimization problem, i.e. the derivative of each per-
formance function with respect to each design variable, is therefore calculated so
as to make use of gradient-based optimization algorithms. The solution to the
design optimization problem is generally solved through a recursive approach in
which a sequence of explicit subproblems are solved efficiently through tailored
mathematical programming algorithms, such as dual or primal-dual solvers. This
leads to fewer function evaluations, and hence, in our case, limits the required
number of solutions of the finite element physical problem. The main difficulty in
the calculation of sensitivity lies in the differentiation of the PDEs with respect
to design variables which modify the boundaries of the system.

Two approaches have emerged over the years for the calculation of this sensi-
tivity, called shape sensitivity. The first one acts as an analytical differentiation
at the level of the variational formulation of the problem, as summarized in Arora
and Haug [1979], whereas the second approach differentiates the discretized alge-
braic system, as in Adelman and Haftka [1986]. An approach that works at the
software level and consists in direct differentiations of the computer code itself, as
in Griewank et al. [1996], or Bischof et al. [1996], and more recently Farrell et al.
[2013] may be attempted for explicit geometrical representation. However, they
cannot be extended to systems described by a CAD model with spatial discretiza-
tions that are modified as the optimization unfolds.

In the continuous context, prior to discretization, the variation of the integral
quantity, such as the residual related to the physics of the problem, with respect to
a design variable that controls the material density distribution can be expressed
explicitly, in general, by means of the total derivative, as suggested by e.g. Kyung
K. Choi [2005]. However, the variation of the integral quantity with respect to a
design variable that brings modifications in the boundaries of the system is more
delicate to express, and requires extra terms to account for the implicit dependency
of the integral quantity in the continuous flow of geometrical modification.
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The shape sensitivity problem has been treated through the velocity method,

as introduced in Sokolowski and Zolesio [1992], and more recently in Delfour and
Zolésio [2011]. This approach uses the variation of the shape design variable as the
parameter of a family of mappings describing a smooth geometrical transformation
of the domain, with no tearing nor overlapping, that brings the boundaries of the
domain from their unperturbed position to their perturbed position. The mapping
with the scalar parameter taking values in a neighborhood of zero and playing the
role of a pseudo time variable, determines therefore a flow on the Euclidian space
characterized by a velocity field.

The velocity method has been applied successively to elasticity problems where
the solution of the physical problem is a scalar field, e.g. Allaire et al. [2004], Dems
and Mroz [1984], or Haug and Arora [1979]. Following this approach, analytical
formulas have also been proposed in other disciplines such as electromagnetics,
based on classical vector analysis, as in Biedinger and Lemoine [1997], Koh et al.
[1993], or Park et al. [1993]. However, these works have been exclusively devoted
to problems expressed in terms of a scalar unknown field, leaving aside the problem
of handling the complex behavior of a vector field under the transformation that
brings a modification of the system boundaries.

There exist several geometrical objects that have three components in an Eu-
clidean space, but behaving differently under the one parameter family of map-
pings. We have to deal with circulation densities, (e.g. the magnetic vector po-
tential or the magnetic field), and flux densities (e.g. the flux density and the
current density). Although genuine vector fields, circulation densities and flux
densities can be indiscriminately regarded as vector fields in an Euclidean space,
their shape derivative are different under the geometrical transformation and they
must therefore be carefully distinguished when evaluating the shape derivative of
an expression involving such objets.

To handle the shape derivative of vector fields, one can refer to a more general
theoretical framework based on the exterior calculus, e.g. as in Frankel [2011], well
established so far in mathematical modeling and analysis of PDEs, e.g. Hermann
et al. [1964], Henrotte [2004], borrowed from differential geometry, and in par-
ticular the concept of Lie derivative. These material derivatives have been used
more recently by Hiptmair and Li [2013] in order to overcome the limitations and
the tedious calculations of the vector analysis approach, classically used for the
scalar field. Hiptmair and Li [2017] have applied this approach to the sensitivity
calculation of a linear acoustic problem and also an electromagnetic scattering
boundary integral equation.

Similarly to the physical problem, the sensitivity analysis can be time-consum-
ing, since it involves, in conventional approaches, the solution of either one linear
system obtained by differentiating the PDEs of the physical problem for each of
the design variables (the so-called direct approach), or for each performance func-
tion (the adjoint approach). However, only the right-hand side of the additional
linear systems needs be evaluated (the system matrix being already known) and
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a substantial gain in computation time is obtained compared to a finite difference
evaluation of sensitivity, which requires solving from scratch a second, possibly
time-consuming, system for each design variable.

1.4. Gradient-based optimization methods

In this context, optimization algorithms relying on sensitivity of the optimiza-
tion problem, often referred to as gradient-based algorithms, necessitate a small
number of function evaluations, and hence, limit the required number of solutions
of the physical problem compared to heuristic approaches, such as genetic algo-
rithms. It should be noted that the latter have been used to estimate an optimized
design in either shape or topology optimization problems, e.g. Balamurugan et al.
[2008] or Wang et al. [2006], and also in Canyurt and Hajela [2007], without any
information about the sensitivity of the problem. They can naturally handle dis-
crete problems, and are therefore particularly well suited for topology optimization
problems with design variables, allowed to be either 0 or 1. However, as reported
in Rozvany [2009], the solution of the discrete problem quickly turns out to be
intractable for large-scale problems. In particular, a large number of function
evaluations, and hence a large number of PDE solutions are required to reach the
solution.

Optimality criteria (OC) methods were proposed early on by Prager and Taylor
[1968] to determine the optimal solution of the design problem. In this approach,
the design space includes both the design variables and the Lagrange multipliers
handling the constraints. Starting from the Karush-Kuhn-Tucker (KKT) opti-
mality conditions, iterative update relations are derived for the variables. The
optimality conditions are treated as additional constraints and are satisfied at the
stationary point, as in NS Khot and Venkayya [1979]. This approach has been
essentially applied for the solution of topology optimization problems based on a
global design criterion, such as the compliance or maximization of fundamental
eigenfrequencies, as in Olhoff [1970], Bendsøe and Kikuchi [1988], or Rozvany and
Zhou [1991]. Their application to larger problems becomes numerically inefficient.

Among general nonlinear problems based on gradient methods, interior point
(IP) methods together with sequential quadratic programming (SQP), e.g. Gill
et al. [2015], are considered nowadays as the most powerful solvers, as it has been
studied in Dolan and Moré [2002] or Benson et al. [2003]. They have been suc-
cessfully applied to solve the design problem in Orozco and Ghattas [1997], Stolpe
and Svanberg [2003], Dreyer et al. [2000] and Maar and Schulz [2000].

However, both interior point and SQP methods require the computation of
the Hessian, which is time consuming for realistic industrial problems. In addi-
tion, they have difficulties to deal with nonlinear problems which are non-convex.
Many different ways of handling the lack of convexity of the problems have been
proposed, through the modification of the KKT system, in order to ensure the
existence of a solution. Among them, the diagonal shift can be applied to the Ja-
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cobian of the KKT system to make the resulting system positive definite. A more
reliable technique consists in using a quasi-Newton method to approximate the
Hessian of the system, as in Nocedal [1980]. Inertia controlling methods based on
a modified LDL decomposition method have also been introduced, e.g. in Forsgren
[2002].

Sequential approximation schemes combined with mathematical programming
exploit gradient-based algorithms to reach the optimal solution of the design prob-
lem with multiple constrained problems. It has been shown by Schmit [1960] that
it is better to approximate the original problem by a sequence of convex optimiza-
tion subproblems. Their evaluation, and hence the evaluation of sensitivity and
second order derivative, is then very efficient compared to the original model as
they do not require any FEM solution.

The approximations have a large influence on the efficiency of the solution of
the optimization problem. These are in general convex to have a unique solu-
tion for the subproblem and to ensure a conservative behavior so as to guarantee
a steadily feasible and monotonous sequence of minimizers. Moreover, they are
separable and lead to an advantageous solution through the dual maximization
method. Various approximations relying on different intermediate linearization
variables are available in the literature. Efficient optimization algorithms were
proposed in combination with particular approximations: the Convex Lineariza-
tion (CONLIN) algorithm by Fleury [1989], the Method of Moving Asymptotes
(MMA) by Svanberg [1987], the Globally Convergent Method of Moving Asymp-
totes (GCMMA) by Svanberg [1995], Sequential Quadratic Programming (SQP)
algorithms by Schittkowski [1986].

To solve the subproblems, Fleury [1993] proposed to use a dual formulation.
Exploiting the Lagrange maximization, the primal constrained minimization prob-
lem, associated to a large number of variables, is replaced by a dual quasi-uncon-
strained maximization problem with a limited number of variables, the nonzero
Lagrange multiplier associated to the active constraints.

Second-order methods such as SQP, or interior point methods, can advanta-
geously be used to solve the approximation subproblem, without having to handle
the issues that naturally arise from the lack of convexity for general nonlinear
problems.

1.5. Combined shape and topology optimization

The design variables upon which density based topology optimization acts, which
are called densities, represent the presence or absence of material at each point of
the region where it is applied, whereas the design variables of a state-of-the-art
shape optimization are the geometrical parameters of a CAD description. These
densities are substantial quantities. This means that they are attached to matter
while, on the other hand, shape optimization implies ongoing changes of the model
geometry.
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Although the implementation of the topology approach with a fixed spatial
discretization is simple and numerically stable, it leads to layouts with jagged
boundaries which have to be smoothed in an extra postprocessing procedure, as
in Bletzinger and Maute [1997]. Moreover, in many practical design problems, the
explicit representation of the boundaries of the system undergoing optimization is
necessary to be able to model the problem with localized boundary effects. In all
cases the explicit interface is necessary when interpreting the final design.

Several strategies intended to handle the complex interactions between shape
and topology optimizations, have been developed so far, each with their own pa-
rameterizations, and also to overcome the shortcomings of standard density based
topology optimization.

Among existing methods, adaptive topology optimization has been performed
by Bletzinger and Maute [1997] to form an explicit interface between the solid
and void regions which arise throughout a structural density based topology op-
timization, see Fig. 1.4. More recently, a similar paradigm has been followed
by Christiansen et al. [2014], who has adapted to topology optimization, the de-
formable simplicial complex (DSC) method, introduced by Misztal et al. [2014] to
simulate fluids accurately. Here, both the design and the analysis models rely on
the same spatial discretization. The DSC deformation is therefore used to adapt
the mesh after the movement of the interface, such that it is well formed, and
involves a series of mesh operations, e.g. Laplacian smoothing, edge flip, vertex
insertion and vertex removal, which are quite artificial.

In addition, topological derivatives, as in Eschenauer et al. [1994], are used to
change the topology of the domain by creating new holes. The interface between
void and solid regions is represented explicitly as one or more closed piecewise
linear curves and is smoothed by determining the positions of the nodes belong-
ing only to that interface, e.g. by means of a simple shape optimization with a
prescribed maximum variations between the optimized and the current configura-
tions.

Level Set methods, which were originally proposed by Osher and Sethian [1988]
for numerically tracking free boundaries, are among alternative approaches to den-
sity based topology optimization. In this context, the geometry is represented as
the zero Level Set of functions and are propagated through the solution of Hamil-
ton-Jacobi type equations. This approach, which allows to easily handle large
shape modifications without requiring a CAD representation, has been first ap-
plied to structural optimization by Allaire et al. [2002] and Wang et al. [2003], but
also in electromagnetic design of electrical rotating machines, see Fig. 2.1. The
review of various applications tackled by the level set method is provided in van
Dijk et al. [2013]. The method can advantageously be carried out in a fixed mesh.
Furthermore, the topological complexity of classical CAD based shape optimiza-
tion is reduced since geometric entities, such as holes, can be merged or removed
without degenerating the model, but unfortunately cannot be created, except if
the method is combined with a topological derivative (see for instance Novotny
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Figure 1.4: An adaptive successive structural topology and thickness optimiza-
tion of a cantilever beam is considered. Top: The analysis model uses the density
distribution from the density model. The structure with boundaries defined by
one (or even more) isolines between the void and solid regions of the density model
are discretized with a finer mesh in the analysis model while a separate regular
constant grid is used to discretize the density model. Middle: A simple sizing op-
timization is used to further smooth the thickness of the isolines, with a prescribed
small variation between the optimized and the initial configurations. Bottom: The
mesh of the analysis model is adapted in order to reduce the finite element error
on the system response. (Pictures from Bletzinger and Maute [1997])

et al. [2003]). The use of a Level Set representation of the geometry makes it diffi-
cult to take into account geometries with sharp angles (see for instance Kalameh
et al. [2016] or Duboeuf and Béchet [2017]). It limits hence the range of systems
that can be optimized.

The Level Set method is able to perform topology optimization if the number
of holes of the initial design is sufficiently large and converges to configurations
which strongly depend on the initial level sets distribution. It should be noted that
using the level set method, a stress criterion can be integrated into the design of
industrial systems. Stress constraints were treated in this context, allowing hence
to get rid of the singularity problem involved when resorting to the density based
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optimization, and therefore do not require any relaxation strategy. This problem
has been analyzed, e.g. in Van Miegroet and Duysinx [2007], Allaire and Jouve
[2008] and more recently James et al. [2012], who performed the minimization of
the stress state in solid-void structures.

Figure 1.5: Left: The structural topology optimization of a cantilever beam
is carried out with a Level Set method so as to have an explicit description of
the geometry. The optimization history, however, strongly depends on the initial
number of Level Sets. (Figures from Allaire et al. [2002]) Right: The approach
has also been applied to the electromagnetic design of e.g. the stator of an interior
permanent-magnet rotating motor, so as to minimize the torque ripple. (Figures
from Kwack et al. [2010]).
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Topology and shape optimizations have also been coupled in the context of

packaging, see Fig. 1.6. The non-overlapping constraints between two different
packaged items is a key issue and it has been expressed in the early work of Qian
and Ananthasuresh [2004], as the distance between two circles approximating the
components. However, the rough approximation of an item by a circle is not suffi-
cient anymore when the item has a complex shape, especially concave. The Finite
Circle Method (FCM) has been proposed by Zhang and Zhang [2009] to circum-
vent the limitations and it has been further used by Zhu et al. [2009]. In Zhu
et al. [2009], the interactions between the movement of the components and the
material density of the support have been synchronized through the combination
of predefined density points in the support followed by a series of boolean mesh
operations in order to maintain a mesh of good quality as optimization unfolds.
However, the mesh manipulations are the center of the method while they should
be just a mean to an end. Alternatively, Qian and Ananthasuresh [2004] used a
material interpolation model which handles the movement as a physical variation
of the material properties. The integration of this approach remains however quite
cumbersome in industrial systems. In both approaches, a fixed mesh with prede-
fined density points is used throughout the optimization. In Zhu et al. [2009], the
distances between the element centroid and the density points controls the distri-
bution of material density, and the method is made mesh independent by limiting
the modification of the material density only inside predefined mesh patches.

Figure 1.6: The integrated layout approach aims at determining the optimal
position of the rectangular shape components through the solution of a shape
optimization while a density based topology optimization is carried out to optimize
the material usage of the support. (Pictures from Zhu et al. [2009])
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Personal contributions

Our contributions to advance the state-of-the-art overviewed in Chapter 1 deal
with (1) the generalization of the calculation of shape sensitivities, to the nonlin-
ear electro-mechanical case, in 2D and 3D, by means of an explicit Lie derivation
of the variational formulations for both static and time-harmonic problems; (2) the
adaptation of the interior point method for the solution of the large-scale convex
approximations sequences obtained when solving the topology optimization prob-
lems with local restrictions; (3) the appropriate combination of the representation
of a CAD-based shape optimization with a density based topology optimization to
perform a joint shape-topology optimization. The corresponding algorithms are
integrated to the open-source software GetDP ( Dular et al. [1998]), and Gmsh
( Geuzaine and Remacle [2009]) through the ONELAB interface which can be
downloaded from the following website: http://onelab.info. The next three
sections present a summary of our main contributions to these three areas.

2.1. General formulae for sensitivity in electro-mechanical
problems

Our first contribution provides engineers with a general and a comprehensive the-
oretical framework to perform the shape optimization of systems governed by
PDEs,

min
τ

f0(τ , z
†)

s.t. fj(τ , z
†) ≤ 0, j = 1, . . . ,m

τmin
i ≤ τi ≤ τmax

i , i = 1, . . . , n

r(τ ,z†, z′) = 0, ∀z′ ∈ Z0
z ,

(2.1)

which aims at determining the design variable set τ , whose variation brings a
geometrical modification of the optimized system boundaries. It is stated as the
optimization of the objective function f0 while ensuring some design constraints
fj ≤ 0. The PDEs are here expressed in terms of a state variable z and the design
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variable set τ . They are stated in a weak formulation, obtained by, e.g., a Galerkin
linearization approach and they are written in a generic form through a residual
r(τ ,z†, z′), where z† is the physical solution.

Our contribution, in particular, extends the calculation of sensitivity, so far
mostly derived for equilibrium equations arising in structural mechanics, to other
disciplines such as electromagnetics. Thus, following the approach of Zolesio’s
velocity method, we express in a unified framework the sensitivity of any perfor-
mance function (i.e. any function fj of the solution of the PDE problem). One
can further express the derivative of the state variables of the PDEs that involve
either scalar or vector unknown fields. To this end we rely to the Lie derivative,
i.e. the derivative of that performance function along the flow representing the
continuous shape modification of the geometrical model induced by the variation
of the considered design variable.

Contrary to previous work in the field, the purpose of our work is however,
not to give a complete mathematical derivation of differential geometry concepts,
but rather to provide engineers and practitioners in the field of optimization with
a useful formula sheet, so as to derive formulas for new problems more easily.
We introduce therefore a hybrid formalism which sticks with standard vector and
tensor analysis notations, to express the sensitivity of the physical problem, with
vector calculus like notations, in both a direct and an adjoint approach.

Following our formalism, we generalize equivalently in 2D and 3D the methods
proposed so far in electromagnetics, e.g. in Park et al. [1993], that were limited
to scalar unknown fields, i.e. to scalar potential 3D formulations or 2D electro-
magnetic problems. In addition, we offer the possibility to treat linear elasticity
in this same context and recover the state-of-the-art results. We have validated
all the analytical formulas derived in nonlinear magnetostatics and in linear elas-
ticity with the finite difference approach and we conducted a deep investigation of
the convergence of the computed sensitivity with mesh refinement using first and
second order finite elements. The theoretical results pave the way towards real-life
applications, typically industrial perspectives, such as eddy-current problems, and
multi-physics problems.

Let us consider, for demonstration purposes, the magnetic vector potential A
formulation of a magnetostatics problem excited by a current density J with a
nonlinear material law H(B), on a bounded domain Ω, with boundaries controlled
by a design variable τ . The problem is written in a variational form through a
residual,

r(τ,A†,A′) ≡
∫
Ω(τ)

(
H(B†) ·B′ − J ·A′

)
dΩ = 0, ∀A′ ∈ Z0

A, (2.2)

where A† is the solution of the nonlinear magnetostatic problem, B† = curlA†

and B′ = curlA′.

In (2.2), there are several geometrical objects, that have three components in
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an Euclidean space, but which behave differently under the geometrical trans-
formation of the domain. Such objects are the circulation densities (also called
1-forms), e.g. A or H. These quantities make sense when integrated over a curve.
Flux densities (2-forms), e.g. B or J , are quantities that make sense when in-
tegrated over a surface. Furthermore, a material law like H(B) converts a field
quantity, B, into another field quantity, H, and contains therefore a geometrical
conversion operator, called Hodge operator, that depends on the metric which has
a non-vanishing Lie derivative when the system deforms. The implicit Hodge op-
erator must be accounted for when evaluating the Lie derivative of a material law.
Although genuine vector fields, classically adopted in state-of-the-art methods of
sensitivity calculation, these objects are indiscriminately regarded as vector fields
in an Euclidean space. So their Lie derivatives are different under the geometrical
transformation of the domain and they must therefore be carefully distinguished
when evaluating the Lie derivative of an expression involving such objets.

It follows from above that the derivative of the residual at equilibrium, with
respect to the design variable τ , is obtained by applying the Lie derivative, and
yields the linear system to be solved to obtain the Lie derivative of A† along the
velocity field v, i.e. LvA

†. It comes∫
Ω(τ)

ν∂ curlLvA
† · curlA′ dΩ+

[ ∫
Ω(τ)

(
ν∂

(
(∇v)TB† −B† div v

)
·B′ (2.3)

+ (∇v) νB† ·B′ − (J div v − (∇v)TJ) ·A′
)

dΩ
]
= 0, ∀A′ ∈ Z0

A.

The obtained formula has a rather large number of terms, which can however
be reused from the finite element solution. The first term in (2.3) involves the
tangent stiffness matrix, ν∂ , which is already known from the computation of A†.
The bracketed terms, on the other hand, make up the partial derivative term
that accounts for the explicit dependency (i.e. holding the field argument, A†,
constant) of the residual on the variation of τ .

The velocity field, v, that represents the shape modification, must be deter-
mined for the computation of LvA

† in (2.3). We have therefore proposed a prac-
tical and efficient method for the numerical generation of the velocity field based
on the parametrization of the geometric model of the domain, and integrated into
a finite element code, see Geuzaine and Remacle [2009] and Dular et al. [1999].
On a practical level, our approach makes use of the freedom in the definition of
the velocity field to derive a method to limit the support of the volume integrals,
as in (2.3), to a one layer thick layer of finite elements on both sides of the surfaces
involved in the shape variation.

We start with a mesh of the initial CAD model for which each boundary node
is represented by its parametric coordinates on the underlying curves or surfaces.
After (small) perturbation of the CAD model, assuming that the perturbation
of the parametric representation of the boundaries is also small, we relocate the
initial mesh on the new CAD representation by freezing the node parameters. This
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approach is very efficient when the mesh generation algorithms are based on the
parametric representation of CAD entities, as is the case for Gmsh Geuzaine and
Remacle [2009].

Figure 2.1: A plate with an elliptic hole γτ is considered. The design variable τ is
the major axis of the ellipse. After a finite perturbation δτ , the mesh nodes lying
on the surface γτ are relocalized on γτ+δτ thanks to the CAD parametrization
of the ellipse. The velocity field is approximated by finite difference of the node
positions before and after the perturbation. (Figures from Kuci et al. [2017]).

This first contribution has been published in Computer Methods in Applied
Mechanics and Engineering, Kuci et al. [2017], and is reproduced in Appendix A.
The extension to time-harmonic variational formulations governing the behavior
of dynamic linear electromagnetic systems is presented in Appendix B and it has
been submitted for publication in the journal Structural and Multidisciplinary
Optimization.

In that article we apply the derived sensitivity formulas to the optimal design
of a three-dimensional planar multi-layer busbar through a density based topology
optimization. This paper proposes an approach to minimize the mismatch between
the complex currents that go through the electronic power switching components
of the busbar, while filling at most a given volume fraction of the available domain.

2.2. An efficient iterative linear solver for MMA
subproblems in a high dimensional design space

Our second contribution aims at offering a tailored iterative solver which finds
efficiently the solution of a sequence of convex and separable large-scale optimiza-
tion problems submitted to local restrictions. These are associated to each point
of the region where topology optimization is applied, involving thus at least as
many constraints as design variables.

As we have seen in Section 1.4, either dual maximization solvers or interior
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point solvers are classically used to determine the solution of such problems.
However, the dimensionality of the dual space tends to grow drastically, while
the interior point method involves the assembly and the solution of a sequence of
dense and large-scale linearized KKT systems. In each case, the computational
effort involved in their repeated solutions becomes comparable to the effort in-
volved in repeated solutions of the PDEs, thus dominating the computational cost
of the whole optimization iterative process. Both approaches require hence some
adaptations.

We first realize the replacement of the direct linear solver of the interior point
method with an iterative method, e.g. preconditioned conjugate gradient (PCG),
so as to solve the optimization problem in a CPU time comparable to the global
design criterion problem, the so-called compliance problem. We design the precon-
ditionner as an approximated Cholesky factorization of only a few KKT matrix
columns, rather than the whole matrix, selected so as to exhibit good spectral
properties. Furthermore, our preconditioner requires memory bounded by the size
of the problem rather then the number of nonzero entries of the system matrix,
as it is the case of classical incomplete Cholesky factorizations or approximate
inverse preconditioners. The preconditioner avoids any excessive storage as the
system matrix is only used to perform multiplication with a vector.

We further improve the effectiveness of the approach, on a second hand, by
advantageously reducing the density of the system matrix through the truncation
of the smallest entries of the sensitivity matrix. The truncation can be motivated
by the St Venant principle and leads thus to a sparse preconditioner.

We applied successfully the interior point method based on both precondition-
ers to two of the most classical topology optimization benchmarks with stress
constraints: the two bar truss as well as the L-shape. The computational cost of
the overall solver tends to grow as O

(
N2

)
instead of O

(
N3

)
, with N the number

of finite elements.

This second contribution has been submitted for publication in International
Journal for Numerical Methods in Engineering and is reproduced in Appendix C.

2.3. Optimization in mixed shape and topology design
spaces

Our third set of contributions aims at presenting a unified framework for the si-
multaneous application of shape and topology optimization in industrial design
problems, based on the sensitivity analysis presented in Kuci et al. [2017]. The
topology optimization design variables, which are called densities, are by essence
substantial quantities. This means that they are attached to matter while, on the
other hand, shape optimization implies ongoing changes of the model geometry.
We have therefore combined appropriately the two representations to ensure a
consistent parameter space as the joint shape-topology optimization process un-
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folds.

As we have summarized in Section 1.5, only little work about joint shape-
topology optimization has been reported so far in the literature. In the context of
packaging, for instance, the position (see Zhu et al. [2009]) and shape, (see Zhang
et al. [2012]) of the packaged items are determined by a shape optimization process
while, at the same time, the protective material usage is minimized by means of
a density based topology optimization, see for instance Qian and Ananthasuresh
[2004], or Zhang et al. [2011], so as to, e.g., minimize the overall volume of the
package. An alternative approach with a fixed mesh is also possible. A level set
representation of the component boundaries is used, instead of a CAD represen-
tation as in Osher and Sethian [1988], and the model is solved with an extended
finite element method (XFEM), see Zhang et al. [2012].

We obtain the solution of the joint optimization problem by a gradient-based
sequential convex programming approach, called Method of the Moving Asymp-
totes (MMA). Analytical sensitivities have been used in the past for analysis based
on XFEM, see for instance Zhang et al. [2012], but, as far as FEM based analysis
are concerned, a semi-analytic approach is used in general and it is reported for
linear elasticity problems only. Building on the same methodology as in Kuci
et al. [2017], we derive the sensitivity with respect to densities in a unified fashion,
with the velocity method, by means of an explicit Lie differentiation of the FEM
terms.

The method is applied to the torque ripple minimization in an interior per-
manent-magnet machine, with a limiting constraint on the weight of the optimal
design.

This third contribution is still a draft paper and is reproduced in Appendix D.
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Application examples –
towards industrial designs

Torque ripple in electrical rotating machines comes along with mechanical vibra-
tions and acoustic noise, see for instance Tang et al. [2005]. Noise generation is
generally important to minimize in all environments, while vibrations can mechan-
ically damage the electrical machine itself (especially bearings), and can adversely
influence on the driven machinery, reducing its life-time and reliability. It is
therefore desired to reduce torque ripple as much as possible.

The use of modern power electronics converters at all levels of electrical power
applications involves switching components with very low switching times and
always increasing current levels, which bring parasite stray inductances and ca-
pacitances. Thus, laminated busbars, i.e. a thick strip of copper or aluminum,
interconnect the power switching devices to other electronic components in power
converters. Impedance asymmetry can appear and hence lead to current imbalance
between the outputs of the busbar, especially during transients of the switching
power devices, see for instance Ohi et al. [1999]. So, the main challenge lies in
defining the appropriate topology of the device to make them compact, light or
inexpensive without compromising their performances (e.g. power losses, electro-
magnetic compatibility and interference).

To tackle these issues, we use here the complete automated framework devel-
oped for shape and topology optimization. At the end of this project, we are able
to determine optimal designs of an interior permanent-magnet (IPM) machine (see
Appendix D) as well as a planar multi-layer busbar (see Appendix B). In addition,
a smooth CAD model of the optimized systems is obtained from the finite element
representation of the density field. The geometrical model can hence be used in
later design stages. We provide here qualitative results rather than quantitative
results, leaving aside the mathematics since they are included in the articles.

All the numerical simulations have been performed using the open-source soft-
ware GetDP ( Dular et al. [1998]), Gmsh ( Geuzaine and Remacle [2009]) and our
Python-based implementation of MMA ( Svanberg [1987]).
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3.1. Torque ripple minimization of a PMSM

A 3-phase interior permanent-magnet synchronous machine (PMSM) fed by a
sinusoidal current is considered. We describe the geometry of the PMSM by a
two dimensional CAD model. The PMSM behavior is modeled as a nonlinear
magnetostatic formulation written in terms of the magnetic vector potential, see
Fig. 3.1. These kinds of machines exhibit magnetic saturation (which occur in steel
parts) and suffer from a high level of torque ripple which should be reduced as
much as possible, while keeping the average torque above or equal to the nominal
torque of the machine.
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Figure 3.1: A 3-phase interior permanent-magnet (IPM) machine fed by a si-
nusoidal current, top left, and modeled by a nonlinear magnetostatic formulation
in terms of the magnetic vector potential A, isovalues shown in bottom left, is
considered. The magnetic permeability map at a given rotor position, bottom
right, indicates a magnetic saturation (blue) in many regions of the steel parts
where the induction flux is high. The torque ripple, top right, is particularly high
for this type of machines. It should be reduced as much as possible.
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We perform a combined shape and topology optimization to determine simul-
taneously (1) the distance of the PMs from the air gap, the angle between the
PMs, both set as shape design variables, and also (2) the steel fraction field which
represents the density distribution in the rest of the rotor. The entire analysis
domain and design domain are discretized using an average of 38,000 nodes and
65,000 triangular elements. The density design variables are used to interpolate
the magnetic reluctivity through a classical SIMP with a penalization parameter
fixed to 3. We want to smooth the torque with respect to the movement of the
rotor, minimizing hence the torque ripple, while preserving an average torque to
match the nominal torque of the machine. In addition, we considered a resource
constraint defined as a given volume fraction of the available domain. In practice,
we consider the torque variance instead of the torque ripple.

The evaluation of the performance functions, i.e. the torque variance as well as
the average torque, for a given geometrical configuration of the PMs and a given
steel distribution in the rotor, requires the knowledge of the torque at several
angular positions of the rotor. Thus one has to solve nonlinear magnetostatic
problems for these particular values of the design variables. This implies solving
anew the nonlinear magnetostatic problem for the Np angular positions. The
repetition of these evaluations is time-consuming and the number of iteration
steps should be kept as small as possible.

The results of the optimization problem are summarized in Fig. 3.2. The
optimization process results, after roughly 260 iterations, in PMs with increased
angular openings compared to the original design. The topology optimization
allows, in this particular case, major improvements of torque profile of the electrical
rotating machine. The torque ripple is reduced by a factor of 30 while the average
torque is set to the nominal torque of the machine.
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Figure 3.2: A range of Np = 16 rotor angular positions which covers an angular
torque period, from 0 to 16 degrees has been considered and the geometrical
configuration of the PMs as well as the steel distribution in the rotor, with a
volume fraction of 70%, have been determined simultaneously with a simultaneous
shape and topology optimization. This approach leads to a drastic reduction of
torque ripple while keeping the average torque to the desired nominal torque, set as
7(Nm). The distribution of magnetic vector potential field, iso-values in bottom
left, provides a relative magnetic permeability, bottom right, where the magnetic
saturations have been greatly reduced compared to the initial design, Fig. 3.1.
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3.2. Simultaneous shape and topology optimization for
torque performance and centrifugal resistance in
electrical rotating machine

The optimization problem of the previous section was mainly based on the mag-
netic performance of the machine. The optimized geometrical configuration results
in a rotor with thin parts, for which the structural strength is not necessarily guar-
anteed, see Fig. 3.3. The optimized rotor which meets the torque requirements
exhibits a larger displacement and the gap between rotor and stator might be
modified. To express the mechanical resistance in the rotor, we consider a linear
elastic model of the rotor subjected to the centrifugal body load, with a rotating
speed of 6000 r.p.m.
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Figure 3.3: A linear elastic model of the clamped rotor excited by a centrifugal
force is considered. The optimized rotor which meets the torque requirements
exhibits a larger displacement (magnified with a factor 20), top, and a higher level
of Von-Mises stress criterion, bottom, than the basic design, showing hence that
structural design criterion should be included in the optimization problem.
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We consider the compliance of the rotor steel parts, and the compliance of the
PMs. We can then account for the structural design criterion so as to limit the
displacement of the steel parts as well as the PMs. In addition, we should also
take into account the local resistance of the material. Thus we will consider the
p-norm of the ϵ-relaxed Von-Mises stresses, as proposed by Duysinx and Sigmund
[1998], in the steel parts, as well as in the PMs. Thus, we will keep the stress level
under a provided yield stress, σl, and thus ensure the mechanical strength of the
design of the electrical rotating machine.

A combined shape and topology optimization is still carried out here to deter-
mine the design variables defined in the design of previous section, so as to meet
the torque requirements while constraining the compliance and the Von-Mises
stress criterion, both in the steel parts of the rotor and in the PMs.

For a given geometrical configuration of the PMs and a given steel distribu-
tion in the rotor, the displacement field is determined by solving the linear elastic
problem and also the compliance and the Von-Mises stresses, in addition to the
evaluation of the performance functions involving the torque requirements. It
should be noticed that magnetic problem still requires several nonlinear magneto-
static resolutions for the whole range of angular positions of the rotor, while linear
elasticity can be solved in one step.

The results of the optimization problem which includes the structural design
constraint and the torque ripple minimization are summarized in Fig. 3.4. The
optimization process results in PMs with an increased angular opening compared
to the original design. In addition to removing material from all the regions
where saturation occurs, and where the magnetic flux density is very low, topology
optimization solution suggests to surround the permanent magnets with steel so as
to reduce their displacement as well as the limiting Von-Mises stress. The torque
ripple is still greatly reduced by 90% while the average torque is set to the nominal
torque of the machine.

The solution of the density based topology optimization is often considered as
conceptual. A post-processing stage is hence needed to obtain a manufacturable
design, see for instance Hsu and Hsu [2005] or more recently Zegard and Paulino
[2016]. Computer vision technologies to represent the boundary of the void-solid
finite element topology optimization result have first been performed in Bendsøe
and Rodrigues [1991], or Lin and Chao [2000]. A density contour approach has
also been used in Kumar and Gossard [1996], or Hsu et al. [2001] as well as a
geometric reconstruction approach, see for instance Tang and Chang [2001].

Here we performed a spline-based interpolation of the density isovalues. This
then leads to a CAD model which may be used for latter design stages as well
as e.g. for additive manufacturing purposes, see Fig. 3.5. However, a drawback
inherent to such procedures, is that post-processed results are no longer optimal
and may also not comply with the given design criteria, thus slightly deteriorating
the topology optimization solutions. In this particular case, the torque ripple is
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increased by 10% from the one computed with the density field.
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Figure 3.4: The optimization problem that includes the mechanical design re-
strictions, by means of the constraints on the compliance and on the p-norm of the
Von-Mises stresses, is considered. This formulation aims at determining simulta-
neously the geometrical configuration of the PMs as well as the steel distribution
in the rotor. A volume fraction of 70% is considered. A nonlinear magnetostatic
problem is solved for each angular position of the rotor whereas a linear elastic
problem excited by a centrifugal force is solved for only a single rotor position.
A drastic reduction of torque ripple is obtained while keeping the average torque
to the desired nominal torque, set as 7(Nm). The optimized structure exhibits a
displacement level (magnified with a factor 20) and Von-Mises stress distribution
that are feasible from a mechanical point of view.
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Figure 3.5: A smooth CAD model of the optimized rotor is obtained manually
from the finite element representation of Fig. 3.4 by making use of spline curves.
The geometrical model can hence be used in later design stages.
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3.3. Impedance mismatch reduction in 3D multi-layer high
voltage busbars

In this application we consider a multi-layer and high-voltage busbar based on the
basic operation of a power electronic inverter. A representative laminated busbar
is made up of tightly pressed conducting plates separated by a thin dielectric
material for insulation. Due to the relevance of the input impedance in terms of
design and optimization, the model is simplified, shorting one phase at the time,
calculating the impedance at different frequencies. The DC source of the inverter
is replaced by a sinusoidal current source which splits into two separate currents
in the vertical bars, IΣ1 and IΣ2 , that reunite and leave the system through the
output boundary. The geometry of the representative busbar is described by a 3D
CAD model, while the system is modeled in terms of a volumetric time-harmonic
magnetodynamic A− v formulation, with A the magnetic vector potential, and v
the electric potential on the conducting regions of the busbar, Fig. 3.6.

However, the original model is computationally costly, since at higher frequen-
cies the mesh needs to be refined to match at least two layers of finite elements
per skin depth, which increases the size of the problem as the frequency increases.
It should be noted that an equivalent model in which the conducting domains can
be simplified to surfaces and lines can be implemented (shell model). This can be
done applying geometry transformations and including explicitly the skin effect
term in the formulation, see Geuzaine [2001].

current density - imaginary part (A/mm2)
1.520 0.0039

Figure 3.6: Considered three-dimensional busbar fed by a sinusoidal current
and modeled in terms of a volumetric and linear time-harmonic magnetodynamic
A − v formulation (scaling factor of 10 in the z direction for better visibility).
The current injected in the horizontal bar splits into two separate currents in
the vertical bars, bottom, that reunite and leave the system through the output
boundary.

We want to minimize the current imbalance between the outputs of the busbar
and hence reduce the impedance asymmetry, while preserving the impedance from
the initial design. To this end, we consider the L2-norm of the current mismatch
between the complex valued currents, ∥IΣ1 − IΣ2∥. In addition, we considered a
resource constraint defined as a given volume fraction of the available domain.



30 Chapter 3. Application examples – towards industrial designs

3

The busbar is optimized for two frequencies: 500 Hz and 50 kHz, corresponding
respectively to a mostly resistive and to an inductive behavior. The mesh is refined
as the frequency increases so as to have about two elements in the skin depth,
leading to a mesh with 112 794 tetrahedral finite elements at 500 Hz and a mesh
with 360 962 tetrahedral finite elements at 50 kHz. In this context, a density
design variable, is defined in each finite element of the mesh and is allowed to vary
between a lower bound that represents air, and an upper bound that represents
copper.

A density based topology optimization problem is used and aims et determining
the optimal distribution of copper in both plates so as to minimize the squared L2-
norm of the current mismatch between the outputs (vertical vias) of the busbar,
especially for an high frequency input current. A logarithmic interpolation scheme
assigns conductivity to points of intermediate density. Special care has been taken
in the selection of the interpolation scheme as the magnitude of the conductivity
at the upper bound of density strongly affects the solution of the physical problem,
and thus the span of several order of magnitudes of the conductivity, typically 107,
in the design domain is crucial.

The results of the optimization problem are summarized in Fig. 3.7. The
optimization process results, after a 100 iterations (at 500 Hz) and 350 iterations
(at 50 kHz), in a copper distribution different in each plate which brings current
paths that allow a drastic reduction of the IGBTs currents mismatch. The copper
paths are thinner compared to the original design. The optimized design enables
to reduce the current mismatch in the two vertical branches from 36% to 0.2% at
500 Hz and from 42% to 0.1% at 50 kHz. A smooth CAD model of the optimized
rotor is obtained manually from the finite element representation of Fig. 3.7 by
making use of spline curves, see Fig. 3.8.



3.3. Impedance mismatch reduction in 3D multi-layer high voltage
busbars

3

31

current density - imaginary part (A/mm2)
0 0.310.02

current density - imaginary part (A/mm2)
1.520 0.0039

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

Iteration number

||∆
I
||

(A
)

Frequency – 500 Hz

0 100 200 300

0

5

10

15

Iteration number

||∆
I
||

(A
)

Frequency – 50 kHz

Figure 3.7: The busbar is fed with a current of 500 Hz (left column), as well
as a current of 50 kHz and the optimal copper distribution, top, of its plates is
obtained for both frequencies, as well as the current density, middle, for a volume
constraint set as 50% of the available volume. In all cases the current sharing
between the vertical vias is greatly reduced compared to the initial design.
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Figure 3.8: A smooth CAD model of the optimized busbar plates is obtained
manually from the finite element representation of Fig. 3.7 by making use of spline
curves.



Conclusions and Outlook

The objective of this thesis was threefold: (1) develop the rigorous and general
formulation of the sensitivity of constrained optimization problems based on PDEs
solution which arise from electromagnetics, in view of handling industrial design
of electromagnetic systems through either a shape optimization or a topology
optimization; (2) develop an efficient iterative solver for the solution of the very
large-scale problem when one has to cope with a huge number of local constraints,
for the method of moving asymptotes subproblems; and (3) develop the optimal
design capabilities by performing a simultaneous shape and topology optimization
of the system through this framework.

As was reviewed in Chapter 1, numerous techniques have been proposed over
the years to differentiate either the discretized algebraic system of the PDEs that
govern the physical problem, or on the other hand, their variational form, mostly
arising in the area of structural mechanics. Applications in other disciplines such
as electromagnetics have also been proposed, but have been limited to problems
expressed in terms of a scalar potential, leaving aside the problem of handling
vector unknown fields. We have therefore derived a general framework for anal-
ysis which extends the calculation of sensitivity to the vector field case, for both
static and time-harmonic PDEs, in a unified and elegant fashion. In addition we
are able to recover a number of results, previously obtained by other authors as
particular cases. The proposed framework, which is based on the general differen-
tial geometry framework, expresses the sensitivity at a continuous level, prior to
discretization, as a Lie derivative. Theoretical formulas for shape sensitivity are
derived and described in detail, following both the direct and the adjoint approach.
They are reformulated with conventional tensor and vector analysis notations. We
have also derived an efficient method for the construction of the velocity field of
the auxiliary flow that represents the shape modification of the system. Thus one
can express the sensitivity locally as a volume integral over a single layer of finite
elements connected to both sides of the surfaces undergoing shape modification.
The complete and general automatic sensitivity computation tool has been val-
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idated with the finite difference approach and the convergence of the computed
sensitivity with mesh refinement has been investigated.

For the second problem that we have investigated, we have redesigned the lin-
ear algebra kernel of the interior point method used to solve the mathematical
programming problem, in the context of an MMA approximation of the original
problem. A key point of our work is to avoid the storage of matrices which are of-
ten too large to be stored in computer memory. Such large-scale problems arise, in
general, in structural topology optimization with local stresses associated to each
finite element of a mesh, and involve both a large number of design variables and
a large number of constraints. The iterative solver of the KKT solution requires
the use of suitably preconditioned iterative method. In our approach, we resort to
successive modified partial Cholesky factorizations of system matrix blocks, with
an advantageously reduced density obtained with the truncation of the smallest
entries of the sensitivity matrix. The feasibility of the sparse preconditioned iter-
ative method has been showcased with the classical benchmark problems of stress
constrained topology optimization.

For the third investigated problem we have developed a unified tool for han-
dling simultaneously the complex interactions between the material distribution
model of topology optimization and the geometrical modifications which occur
throughout a shape optimization. Following the general framework of sensitivity
analysis derived so far, shape sensitivity is computed efficiently. We can obtain
simultaneously the sensitivity with respect to shape design variables as well as
material densities.

The theoretical results gathered in the thesis have been implemented within
ONELAB and have been successfully applied to electro-mechanical optimization
of the shape and topology of energy conversion systems which are of a great im-
portance in industry. The design of an electrical rotating machine with permanent
magnets, modeled by means of a two-dimensional CAD model coupled to a nonlin-
ear magnetostatic formulation, and aiming to minimize the torque ripple has been
first considered. In addition mechanical design requirements such as stress and dis-
placement constraints have been included in the design formulation so as to ensure
the mechanical feasibility of the rotor submitted to centrifugal forces. Finally, a
three-dimensional planar multi-layer busbar modeled in terms of a time-harmonic
magnetodynamic problem has been considered so as to minimize the impedance
mismatch.

Perspectives

Many short and medium term perspectives for future works exist:

1. The losses which occur in the steel parts, e.g. stator, as well as in the perma-
nent magnets of electrical rotating machines, see for instance Gyselinck et al.
[1999], should be included in the formulation of the problem of optimization.
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Such a problem involves performance functions expressed as time integrals,
over the period of the losses variations, and evaluated hence through the
solutions of the time-domain PDEs at each time step of that period. An
adaptation of the sensitivity analysis obtained so far in this work must be
carried out, so as to take into account the history of the time solutions of
the physical problem.

2. In the context of a multidisciplinary design optimization, there could be
various strategies to formulate the design problem of electrical machines in
order to deal with multiphysical couplings, such as mechanical vibrations
and heating. Since high current can damage electronic components, cause
high energy loss and consequently increase thermal stress, one can for in-
stance determine the optimal current density of windings, in addition to the
geometrical parameters or the material densities of the rotor.

3. The magnetic force can be included in the design in addition to the cen-
trifugal force, so as to account for low-speed electrical rotating machines.
They can also account for radial forces acting on stator casing, which give
rise to excitation of the stator and noise and vibration generation, see for
instance Hor et al. [1998].

4. An alternative formulation, called simultaneous analysis and design (SAND),
as it has been discussed since the 1960s in the seminal work of Schmit and
Fox [1965], or more recently in Rojas-Labanda and Stolpe [2015], can be
performed instead of the classical optimization problem formulation. In this
approach, the design variables and the solution field of the PDEs are consid-
ered simultaneously as independent optimization variables, while the PDEs
are considered as equality constraints and hence need not be fully satisfied
at every iteration. This can be advantageous for nonlinear problems. Al-
though this alternative formulation leads to much larger algebraic problem
sizes compared to the classical approach because of the increase of variables
in a single optimization process, the Jacobian of the constraints becomes
more sparse, which makes the SAND approach quite competitive compared
to the conventional nested approach, and even more efficient for large-scale
problems. It has been shown so far that the nested formulation of the op-
timal design problem brings considerable complexity in the calculation of
the sensitivity analysis, in particular in shape optimization where there is
an implicit dependency between the variation of the geometry and the vari-
ation of the state variable, which can be avoided advantageously in a SAND
approach of the design problem, since there is no more coupling between
the solution of the physical PDEs and the design variables, and hence the
sensitivity analysis is greatly simplified.

Many long-term perspectives also exist:

1. A possible extension may be initiated for handling multi-material optimiza-
tions, i.e., finding an optimal configuration consisting of three or more differ-
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ent materials, as in Bendsøe and Sigmund [1999] or more recently in Labbé
[2011]. In addition, one would like to consider discrete properties such as the
number of poles of an electrical rotating machine, or the number of power
switches in a busbar. In this approach, the design variables can either be
continuous as in a SIMP-like approach, or take a given number of values
indicating the material that is used.

2. The free-form nature of topology optimization, and its ability to discover
novel geometries, makes it a natural design tool for integration with addi-
tive manufacturing (AM) processes. Manufacturing limitations however still
remain, see for instance Gao et al. [2015], and ultimately must be tightly
integrated within the topology optimization methodology to fully extend
the capabilities and freedom provided by AM processes. The design space
should hence be restricted so that the features (members) in the final topol-
ogy are prescribed to satisfy a minimum length scale by imposing e.g. the
local slope constraints that limit the variation in between adjacent elements,
as in Petersson and Sigmund [1998] or following the more recent approach
by Guest et al. [2004].

3. The constraints on the slope occurring in an AM process are one example
among others that involve local constraints and therefore lead to a very
large-scale optimization problem. The development of the sequential convex
programming algorithm should combine the massively distributed modern
computer resources with physics-based simplifications of the problem. The
hierarchical matrices and their algebra, see for instance Börm et al. [2003],
also belong to a promising research field which may lead to efficient KKT
solvers. Another interesting perspective is to have a look at other physi-
cal engineering problems such as the design of electromagnetic systems, and
adapt the successive approximations to the sought system. It is also an in-
teresting question to adapt the sequential convex programming algorithm
to work with both discrete and continuous design variables, following for in-
stance Beckers [1999], Schmit and Fleury [1980] or more recently Svanberg
and Werme [2007] so as to be able to select materials from existing cata-
logues.
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• Exactness proved by the finite difference approach.

• Convergence analysis in 2D and 3D, with first and second order finite elements.

Abstract

The paper presents a theoretical framework for the shape sensitivity analysis of systems governed by partial differential

equations. The proposed approach, based on geometrical concepts borrowed from differential geometry, shows that sensitivity of

a performance function (i.e. any function of the solution of the problem) with respect to a given design variable can be represented

mathematically as a Lie derivative, i.e. the derivative of that performance function along a flow representing the continuous shape

modification of the geometrical model induced by the variation of the considered design variable. Theoretical formulae to express

sensitivity analytically are demonstrated in detail in the paper, and applied to a nonlinear magnetostatic and a linear elastic problem,

following both the direct and the adjoint approaches. Following the analytical approach, one linear system of which only the right-

hand side needs be evaluated (the system matrix being known already) has to be solved for each of the design variables in the

direct approach, or for each performance functions in the adjoint approach. A substantial gain in computation time is obtained this

way compared to a finite difference evaluation of sensitivity, which requires solving a second nonlinear system for each design

variable. This is the main motivation of the analytical approach. There is some freedom in the definition of the auxiliary flow that

represents the shape modification. We present a method that makes benefit of this freedom to express sensitivity locally as a volume

integral over a single layer of finite elements connected to both sides of the surfaces undergoing shape modification. All sensitivity
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calculations are checked with a finite difference in order to validate the analytic approach. Convergence is analyzed in 2D and 3D,

with first and second order finite elements.

c⃝ 2017 Elsevier B.V. All rights reserved.

Keywords: Lie derivative; Shape optimization; Velocity field; Elasticity; Magnetostatics

1. Introduction

Shape optimization has been an active research area since the seminal work of Zienkiewicz et al. in the early

1970s [1,2], which was aiming at determining the layout of a mechanical structure maximizing a performance measure

under some design constraints. Shape optimization can however also be applied to systems governed by partial

differential equations (PDEs), which introduces one extra level of difficulty. Methods for tackling such problems

have been developed in the field of nonlinear mathematical programming since the early 1960s [3–6]. In the most

successful approaches, the original problem is approximated by a sequence of convex optimization subproblems

that are explicit in the design variables, and that can be minimized effectively by relying on the derivative of the

performance functions, e.g. through an interior point method [7], or a dual Lagrange maximization [5].

In this context, the concept of sensitivity is pivotal. Two approaches have emerged over the years. The first one

differentiates the discretized algebraic system [8], whereas the second one acts as an analytical differentiation at the

level of the variational formulation of the problem [9]. Sensitivity analysis has been developed so far mostly in the

area of structural mechanics [10–12,1,13–16]. Applications in other disciplines such as electromagnetics have also

been proposed [17–19], but have been limited to problems expressed in terms of a scalar potential, leaving aside the

problem of handling vector unknown fields, which requires a more general theoretical framework.

This generalized framework is the purpose of this paper. With the concept of Lie derivative [20–24], sensitivity

is expressed analytically at the continuous level, prior to discretization. The Lie derivative is the derivative along

a flow, and the flow considered here is a continuous modification of the geometrical domain as design variables

variate. Several methods have been proposed to generate the velocity field of this flow, using either an isoparametric

mapping [25–28], the boundary displacement method [29–31], or the fictitious load method [32,33]. In this paper, we

propose a generic CAD-based mesh relocalization method for the computation of the velocity field, which is suited

for shape optimization problems based on CAD representations and allows an efficient numerical implementation.

The paper is organized as follows. The optimization problem is posed in Section 2. Section 3 develops the theoret-

ical aspects of sensitivity analysis based on differential geometry, and formulae to express Lie derivative practically

are detailed in Section 4. Section 5 details the construction of the velocity field. In Sections 6 and 7, the general

framework is used to derive analytical sensitivity formulae for various linear or nonlinear systems. The proposed ap-

proach is shown to give the same sensitivity formulae as [34] in the case of linear elastic problems, and to generalize

to non-scalar fields the results established in [35,36] for nonlinear magnetostatics.

2. Optimization problem

Let us consider a bounded domain Ω whose regions are separated by interfaces γ τ undergoing shape modifications

controlled by a set of design variables τ , Fig. 1. A physical problem is defined over Ω by a system of nonlinear PDEs

expressed in terms of a state variable z and a design variable set τ . A weak formulation of this problem is obtained

by, e.g., a Galerkin linearization approach, and can be written in a generic form

r(τ , z⋆, z̄) = 0, ∀z̄ ∈ Z0
z , (1)

with Z0
z an appropriate function space and z⋆ the solution of the problem. The functional r(τ , z, z̄) is called residual

and is always linear with respect to z̄, i.e.

r(τ , z, a + b) = r(τ , z, a) + r(τ , z, b).

The aim of a PDE-constrained shape optimization problem is to determine the geometric configuration τ

that minimizes a cost function f0(τ , z), subjected to m inequalities f j (τ , z) ≤ 0, j = 1, . . . , m, ensuring the

A.2. Optimization problem

A

55



704 E. Kuci et al. / Comput. Methods Appl. Mech. Engrg. 317 (2017) 702–722

Fig. 1. Considered domain Ω for a PDE-constrained shape optimization problem (2), where an interface γ τ , parametrized by a design variable τ ,

is deformed onto γ τ+δτ as the design variable is perturbed by a small amount δτ . The perturbation of the γ τ generates a velocity field v.

manufacturability or the feasibility of the design. The design space is also limited by physical or technological side

constraints τmin
i ≤ τi ≤ τmax

i , i = 1, . . . , n. Hence, the optimization problem reads

min
τ

f0(τ , z⋆)

s.t. f j (τ , z⋆) ≤ 0, j = 1, . . . , m

τmin
i ≤ τi ≤ τmax

i , i = 1, . . . , n

r(τ , z⋆, z̄) = 0, ∀z̄ ∈ Z0
z .

(2)

The evaluation of the performance functions f0 and f j for a given τ requires the knowledge of z⋆ for that particular

value of τ , which implies solving anew the nonlinear physical problem (1). The repetition of these evaluations is time-

consuming for large scale applications.

The sensitivity matrix of problem (2) is the matrix

S j i =
d f j

dτi

(τ , z⋆) (3)

of the derivatives of the performance functions with respect to the design variables. Optimization algorithms that do

not rely on the sensitivity matrix necessitate a large number of function evaluations, and are therefore inefficient.

Sensitivity-based algorithms, also often called gradient-based algorithms, on the other hand, offer a higher conver-

gence rate, lesser function evaluations, and hence, in our case, limit the required number of resolutions of the finite

element physical problem. In this article, a mathematical programming algorithm is used, coupled with a finite ele-

ment analysis code [37,38]. The optimization problem (2) is approximated by a series of convex subproblems explicit

in the design variables, such as CONLIN [39] or MMA [40], which are then solved efficiently by a gradient-based

primal, dual, or even combined primal–dual approach.

3. Design sensitivity analysis

We shall, for the sake of simplicity, consider one particular performance function, noted f (τ, z⋆), and one particular

design variable, noted τ . This amounts to deal with one particular component of the sensitivity matrix (3). The

treatment of any other component would be identical.

3.1. Finite difference

The most straightforward approach approximates sensitivity with a simple finite difference [16]

d f

dτ
(τ, z⋆) ≈

f


τ + δτ, zĎ


− f (τ, z⋆)

δτ
, (4)

where δτ is a small perturbation of the design variable. This evaluation requires solving two nonlinear problems on

slightly different geometries to evaluate z⋆ and zĎ,

r(τ, z⋆, z̄) = 0, ∀z̄ ∈ Z0
z ,

r(τ + δτ, zĎ, z̄) = 0, ∀z̄ ∈ Z0
z ,
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Fig. 2. Considered material manifold M and Euclidean space Ω where the physical problem (1) is defined. Each geometrical configuration of Ω

is characterized by an instance of the design variable τ , and represented by a smooth mapping pτ (placement map) of each point X ∈ M to each

point xτ ∈ Ω .

of which only the first one is necessary and must be done in any case. The cost of the second one is indeed prohibitive

considered that the sought sensitivity pertains to the linearization of the problem in the configuration corresponding

to τ and z⋆, and that this linearization has been done already to solve the first nonlinear problem. The finite difference

approach is thus simple, but slow, and it is essentially used for validation purpose.

3.2. Analytical expression of sensitivity

It is more efficient to express the derivative of f with respect to τ analytically at a continuous level, prior to

discretization. Writing the performance function explicitly in the form of an integral1

f (τ, z⋆) =



Ω(τ )

F(τ, z⋆) dΩ , (5)

sensitivity is the derivative with respect to τ of this integral and, in order to obtain an analytical expression, one has

to be able to perform the differentiation under the integral sign.

The definition of the Lie derivative involves in this context a one parameter family of mappings

pδτ : Ω(τ ) ⊂ E3 → Ω(τ + δτ) ⊂ E3 (6)

describing a smooth geometrical transformation of Ω in the Euclidean space E3, with no tearing nor overlapping,

that brings the interfaces between regions from their position γ τ to their position γ τ+δτ , Fig. 2. The mappings (6)

with the scalar parameter δτ taking values in a neighborhood of zero and playing the role of a pseudo time variable,

determines a flow on E3 whose velocity field is noted v. This velocity field plays a central role in the evaluation of the

Lie derivative. An automatic procedure to build it in the general case is described in Section 5.

As the mappings (6) are invertible for all δτ , tensor quantities (i.e. scalar fields, vector fields, or tensor fields) can

be mapped back from Ω(τ + δτ) into Ω(τ ) using the inverse p−1
δτ of pδτ . The Lie derivative of an arbitrary field ω in

Ω(τ ) is then defined as

Lvω = lim
δτ→0

p−1
δτ ω − ω

δτ
, (7)

where the index v in the notation Lvω makes reference to the velocity field characterizing the flow.

The Lie derivative is the mathematical concept describing the differentiation of an integral quantity over a

deforming domain and verifies by definition the fundamental property

d

dτ



Ω(τ )

ω =



Ω(τ )

Lvω. (8)

Its properties and formulae to evaluate it practically are detailed in Section 4.

1 If the performance function is a pointwise value, the expression of F(τ, z⋆) will then involve a Dirac function.
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In particular, for the performance function (5) one can thus write

d f

dτ
(τ, z⋆) =



Ω(τ )

Lv F(τ, z⋆)dΩ . (9)

By the chain rule of derivatives, the Lie derivative of the functional F(τ, z⋆) has got two terms

Lv F(τ, z⋆) = Lv F(τ, z⋆)







Lvz=0
+



Dz F(τ, z⋆)


Lvz⋆


. (10)

The first term is the partial Lie derivative of the functional, defined as the Lie derivative holding the field argument z

constant

Dτ F(τ, z⋆) = Lv F(τ, z⋆)







Lvz=0
. (11)

It accounts for changes in the value of the functional unrelated to the variation of the field. The second term involves

the Fréchet derivative of the functional F(τ, z) with respect to its field argument z. The Fréchet derivative is the linear

operator


Dz F(τ, z)


·


defined by

lim
|δz|→0

1

|δz|






F(τ, z + δz) − F(τ, z) −



Dz F(τ, z)


δz







= 0, (12)

where the limit is taken over all sequences of non-zero δz that converge to zero. The arguments between parenthesis

inside the curly braces indicate where the operator is evaluated, whereas the argument in between parenthesis outside

the curly braces indicates to what the operator is applied. If the functional has several field arguments, a Fréchet

derivative can be defined similarly for each of them.

3.3. Direct approach

We have shown in the previous section that sensitivity is expressed analytically

d f

dτ
(τ, z⋆) =



Ω(τ )



Dτ F(τ, z⋆) +


Dz F(τ, z⋆)


Lvz⋆




dΩ (13)

in terms of Lvz⋆, which represents the evolution of the solution z⋆ of the physical problem as the design parameter τ

is changing. In order to determine this quantity, one states that the derivative of the residual (1) with respect to τ is

zero in z⋆,

d

dτ
r(τ , z⋆, z̄) = 0, ∀z̄ ∈ Z0

z . (14)

As the residual is an integral of the form

r(τ, z⋆, z̄) =



Ω(τ )

R(τ, z⋆, z̄)dΩ , (15)

the condition (14) is again the derivative of an integral. It can be treated in a similar fashion as the derivative of the

performance function. By the chain rule of derivatives, one has

d

dτ
r(τ, z⋆, z̄) =



Ω(τ )



Dτ R(τ, z⋆, z̄) +


Dz R(τ, z⋆, z̄)


Lvz⋆


+


Dz̄ R(τ, z⋆, z̄)


Lvz̄




dΩ . (16)

The last term in the right-hand side of (16) vanishes, because linearity of r(τ, z⋆, z̄) with respect to its argument z̄

implies

lim
|δz̄|→0

1

|δz̄|






R(τ, z, z̄ + δz̄) − R(τ, z, z̄) −



Dz̄ R(τ, z, z̄)


δz̄








= lim
|δz̄|→0

1

|δz̄|






R(τ, z, δz̄) −



Dz̄ R(τ, z, z̄)


δz̄







= 0.

58
Paper I: Design sensitivity analysis for shape optimization based on

the Lie derivative

A



E. Kuci et al. / Comput. Methods Appl. Mech. Engrg. 317 (2017) 702–722 707

Hence the identity



Dz̄ R(τ, z, z̄)


δz̄


= R(τ, z, δz̄), (17)

and in particular, for z = z⋆, δz̄ = Lvz̄ and using (1),



Ω(τ )



Dz̄ R(τ, z⋆, z̄)


Lvz̄


dΩ = r(τ, z⋆, Lvz̄) = 0. (18)

The left-hand side of (16) being zero, one has finally



Ω(τ )



Dτ R(τ, z⋆, z̄) +


Dz R(τ, z⋆, z̄)


Lvz⋆




dΩ = 0, ∀z̄ ∈ Z0
z , (19)

which is the sought weak form of a linear problem allowing to solve for Lvz⋆.

The Fréchet derivative term in (19) involves the tangent stiffness matrix of the nonlinear problem (1), and hence,

in practice, the jacobian matrix of the problem after finite element discretization and convergence of the iterative

nonlinear process. This term is therefore already known from the finite element solving, and needs not be recomputed

when solving (19). The partial Lie derivative in (19) accounts for the explicit dependency (i.e. holding the field

argument constant) of the residual on the variation of τ . It is the right-hand side of the system determining Lvz⋆,

which can also be evaluated analytically. The semi-analytic approach [41], however, consists in evaluating this term

by a finite difference. Finite difference is done at a moderate numerical cost here, as z⋆ is already known and zĎ is not

needed.

3.4. Adjoint approach

An alternative to the method of previous section that solves explicitly for Lvz⋆ is the adjoint approach. The idea is

to define an auxiliary performance function, called augmented Lagrangian function,

f̄ (τ, z, λ) = f (τ, z) − r(τ, z, λ) =



Ω(τ )



F(τ, z⋆) − R(τ, z⋆, λ)



dΩ , (20)

with λ a Lagrange multiplier. As (1) implies that the residual r(τ, z⋆, λ) is zero at equilibrium, one has

f̄ (τ, z⋆, λ) = f (τ, z⋆), (21)

and the sensitivity is expressed in terms of the auxiliary performance function f̄ by

d f

dτ
(τ, z⋆) =

d f̄

dτ
(τ, z⋆, λ). (22)

Differentiation of (20) with respect to τ yields

d f̄

dτ
(τ, z⋆, λ) =



Ω(τ )



Dτ F(τ, z⋆) − Dτ R(τ, z⋆, λ)

+


Dz F(τ, z⋆)


Lvz⋆


−


Dz R(τ, z⋆, λ)


Lvz⋆




dΩ , (23)

where we have already omitted the null term (18).

Let now λ
⋆ be the solution of the so-called adjoint problem



Ω(τ )





Dz F(τ, z⋆)


λ̄


−


Dz R(τ, z⋆, λ⋆)


λ̄




dΩ = 0, ∀λ̄ ∈ Zλ. (24)

As (24) holds for λ̄ = Lvz⋆ ∈ Zλ, and has the identity



Ω(τ )





Dz F(τ, z⋆)


Lvz⋆


−


Dz R(τ, z⋆, λ⋆)


Lvz⋆




dΩ = 0, (25)
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and the last two terms in the right-hand side of (23) cancel out each other if λ = λ
⋆. Sensitivity is then given

by

d f̄

dτ
(τ, z⋆, λ⋆) =



Ω(τ )



Dτ F(τ, z⋆) − Dτ R(τ, z⋆, λ)



dΩ , (26)

in terms of the solutions of the nonlinear problem (1) and of the adjoint problem (24).

The system matrix of adjoint problem (24) is again the tangent stiffness matrix of the nonlinear problem (1), i.e. the

jacobian matrix after finite element discretization and convergence of the iterative nonlinear process. It can be reused

if the same discretization is used for solving (24) and (1).

3.5. Discussion

The direct and the adjoint methods are now compared to determine in which conditions one has to favor one over

the other.

Assuming a discretization z =
N

p=1 z pwp of the unknown field, with basis functions wp ∈ Z0
z and N the number

of nodal unknowns, one solves with the direct method the linear problem (19), which is of the form

N


q=1

J ⋆
pq xq = bp, (27)

with

J ⋆
pq =



Dz R(τ, z⋆, wp)


wq



(28)

the component of the nonlinear physical problem (1) jacobian matrix, and

bp = Dτ R(τ, z⋆, wp) (29)

the fictitious load proper to the design variable τ , representing the partial Lie derivative of the residual associated with

the test function z̄ ≡ wp. One has a vector bp for each design variable τ , and thus n linear systems like (27) to solve

in a system with n design variables. Both J ⋆
pq and bp are evaluated for z = z⋆, i.e., for the converged solution of the

nonlinear iterative process. The matrix J ⋆
pq is thus known from the solving of (1) and needs not be recomputed.

The solution of (27), which is the field
N

p=1 x pwp ≡ Lvz⋆, is a discrete estimation of the derivative of the solution

z⋆ of (1) with respect to the design variable τ or, put in a more accurate way, of the Lie derivative of z⋆ along the flow

associated with the variation of τ . This field is exactly what is needed to evaluate the sensitivity of the performance

function with respect to τ

d f

dτ
(τ, z⋆) =



Ω(τ )



Dτ F(τ, z⋆) +


Dz F(τ, z⋆)


x pwp





dΩ , (30)

since the performance function f being known (5), its Fréchet derivative Dz F and its partial Lie derivative Dτ F can

both be expressed analytically.

With the adjoint approach, a system like (27) is also solved, with J ⋆
pq again given by (28), and

bp =


Dz F(τ, z⋆)


wp



(31)

the adjoint load proper to the performance function f . The solution of the system,
N

p=1 x pwp ≡ λ
⋆ ∈ Zλ, is now

the so-called adjoint field, in terms of which the sensitivity of the performance function with respect to τ is expressed

as

d f

dτ
(τ, z⋆) =



Ω(τ )



Dτ F(τ, z⋆) − Dτ R(τ, z⋆, λ)



dΩ . (32)

The first term is identical to that in (30), and the second term implies an evaluation of the partial Lie derivative of the

residual of the problem (1) with the adjoint field λ
⋆ as test function z̄. One has also a vector bp for each performance

function f , and thus m linear systems like (27) to solve in a system with m performance functions.
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Both the direct and the adjoint approaches require solving the nonlinear system (1), in order to determine the

solution z⋆ corresponding to the selected design variables τ . One has then to solve one linear system for each of the n

design variables in the direct approach, or alternatively one linear system for each of the m performance functions in

the adjoint approach. This is in both cases a clear performance advantage compared to the finite difference approach,

for which a nonlinear problem like (1) has to be solved for each design variable. The direct method should be preferred

when the number of performance functions exceeds the number of design variables, m > n, otherwise the adjoint

method is preferable.

4. Lie derivative formula sheet

Lie derivatives are playing an important role in the analytical expression of sensitivity. We now present formulae

to evaluate the Lie derivative of scalar, vector and tensor fields. The purpose of this paper is however not to give a

complete mathematical derivation of this, but rather to provide engineers and practitioners in the field of optimization

with a useful formula sheet. We therefore stick with standard vector and tensor analysis notations and give a number

of results without proof.

The Lie derivative verifies the Leibniz rule for scalar fields

Lv( f g) = (Lv f )g + f (Lvg), (33)

vector fields

Lv(F · G) = (LvF) · G + F · (LvG), (34)

and tensor fields

Lv(A : B) = (Lv A) : B + A : (Lv B), (35)

where the colon : stands for the tensor product, A : B = Ai j Bi j (implicit summation assumed on repeated indices in

all the paper).

The Lie derivative of a scalar function f is

Lv f =
∂ f

∂τ
+ vT ∇ f, (36)

with v the velocity field characterizing the flow. This is the classical expression for the convective derivative of a scalar

quantity.

The Lie derivative of vector fields is more delicate. There exist several geometrical objects that have three

components in an Euclidean space, but behaving differently under transformations like (6). Besides genuine vector

fields, which convey the idea of motion and trajectory (e.g. the velocity v or displacement u fields), we have to deal

with circulation densities (also called 1-forms), which are quantities that make sense when integrated over a curve, and

whose tangential component is continuous at material interfaces (e.g. the magnetic vector potential A or the magnetic

field H) and flux densities (2-forms), which are quantities that make sense when integrated over a surface, and whose

normal component is continuous at material interfaces (e.g. the flux density B and the current density J). Although

genuine vector fields, circulation densities and flux densities can be indiscriminately regarded as vector fields in an

Euclidean space, their Lie derivatives are different under the transformation (6) and they must therefore be carefully

distinguished when evaluating the Lie derivative of an expression involving such objects. The Lie derivative of a vector

field W = Wi ei reads

LvW = (LvWi )ei − (∇v)T W, (37)

whereas that of a 1-form H = Hi ei reads

LvH = (Lv Hi )ei + (∇v)H, (38)

and that of a 2-form B = Bi ei

LvB = (Lv Bi )ei − (∇v)T B + B div v (39)
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in an orthonormal basis {ei , i = 1, 2, 3} and with the notations

(∇v) = (∇v)k j ekeT
j =

∂V j

∂xk

ekeT
j

(∇v)T =
∂V j

∂xk

e j e
T
k

(∇v)ei =
∂Vi

∂xk

ek

(∇v)T ei =
∂V j

∂xi

e j

(∇v)F =
∂Vi

∂xk

Fi ek

(∇v)T F =
∂V j

∂xi

Fi e j

div v = ∂Vi/∂xi = tr(∇v)

A : B = Ai j Bi j

ei e
T
j : epeT

q = δi pδ jq .

We shall only use (38) and (39) in the expression of sensitivity.

The Lie derivative of a material law like H(B) is the Lie derivative of a functional (a function of a field quantity)

instead of the derivative of a field. It is treated as follows. First, the material law must be regarded as a relationship

between the components of the fields

Hi (Bk) = νi j B j , (40)

with νi j the components of the nonlinear reluctivity tensor of the material. Taking the Lie derivative yields

Lv Hi (Bk) = νi j Lv B j +
∂νi j

∂ Bk

B j Lv Bk + Dτ Hi (Bk)

= ν∂
ik Lv Bk + Dτ Hi (Bk),

with

ν∂(Bk) = ν∂
ik ei e

T
k =



νik +
∂νi j

∂ Bk

B j



ei e
T
k (41)

the components of the tangent reluctivity tensor of the material. The partial Lie derivative Dτ Hi (Bk) would represent

a variation of the magnetic field components Hi under a change of τ , that would not be due to a variation of the field

components Bk . This term accounts thus for a possible explicit dependency of the material law in the design variable

τ and the geometrical changes associated to it, independently of the field argument dependency. There is no such

dependency in general. The transformations (6) move indeed the interfaces γ τ but leave by definition material laws

unchanged, so that one has

Dτ Hi (Bk) = 0. (42)

We can now write successively

Lv Hi (Bk) ei = ν∂
ik Lv Bk ei

= ν∂
i j Lv Bk ei e

T
j ek

= ν∂
i j ei e

T
j Lv Bk ek

= {ν∂(Bk)}(Lv Bk ek)

where eT
j ek = δ jk has been used. At the last line, the tangent reluctivity tensor has been written as an operator acting

on the vector (actually a 2-form) Lv Bk ek .
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Fig. 3. A plate with an elliptic hole γ τ is considered. The design variable τ is the major axis of the ellipse. After a finite perturbation δτ , the mesh

nodes lying on the surface γ τ are relocalized on γ τ+δτ thanks to the CAD parametrization of the surface. The velocity field (46) is approximated

by finite difference of the node positions before and after the perturbation.

The vectors Lv Hi (Bk) ei and Lv Bk ek can now be expressed in terms of LvH(B) and LvB using (38) and (39) to

obtain

LvH(B) − (∇v) H(B) = {ν∂(Bk)}


LvB + (∇v)T B − B div v


. (43)

Similarly, one has for inverse material law B(H)

LvB(H) + (∇v)T B(H) − B(H) div v = {µ∂(Hk)}


LvH − (∇v)H


, (44)

with µ∂ = (ν∂)−1.

5. Design velocity field computation

There is some freedom in the definition of the mappings (6), and, hence in the choice of an auxiliary flow with

velocity v, that represents the shape modification. Once the flow is chosen, the mathematical expression of the velocity

field is the Lie derivative

v = Lvx, (45)

of the coordinate vector x = (x, y, z), where {x, y, z} are coordinates on E3.

Various methods for the automatic generation of (45) have been proposed in the literature, using either a

geometrical constructive approach such as the isoparametric mapping [25–28], or an auxiliary structure, such as the

boundary displacement method [29–31] or the fictitious load method [32,33]. In our approach, which belongs to the

first category, we propose a generic computer-aided design (CAD) based method in which mesh nodes are relocalized

on perturbed geometrical surfaces thanks to their CAD parametric coordinates [37]. The procedure is illustrated in

Fig. 3 for a simple plate with an elliptic hole γ τ , the considered design variable τ being the major axis of the ellipse.

The CAD corresponding to the initial value τ is first meshed, so that the coordinates xτ of all nodes in that initial

situation are known. The design variable τ is then modified by a small amount δτ , leading to a slightly perturbed

CAD, and in particular a perturbed surface γ τ+δτ , Fig. 3. Mesh nodes lying on γ τ with coordinates xτ can then be

A.5. Design velocity field computation
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Fig. 4. The velocity field (46) so far computed for the mesh nodes lying in the elliptic surface γ τ , is extended into either a one element thick layer

on both sides of the surface γ τ using the EL method (left), or in the whole domain using a LaS method (right).

relocalized on γ τ+δτ thanks to their parametric coordinates. If xτ+δτ represent the relocalized coordinates, a discrete

approximation of the vector field (45) is given by the finite difference

v ≈
xτ+δτ − xτ

δτ
, (46)

at all nodes on the surface γ τ .

We however need the velocity field over the whole simulation domain Ω . It is thus extended from the surface γ τ

into Ω by one of the following two methods:

• Laplacian smoothing (LaS) [42]: the velocity field at inner nodes is obtained by solving a scalar Laplace equation

for each component of the velocity field, with Dirichlet boundary conditions equal to (46) on γ τ , and to zero on all

other surfaces of the geometrical model. The x-component of the velocity field is illustrated in Fig. 4.

• Element layer (EL) extension: the velocity field is simply interpolated with the nodal shape functions of the initial

mesh, assuming nodal values given by (46) at nodes on γ τ , and equal to zero otherwise. The support of this velocity

field is thus limited to a one element thick layer on both sides of the surface γ τ . The x-component of the velocity

field for the same example as above is illustrated in Fig. 4.

Comparative convergence [43] diagrams are presented in Fig. 5. The sensitivity of a performance function is

computed with first order finite elements for various perturbation step δτ and mesh refinement. It is observed that

perturbation steps δτ between 10−3 and 10−10 are equally valid. A similar convergence rate is obtained with both

methods. The main advantage of the LaS method is to generate velocity fields that preserve mesh quality for large

perturbations. For sensitivity calculations however, where the perturbation is infinitesimal, the EL approach is to

be preferred since it offers the same accuracy at a much lower computational cost. In addition to bypassing the

solution of the Laplace equation necessary for the LaS approach, the support of all the volume integrals in sensitivity

Eqs. (13), (19), (24) and (26) which involve the velocity field is reduced to the layer of elements connected to the

moving interfaces of Ω . Compared to classical algorithms, where the volume contributions are expressed directly on

the interface γ τ (via application of the divergence theorem), the proposed approach exhibits much better accuracy and

stability, without any significant overhead.

6. Application to magnetostatics

6.1. Problem formulation

Let us consider the magnetic vector potential A formulation, B = curl A, on a bounded domain Ω of the

Magnetostatics problem excited by a current density J

curl H(B) = J in Ω (47)

H(B) = νi j B j ei in Ω (48)

A = 0 on ∂Ω . (49)
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Fig. 5. A linear elastic model is defined over the plate, in Fig. 3, where the design variable τ is the major axis of the elliptical hole and the internal

energy is the performance function. The sensitivity of the internal energy with respect to τ is computed using a global finite difference (FD) and

the Lie derivative (Lie), for which the velocity field obtained through EL method and LaS method is used. Sensitivity based in either EL or LaS

exhibits similar convergence rate with respect to perturbation step δτ (where the number of elements in the finite element mesh is set to 105) and

mesh refinement (where δτ is set to 10−6).

A homogeneous Dirichlet boundary condition (49) is assumed for the sake of simplicity. In (48), the reluctivity tensor

components can be function of B (nonlinear material). The weak formulation of the problem reads [44]: find A⋆ in an

appropriate function space Z0
A verifying (49) such that

r(τ, A⋆, Ā) ≡



Ω

R(τ, A⋆, Ā)dΩ = 0, ∀Ā ∈ Z0
A, (50)

with

R(τ, A⋆, Ā) ≡ H(B⋆) · B̄ − J · Ā, (51)

where B⋆ = curl A⋆, B̄ = curl Ā.

6.2. Problem sensitivity analysis

The derivative of the residual (50) at equilibrium with respect to a design variable τ is obtained by applying the

chain rule of derivatives,

d

dτ
r(τ, A⋆, Ā) =



Ω



LvH(B⋆) · B̄ + H(B⋆) · LvB̄ − LvJ · Ā − J · LvĀ


dΩ

=



Ω



LvH(B⋆) · B̄ − LvJ · Ā


dΩ = 0, (52)

since the fact that B⋆ is the solution of (50) implies


Ω



H(B⋆) · LvB̄ − J · LvĀ


dΩ = 0,

since LvĀ ∈ Z0
A.

Using (43), on the one hand, one has

LvH(B⋆) = ν∂ LvB⋆ + ν∂


(∇v)T B⋆ − B⋆ div v


+ (∇v) H(B⋆). (53)

The current J, on the other hand, is a 2-form. Its Lie derivative depends on how current is imposed in the model. If

the current I flowing in a conducting region Ω
C of the model is fixed, one has

dI

dτ
= 0 =



ΩC

LvJdΩ , (54)
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and the term LvJ then simply vanishes. If on the other hand the current density is constant, which is the case in our

application example, one has Lv Ji = 0 and by (39)

LvJ = J div v − (∇v)T J. (55)

Substituting (53) and (55) into (52) yields the linear system to solve for LvA⋆



Ω

ν∂ LvB⋆ · B̄dΩ +




Ω



ν∂


(∇v)T B⋆ − B⋆ div v


· B̄

+ (∇v) νB⋆ · B̄ − (J div v − (∇v)T J) · Ā


dΩ


= 0, ∀Ā ∈ Z0
A. (56)

The first term in (56) involves the tangent stiffness matrix, which is already known from the computation of A⋆, and

the bracketed terms make up the partial derivative term


Ω
Dτ RdΩ of (19).

It is to be noted that (56) is valid for 2D and 3D formulations, and generalizes the methods proposed in

[17–19] that were limited to scalar unknown fields, i.e. to scalar potential 3D formulations or 2D electromagnetic

problems.

6.3. Performance function

As a simple example of performance function, we choose the magnetic energy in the airgap Ω f ⊂ Ω , i.e.,

f (τ, A) =



Ω f

F(τ, A)dΩ , (57)

with

F(τ, A) =
1

2
ν0|B|2. (58)

The correct way to evaluate the Lie derivative of the norm |B|2 is to write it as a scalar product H(B) · B and to

invoke (43) in the linear material case this time.

One has then

LvH = ν0



LvB


+ ν0



(∇v)T B + (∇v)B − B div v


,

and

d

dτ
f (τ , A⋆) =



Ω f

ν0 LvB⋆ · B⋆dΩ +




Ω f

ν0

2



(∇v)T B⋆ + (∇v) B⋆ − B⋆ div v


· B⋆dΩ


, (59)

where the first term and the bracketed terms are the Fréchet derivative term and the partial Lie derivative term


Ω
Dτ FdΩ of (13), respectively.

6.4. Numerical example

The calculation of the sensitivity is demonstrated with the inductor system depicted in Fig. 6. The system is excited

by a fixed current density J. The design variable τ is the thickness of the core and the performance function f is

chosen as the energy in the airgap (57). The E-core is modeled with either a linear or a nonlinear magnetic material,

and both a 2D and a 3D geometrical model are considered.

The EL method has been used to extend the velocity field associated with the perturbation of τ (cf. Section 5), and

its nodal values (46) are shown in the bottom pictures in Fig. 6. The support of all volume integrals in (56) and (59) is

then limited to one finite element layer on both sides of the moving interfaces.

The sensitivity calculated analytically is compared with that obtained by finite difference with a perturbation step

chosen small enough to avoid truncation and condition errors as illustrated in Fig. 7. Convergence diagrams for the

sensitivity (with δτ = 10−6) of energy and for the energy itself are presented in Figs. 8 and 9. It is first observed that

the analytic approach exactly matches the finite difference approach in all cases. Convergence is slower for sensitivity
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Fig. 6. Top: Magnetostatic test case for the sensitivity analysis: inductor with symmetries in 2D (left) and 3D (right) excited by a fixed current

density. The design variable τ is the thickness of the magnetic core. Bottom: Nodal values on the boundaries of the velocity field (46) related to the

perturbation of τ .

than for energy as the mesh is refined. As expected, convergence is also faster with second order elements. One notices

that energy for first order in 3D is clearly not converged as a lot of elements in the airgap are needed. Then sensitivity

is not converged yet to the exact value.

7. Application to linear elastostatics

7.1. Problem formulation

In linear elasticity, the displacement field u = u j E j is expressed in an absolute vector basis {E j , j = 1, 2, 3} of the

Euclidean space E3, whose basis vectors are not affected by the geometrical deformation associated with the variation

of τ .

The gradient of the displacement field is the tensor

(∇u) = (∇u j )E
T
j =

∂u j

∂xi

ei E
T
j , (60)

and the strain tensor is defined as the symmetrical part of (∇u),

ϵ =
1

2



(∇u) + (∇u)T


= ϵi j ei E
T
j , ϵi j =

1

2



∂u j

∂xi

+
∂ui

∂x j



. (61)

The stress tensor

σ = σi j ei E
T
j , σi j = σ j i (62)
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Fig. 7. Sensitivity (59) of the inductor energy (evaluated in the airgap) with respect to the magnetic core thickness computed with the finite

difference method (FD) and the Lie derivative approach (Lie) for varying perturbation step in 2D (left column) and in 3D (right column). The

magnetic core of the inductor is considered as linear in the top while a nonlinear reluctivity is considered in the bottom.

is a symmetric tensor obtained from the strain tensor by means of a constitutive relationship

σi j (ϵkl) = Cijkl ϵkl . (63)

Assuming, for the sake of simplicity, a homogeneous Dirichlet boundary condition, the elasticity problem reads

div σ (ϵ) + g = 0 in Ω , (64)

σ (ϵ) = Cijkl ϵkl ei E
T
j in Ω , (65)

u = 0 on ∂Ω , (66)

with g an imposed volume force density. The weak formulation of the problem reads [45]: find u⋆ in an appropriate

function space Z0
u verifying (66) such that

r


τ, u⋆, ū


=



Ω

R(τ, u⋆, ū)dΩ , ∀ū ∈ Z0
u, (67)

with

R(τ, u⋆, ū) ≡ σ (ϵ⋆) : ∇ū − g · ū, (68)

where ϵ
⋆ = 1

2
((∇u⋆) + (∇u⋆)T ).
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Fig. 8. Sensitivity (59) of the inductor energy (evaluated in the airgap) with respect to the magnetic core thickness computed with the finite

difference method (FD) and the analytical approach (Lie) for refined mesh with respectively first order (order 1) and second order (order 2) finite

elements (FE). The magnetic core of the inductor is considered as linear in the top while a nonlinear reluctivity is considered in the bottom.

7.2. Problem sensitivity analysis

The derivative of the residual (67) at equilibrium is obtained by the chain rule of derivatives

dr

dτ
(τ, u⋆, ū) =



Ω



Lvσ (ϵ⋆) : ∇ū + σ (ϵ⋆) : Lv∇ū − Lvg · ū − g · Lvū


dΩ

=



Ω



Lvσ (ϵ⋆) : ∇ū − Lvg · ū


dΩ = 0, (69)

since


Ω



σ (ϵ⋆) : Lv∇ū − g · Lvū


dΩ = 0,

by (67) because Lvū ∈ Z0
u .

The Lie derivative of the elastic constitutive relationship (65) is evaluated as follows. One first note that

Lvσi j (ϵkl) = Cijkl(Lvϵkl) + Dτσi j (ϵkl), (70)

where, based on the same argument as (42), Dτσi j (ϵkl) = 0. It then follows, reintroducing the tensor basis,

(Lvσi j )ei E
T
j = Cijkl (Lvϵkl)ei E

T
j

= {C}


Lvϵkl ekET
l
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Fig. 9. Energy (57) evaluated in the airgap of the inductor, considered in 2D (first column) and 3D (second column) for refined mesh with

respectively first (order 1) and second order (order 2) finite elements (FE). The magnetic core of the inductor is considered as linear in the first row

while a nonlinear reluctivity is considered in the second row.

where, at the last line, the Hooke tensor has been written as an operator acting on the tensor Lvϵkl ekET
l . Eq. (44)

can now be invoked, if one notes that the gradient ∇u j = (∇u)E j is a 1-form whereas the vector σi j ei = σE j is a

2-form. One has by (39) and (38)

Lv(σE j ) = (Lvσi j )ei − (∇v)T (σE j ) + (σE j ) div v

Lv



(∇u)E j



= Lvϵkl ek + (∇v)


(∇u)E j



,

so that

Lv(σE j ) + (∇v)T (σE j ) − (σE j ) div v = {C}


Lv



(∇u)E j



− (∇v)


(∇u)E j





,

and, after removing the constant and uniform absolute basis vector E j , which are not affected by the geometrical

deformation,

Lvσ (ϵ) + (∇v)T
σ (ϵ) − σ (ϵ) div v = {C}



Lv∇u − (∇v)(∇u)


. (71)

Substituting into (69) and noting that Lvg = 0 if the resultant force associated with g is independent of τ , one has

finally


Ω

{C}


Lv∇u⋆


: ∇ūdΩ +




Ω



div v σ (ϵ⋆) : ∇ū − {C}


(∇v)(∇u⋆)


: ∇ū

− (∇v)T
σ (ϵ⋆) : (∇ū)



dΩ


= 0, ∀ū ∈ Z0
u . (72)
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Fig. 10. Top: Elasticity test case for the sensitivity analysis: infinite plate with symmetries in 2D (left) and 3D (right) excited by a biaxial load. The

design variable τ is the major axis of the elliptic hole. Bottom: Nodal values on the boundaries of the velocity field (46) related to the perturbation

of τ .

The first term in (72) involves the tangent stiffness matrix of problem (67), while the bracketed terms account for the

explicit dependency (i.e. holding the field argument u constant) of the residual on the variation of τ , i.e.


Ω
Dτ RdΩ

as introduced in (19), exactly as obtained in [34].

7.3. Performance function

As a simple example of performance function, we choose the internal energy in the domain Ω , i.e.,

f (τ, u) =



Ω

F(τ, u)dΩ , (73)

with

F(τ, u) =
1

2
σ (ϵ) : ϵ. (74)

The derivative of the performance function (73) is now obtained similarly to the derivative of the residual (69), by

recalling the Lie derivative of the stress tensor (71),

d

dτ
f (τ, u⋆) =



Ω

σ



∇(Lvu⋆)



: ∇u⋆dΩ +
1

2



Ω



div v σ (ϵ⋆) : ∇ū

− σ


(∇v)(∇u⋆)


: ∇ū − σ (ϵ⋆) :


(∇v)(∇ū)




dΩ


, (75)
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Fig. 11. Sensitivity (75) of the plate compliance (internal energy) with respect to the elliptical hole major axis length computed with the finite

difference method (FD) and the Lie derivative approach (Lie). Top: the perturbation step is varied in 2D (left column) and 3D (right column). The

sensitivity based on the Lie derivative does not suffer from the truncation and conditions errors proper to the FD then the choice of the perturbation

step is not critical. Bottom: the mesh is refined and the convergence is studied with respectively first (order 1) and second (order 2) order finite

elements (FE). Both methods converge to the same result when the mesh is refined, with a faster convergence for second order finite elements.

where the first term in (75) is the Fréchet derivative of the performance function with respect to the unknown field u,

while the bracketed terms are the explicit dependency (i.e. holding the field argument u constant) of f on the variation

of τ , i.e.


Ω
Dτ FdΩ as introduced in (13).

7.4. Numerical example

The calculation of the sensitivity is demonstrated with the infinite plate with an elliptic hole depicted in Fig. 10.

The system is excited by a biaxial load of fixed magnitude. The design variable τ is the major axis of the ellipse and

the performance function f is chosen as the energy in the plate (73). The plate is made a linear elastic steel, and both

a 2D and a 3D geometrical model are considered.

The EL method has been used, similarly to the inductor system (cf. Fig. 6), to extend the velocity field associated

with the perturbation of τ (cf. Section 5), and its nodal values (46) are shown in the bottom pictures in Fig. 10. The

support of all volume integrals in (72) and (75) is then limited to one finite element layer on both sides of the moving

interfaces.

The sensitivity calculated analytically is compared with that obtained by finite difference with a perturbation step

chosen small enough to avoid truncation and condition errors as illustrated in the top of Fig. 11. Convergence diagrams

for the sensitivity (with δτ = 10−6) and the internal energy are presented in Figs. 11 and 12. All the conclusions

obtained for the Magnetostatic numerical example (cf. Section 6) still hold here.
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Fig. 12. Internal energy (73), considered in 2D (left) and 3D (right) for refined mesh with respectively first (order 1) and second order (order 2)

finite elements (FE).

8. Conclusion and perspectives

The shape sensitivity of a performance function can be expressed analytically as a Lie derivative. Related

differential geometry concepts are introduced in this paper and reformulated with conventional tensor and vector

analysis notations. Theoretical formulae for shape sensitivity are derived in detail, following both the direct and the

adjoint approach. The obtained formulae have a rather large number of terms, which can however either be reused

from the finite element solution or evaluated on a support limited to a one layer thick layer of finite elements on both

sides of the surfaces involved in the shape variation. A number of results previously obtained by other authors with

a classical vector calculus approach in the area of structural mechanics and scalar magnetostatics are recovered with

the proposed framework, which is however more general.

Numerical examples in nonlinear magnetostatics and linear elasticity have been presented, and validated with the

finite difference approach. Convergence of the computed sensitivity with mesh refinement have been studied with first

and second order elements. An efficient method for the construction of the design velocity field has been described,

which allows to complete a general automatic sensitivity computation tool.

The theoretical results gathered in this paper pave the way towards more involved applications, such as eddy current

problems, and multiphysics problems.
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Abstract This paper addresses the optimal design of a three-dimensional planar multilayer busbar
through a density-based topology optimization. The design variables upon which the optimization
acts represent the presence or absence of material at each point of the region where it is applied.
They are called densities, and are by essence attached to matter. The optimization problem dealt
with in this paper is furthermore constrained to verify the linear, time-harmonic magnetodynamic
formulation governing the physical behavior of the busbar, and discretized by means of the finite
element method (FEM). This paper proposes an approach to minimize the mismatch between the
complex currents that go through the power switching components of the busbar, while filling at
most a given volume fraction of the available domain. In addition, theoretical formulae to express
sensitivity are derived based on the Lie derivative, so as to be able to use a gradient-based sequential
convex programming approach, called Method of the Moving Asymptotes (MMA).

Keywords Density-based topology optimization · Lie derivative · MMA · 3D Busbar

1 Introduction

The use of switching technology, at all levels of the electrical power sector, e.g. generation, trans-
mission and distribution [7], and for industrial processes [3], has enabled the decrease in size of
hardware while maintaining high power density combined with a high efficiency and safe operation
of the converter at all operating points [14], [1]. Nowadays, the switching components, character-
ized by a very low switching time and always increasing current levels, are interconnected to other
electronic components in power converters through multilayer busbars, i.e. a thick strips of copper
or aluminum. In addition to offering much lower impedances than conventional cable wiring, planar
busbars allow at the same time flat, rigid and compact mechanical support for the devices. How-
ever, the presence of loop inductance can still bring significant surge voltage due to hard-switching
operation of voltage source inverters [5]. This generally requires high-voltage rating of switching
devices, which results in additional cost and power loss, and also, electromagnetic interferences [18].
Even if the stray effects are kept small in practical busbars, as studied for instance in [22] or [13],
impedance asymmetry can appear and hence lead to current imbalance between the outputs of
the busbar, especially during transients of the switching power devices [17]. Higher current capac-
ity, on the other hand, will naturally increase heat generation in the busbar system. The main

E. Kuci
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challenge lies in defining the appropriate topology of the device to make them compact, light and
inexpensive without compromising their performances (power losses, electromagnetic interference
compatibility).

Conventionally, the bars are subdivided into several elements, seen as straight thin conductors
in parallel, and the computations of the current distribution and stray inductance are done by the
partial equivalent element circuit (PEEC) method [20,25]. The resulting numerical models are then
used to design the busbar so as to tackle the issues mentioned above (see e.g. [19,27,6]) as well
as the thermal problem (see e.g. [16,23]). Two dimensional finite element models have also been
proposed, which provide a good compromise between model flexibility, accuracy and computational
cost [21].

More accurate, albeit computationally more expensive, methods are also worth investigating
when high fidelity simulations are desired, e.g. for high-resolution topology optimization. In this
work we investigate the use of a full 3D CAD representation of the busbar combined with a
linear, time-harmonic magnetodynamic finite element model, coupled with a density-based topology
optimization [2]. The optimization aims at determining how copper should be distributed within
the design domain, e.g. the conducting plates, to reach the objectives mentioned above without
having to make any a priori guess about the final distribution, which offers a great flexibility in the
design.

A sequential convex programming method, well known in the field of structural engineering,
called Method of the Moving Asymptotes (MMA) is used in this paper to determine the solution
of such problems [11,26], based on the sensitivity matrix of the problem. The latter accounts for
the dependency of the performance functions with respect to the design variables. Most existing
sensitivity calculation approaches deal with 2D static systems, leaving aside 3D and time-harmonic
cases. The extension to harmonic fields however requires adapted theoretical frameworks [15,4]. We
show in this paper how this setting allows to derive the variational sensitivity formula for a general
3D time-harmonic magnetodynamic problem, in an adjoint approach.

The paper is organized as follows. The parameterization of the busbar and the time-harmonic
magnetodynamic variational formulation are presented in Section 2, while the density based topol-
ogy optimization problem is posed in Section 3. Section 4 details formulae to express practically
the derivative of both the performance functions and the time-harmonic magnetodynamic problem
with respect to density variables. In Section 5, the general framework is applied to the optimal
design of a 3D busbar.

2 Description of the physical model

A representative three-dimensional laminated busbar is considered as a bounded domain, noted
Ω. It is made up of tightly pressed conducting plates separated by a thin dielectric material for
insulation, see Fig. 1. A sinusoidal current, injected through a surface ΣI , feeds the busbar. A
fixed spatial discretization of Ω is undertaken and in particular, the spatial discretization of the
conducting domain, noted ΩC ⊂ Ω, is used as the support for a density field, noted ρ. The
optimization design variables are chosen as an element-wise sampling of that field, and are allowed
to vary between a lower bound that represents air noted ρmin, and an upper bound that represents
copper, noted ρmax, allowing hence to create or remove holes in ΩC .

The system is modeled in terms of a time-harmonic magnetodynamic A−v formulation, written
at the continuous level by its weak formulation [10]. It reads: find A and v in appropriate complex
function spaces, respectively Z0

A and ZIv and verifying appropriate boundary conditions such that

B.1. Introduction
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Fig. 1 Considered three-dimensional busbar fed by a sinusoidal current (scaling factor of 10 in the z direction
for better visibility).
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Fig. 2 Conductivity as a function of densitiy in logarithmic scale (2) (left) and natural scale (right) for various
σmin, and σmax set to 5 · 107 (S/m).

the residual r(A, v,A′, v′) is cancelled:∫
Ω

ν curlA · curlA′ dΩ +

∫
ΩC

σ
(
iωA+∇v

)
·A′ dΩ = 0, ∀A′ ∈ Z0

A∫
ΩC

σ
(
iωA+∇v

)
· ∇v′ dΩ −

∫
ΣI

Is · v′ dΩ = 0, ∀v′ ∈ ZIv
(1)

with A the magnetic vector potential on Ω and v the electric potential on the conducting region
ΩC ⊂ Ω. In (1), ν is the reluctivity, σ is the conductivity, i is the pure imaginary complex number
(such that i2 = −1), ω = 2πf is the angular frequency computed for a given frequency f and Is, the
global current. The two left-hand sides in (1) define the residual r(A, v,A′, v′), which is complex-
valued for the time-harmonic problem. The residual as well as A and v are complex-valued, while
the test functions A′ and v′ are real-valued.
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An interpolation scheme assigns conductivity to points of intermediate density. However, special
care must be taken in the selection of the interpolation scheme as the magnitude of the conductivity
at ρ = ρmax strongly affects the solution of (1), and thus the span of several order of magnitudes of
σ in the design domain is crucial. As the conductivity varies from σmin to σmax, an interpolation
in logarithmic scale [8] is adopted,

log10σ = log10(σmax)− 1− ρ
1 + ρ

log10(
σmax
σmin

), (2)

with numerical experiments shown in Fig. 2 for various σmin.

3 Topology optimization problem

Let us introduce,

∆I(ρ,A†, v†) = IΣ1
(ρ,A†, v†)− IΣ2

(ρ,A†, v†), (3)

the mismatch between the complex currents IΣ1
and IΣ2

in the vertical vias, Σ1 and Σ2, of the
busbar, and

||∆I(ρ,A†, v†)||22 = ∆I(ρ,A†, v†) ·
(
∆I(ρ,A†, v†)

)?
, (4)

the square L-2 norm of ∆I. The density-based topology optimization problem aims at determining
the optimal density field ρ for the two plates of the busbar, that minimizes the mismatch between
the complex currents IΣ1

and IΣ2
in the vertical vias, while filling at most a given volume fraction

α of the available domain and keeping at the same time the impedance of the busbar unchanged
from the basic design. The performance functions of the optimization problem are a function of the
physical problem (1) solution. The optimization problem reads,

min
ρ

f(ρ,A†, v†) ≡ ||∆I(ρ,A†, v†)||22

s.t.

∫
ΩC

ρ dΩ ≤ α
∫
ΩC

dΩ

ρmin ≡ 0 ≤ ρ ≤ ρmax

r(A†, v†,A′, v′) = 0, ∀A′ ∈ Z0
A, ∀v′ ∈ ZIv .

(5)

In (5), the resultsA† and v† of problem (1) are used to determine the currents IΣ1
and IΣ2

in the
vertical branches for a given density field ρ. The repetition of these evaluations is time-consuming for
large scale applications. In this article, a gradient-based sequential convex programming algorithm
called Method of the Moving Asymptotes [26] (MMA) is used. It builds convex and separable local
approximations of the performance functions (currents and volume).

4 Adjoint-based sensitivity analysis

We shall, for sake of simplicity, consider one particular performance function, noted f , and one par-
ticular design variable, noted ρ. The treatment of any other performance function will be identical.
The real part of a complex number x is noted Re{x}, while its imaginary part is noted Im{x} and
the conjugate complex of x is noted x?.

B.2. Description of the physical model
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4.1 Analytical expression of sensitivity

In a general setting, the real-valued square L-2 norm of the current mismatch can be written as

f(ρ,A†, v†) =

∫
ΩC

F (ρ,A†, v†) dΩ, (6)

where the function F depends explicitly on its complex-valued parameters; A and v themselves
depending implicitly on ρ. Their derivative with respect to ρ, can be obtained analytically (prior to
discretization) by differentiation under the integral sign. We have shown previously (see [15]) that
for real-valued physical problems the sensitivities can be derived in a unified fashion, in 2D or 3D
with the velocity method [24], by means of an explicit Lie differentiation of the weak formulation
terms. Building on the same methodology, analytical expressions of sensitivity are derived in what
follows.

The derivative of f with respect to ρ,

df

dρ
(ρ,A†, v†) =

∫
ΩC

(
DρF (ρ,A†, v†) +

{
DAF (ρ,A†, v†)

}(dA†

dρ

)
(7)

+
{

DvF (ρ,A†, v†)
}(dv†

dρ

))
dΩ,

has got three terms. The first term is the partial derivative of the functional,

DρF (ρ,A†, v†) =
dF

dρ
(ρ,A†, v†)

∣∣∣
dA
dρ

=0, dv
dρ

=0
(8)

defined as the derivative holding the field arguments A and v constants, while the other terms
involve the Fréchet derivative of the functional F (ρ,A, v) with respect to its field arguments A,
defined by

lim
|δA|→0

1

|δA|
∣∣∣F (ρ,A+ δA, v)− F (ρ,A, v)−

{
DAF (ρ,A, v)

}(
δA
)∣∣∣ = 0, (9)

where the limit is taken over all sequences of non-zero δA that converge to zero. Similarly, the
Fréchet derivative of the functional with respect to v reads

lim
|δv|→0

1

|δv|
∣∣∣F (ρ,A, v + δv)− F (ρ,A, v)−

{
DvF (ρ,A, v)

}(
δv
)∣∣∣ = 0. (10)

The Fréchet derivative is a linear operator applied to the argument in between parenthesis outside
the curly braces, and evaluated in arguments between parenthesis inside the curly braces.

A real-valued augmented Lagrangian function is defined,

fa(ρ,A, v,λA, λv) = f(ρ,A, v)− r(ρ,A, v,λA, λv) (11)

− r?(ρ,A?, v?,λ?A, λ?v)

= Re
{
f(ρ,A, v)− 2 r(ρ,A, v,λA, λv)

}
with λA a Lagrange multiplier associated to A and λv a Lagrange multiplier associated to v. Both
λA and λv are complex-valued adjoint fields.

As (1) implies that the residual r(ρ,A†, v†,λA, λv), as well as its complex conjugate, is zero at
equilibrium, one has

fa(ρ,A†, v†,λA, λv) = f(ρ,A†, v†), (12)
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and the sensitivity is expressed in terms of fa by

df

dρ
(ρ,A†, v†) =

dfa
dρ

(ρ,A†, v†,λA, λv). (13)

The differentiation of (11) with respect to ρ yields

dfa
dρ

(ρ,A†, v†,λA, λv) = Re
{∫

ΩC

(
DρF (ρ,A†, v†) (14)

+
{

DAF (ρ,A†, v†)
}(dA†

dρ

)
+
{

DvF (ρ,A†, v†)
}(dv†

dρ

))
dΩ

− 2

∫
Ω

ν curl
dA†

dρ
· curlλA dΩ − 2

∫
ΩC

dσ

dρ

(
iωA† +∇v†

)
· λA dΩ

− 2

∫
ΩC

σ
(
iω

dA†

dρ
+∇dv†

dρ

)
· λA dΩ − 2

∫
ΩC

dσ

dρ

(
iωA† +∇v†

)
· ∇λv dΩ

− 2

∫
ΩC

σ
(
iω

dA†

dρ
+∇dv†

dρ

)
· ∇λv dΩ

}
where we have already omitted the null term.

Let now λ†A and λ†v be the solution of the so-called adjoint problem,

∫
ΩC

{
DAF (ρ,A†, v†)

}(dA†

dρ

)
dΩ −

∫
Ω

ν curlλA · curl
dA†

dρ
dΩ

−
∫
ΩC

iωσ
(
λA +∇λv

)
· dA†

dρ
dΩ = 0, ∀dA†

dρ
∈ ZλA∫

ΩC

{
DvF (ρ,A†, v†)

}(dv†

dρ

)
dΩ

−
∫
ΩC

σ
(
λA +∇λv

)
· ∇dv†

dρ
dΩ = 0, ∀dv†

dρ
∈ Zλv .

(15)

Sensitivity is then given by

dfa
dρ

(ρ,A†, v†,λA, λv) =

∫
ΩC

DρF (ρ,A†, v†) dΩ (16)

− 2Re
{∫

ΩC

dσ

dρ
(iωA+∇v) ·

(
λA +∇λv

)
dΩ
}

in terms of the solutions of (1) and of the adjoint problem (15).
The system matrix of adjoint problem (15) is the tangent stiffness matrix of the problem (1), i.e.

the Jacobian matrix after finite element discretization and convergence of the iterative nonlinear
process. It can be reused since the same discretization is used for solving (15) and (1).

4.2 Wirtinger’s derivative

We now present formulae to evaluate the derivative of a real-valued performance function g with
respect to its complex-valued argument x. We then extend the result to the calculation of the Fréchet
derivative of f with respect to A and v, which appears in the load of the adjoint problem (15).

The complex-valued function argument x can be written by means of its real part, Re{x},
and its imaginary part, Im{x}, such as x = Re{x}+ i Im{x}. One can therefore use classical R2

B.4. Sensitivity Analysis
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calculus for the calculation of the partial derivatives of g with respect to the real and imaginary
components of the function arguments, i.e. g(ρ, x) = g(Re{x}, Im{x}), and obtain the sensitivity
of g with respect to each component of g. Going back to the function f , this approach will require
to split the adjoint formulation (15) for the real part and imaginary part of A and v fields. It will
therefore lead to a total of four adjoint systems which should be solved. One can, on the other hand,
apply the more general framework of Wirtinger’s calculus (see for instance [4]), which provides a
more elegant and comfortable alternative that allows to solve the single adjoint problem.

Let us consider the first order Taylor expansion of g(x),

g(x+ δx) = g(x) +
∂g(x)

∂Re{x}
Re{δx}+

∂g(x)

∂Im{x}
Im{δx}+O

(
|δx|2

)
, (17)

since g is differentiable at any x. We can write successively the real part of δx,

Re{δx} =
1

2

(
δx+ δx?

)
,

as well as the imaginary part of δx,

Im{δx} =
1

2 i

(
δx− δx?

)
,

in terms of δx and δx? and replace them in (17),

g(x+ δx) = g(x) +
1

2

( ∂g(x)

∂Re{x}
− i ∂g(x)

∂Im{x}
)
δx

+
1

2

( ∂g(x)

∂Re{x}
+ i

∂g(x)

∂Im{x}
)
δx? +O

(
|δx|2

)
,

so that we end up with

g(x+ δx)− g(x)

δx
=

1

2

( ∂g(x)

∂Re{x}
− i ∂g(x)

∂Im{x}
)

(18)

+
1

2

( ∂g(x)

∂Re{x}
+ i

∂g(x)

∂Im{x}
) δx?

δx
+
O
(
|δx|2

)
δx

.

Taking the limit of (18) for δx going to zero, the term in δx?/δx vanishes. Indeed, expressing
δx in polar coordinates, one has δx = r eθ and δx? = r e−θ,

lim
r→0

1

2

( ∂g

∂Re{x}
+ i

∂g

∂Im{x}
)
e−2θ = 0 (19)

holds only if
∂g

∂Re{x}
+ i

∂g

∂Im{x}
= 0, (20)

which is called the Cauchy-Riemann condition.
Hence, (18) leads to the Wirtinger’s derivative of g with respect to its complex argument,

dg

dx
(x) ≡ 1

2

( ∂g(x)

∂Re{x}
− i ∂g(x)

∂Im{x}
)
, (21)

which is expressed in terms of the derivative of g with respect to the real part as well as the
imaginary part of x.
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Building on the same methodology, the Fréchet derivative of F with respect to its arguments
can therefore be obtained as the combination of the Fréchet derivative of F with respect to the
real and imaginary parts of its arguments:

{
DAF (ρ,A†, v†)

}(dA†

dρ

)
=

1

2

({
DRe{A}F (ρ,A†, v†)

}(dA†

dρ

)
(22)

− i
{

DIm{A}F (ρ,A†, v†)
}(dA†

dρ

))
{

DvF (ρ,A†, v†)
}(dv†

dρ

)
=

1

2

({
DRe{v}F (ρ,A†, v†)

}(dv†

dρ

)
(23)

− i
{

DIm{v}F (ρ,A†, v†)
}(dv†

dρ

))
.

4.3 Numerical validation

The sensitivity (16) calculated analytically by solving the adjoint problem (15), with (22) and (23)
as adjoint loads, is compared with that obtained by finite difference,

df

dρ
(ρ,A†, v†) ≈ f(ρ+ δρ,A†, v†)− f(ρ,A†, v†)

δρ
, (24)

with a perturbation step, δρ, chosen small enough to avoid truncation and condition errors, see
Fig. 3. It is observed that the analytic approach exactly matches the finite difference approach
(with δρ = 10−6).

Z-0.00674

Analytical derivative

0.00397 X

Y

0.0147

Y

0.0147

Finite Differences

X-0.00674 Z0.00397

Z

real part

X

Y

X

Y

Z

 imaginary part

Fig. 3 The busbar is fed with a current Is of a 500 Hz and the sensitivity of the current mismatch (4) is computed
with the analytical formula (16), top left, with the complex-valued adjoint fields (see Re{curlλA} in bottom left,
and Im{curlλA} in bottom right obtained by solving (15)). The finite differences, top right, with a perturbation
step set to 10−6 are also applied. It is first observed that the variational approach exactly matches the finite
difference approach.
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5 Numerical application

The sensitivity formula (16) is now applied to a general procedure for the density-based topology
optimization of the 3D busbar, see Fig. 1. The MMA optimizer [26] is used to solve the constrained
optimization problem (5) for a volume fraction α set to 50%. The busbar is optimized for two
frequencies: 500 Hz and 50 kHz, corresponding respectively to a mostly resistive and to an inductive
behavior. The mesh is refined as the frequency increases so as to have about two elements in the
skin depth, leading to a mesh with 112 794 finite elements at 500 Hz and a mesh with 360 962
finite elements at 50 kHz. The results are summarized in Fig. 4. The optimization process results
in thinner copper paths compared to the original design. The optimized design enables to obtain
currents in phase in the two vertical branches with a drastic reduction of the copper amount. In
particular the optimization allows to improve the current sharing between the complex currents in
the vertical vias from 36% to 0.2% at 500 Hz and from 42% to 0.1% at 50 kHz. All the numerical
simulations have been performed using the open source finite element code GetDP/Gmsh [9,12].

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

1.2

Iteration number

||∆
I
||

(A
)

Frequency – 500 Hz

0 100 200 300

0

5

10

15

Iteration number

||∆
I
||

(A
)

Frequency – 50 kHz

Fig. 4 The busbar is fed with a current Is of a 500 Hz (left column), as well as a current of 50 kHz and the
optimal copper distribution of its plates is obtained for both frequencies as the solution of (5). In all cases the
squared L2-norm of the current mismatch between the currents, is greatly reduced compared to the initial design.

6 Conclusion and perspectives

A variational formulation for the sensitivity of a performance function as well as magnetodynamics
equations in time-harmonic domain with respect to material densities has been obtained follow-
ing both the direct and the adjoint approach. The sensitivity has been used by a gradient-based
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sequential convex programming algorithm to determine the optimal layout for the two plates of a
representative three-dimensional busbar that minimizes the mismatch between the complex cur-
rents in the vertical vias of the busbar, while filling at most a given volume fraction of the available
domain. The impedance of the busbar remains unchanged from the basic design.

Acknowledgements This work was supported in part by the Walloon Region of Belgium under grant RW-
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Department of Electrical Engineering and Computer Science, Belgium

Abstract

This paper presents a suitably preconditioned iterative solver for the interior point (IP) method,
used to obtain the solution of large scale nonlinear optimization problems arising in the con-
text of structural engineering. Such problems typically involve both a large number of design
variables and a large number of restrictions such as stresses or slope constraints at each point
of the region where it is applied. The preconditioner is based on successive modified partial
Cholesky factorizations of the linearized Karush-Kuhn-Tucker (KKT) equations of the convex
subproblems that approximate the original design problem. In addition, the preconditioner in-
volves only matrix-vector products, avoiding hence the construction of the whole KKT matrix
and its memory requirements are defined a-priori. The sparsity pattern of the sensitivity matrix
of such problems is unfavorably low and determines the sparsity pattern of the KKT system of
equations. A remedy which takes advantage of the local geometrical dependency of the stresses
is proposed here, and leads to a much sparser truncated sensitivity matrix, which reduces the
computational effort of the iterative solver. The performance of the preconditioned iterative
method is demonstrated on classical stress constrained topology optimization benchmarks.

Keywords: topology optimization, stress constraints, sequential convex programming,
primal-dual interior point method, iterative solver
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1. Introduction

Topology optimization has been an active research area since the seminal work of Bendsøe
and Kikuchi in the late 1980’s [1]. The design variables upon which density-based topology
optimization acts represent the presence or absence of a specific material at each point of the
region where it is applied. The method aims therefore at determining the material density
field, [2, 3], that achieves specific design criteria while holding a number of design constraints
fixed or within predefined limits. The physical behavior of the system is, in general, governed
by partial differential equations (PDEs), set here as linear elasticity equations and discretized
by means of, e.g., the finite element method (FEM). In engineering practice this may typically
lead to several millions unknowns and to a computation time of several hours or even days. The
PDE solution is included explicitly or implicitly as constraints in the optimization problem, and
its solution for a given material density field is used to evaluate the performance functions.

Most of the developments in the field of structural engineering have been based on global
design criteria such as compliance and have led to successful designs, [4, 5, 6]. Over the last ten
years, however, a renewed interest has been directed towards topology optimization with local
constraints, in particular stress constraints, [7, 8, 9], or more recently, slope constraints, [10].
Assuming a spatial discretization of the structure with Ne finite elements, a material density,
noted ρe and defined in each finite element e, is determined so as to prevent failure in each point
of the structure being optimized. The design problem reads,

(P )





min
ρ

f0(ρ,u?) :=

Ne∑

e=1

ρe

s.t. fj(ρ,u
?) := σvm,j(u

?)/σ̄ − 1 ≤ 0, j = 1, . . . , n

r(ρ,u?, ū) = 0, ∀ū ∈ Z0
u

0 ≤ ρi ≤ 1, i = 1, . . . , n.

. (1)

In (1), u? is the displacement field solution resulting from the linear elastic PDE problem written
in a variational form through a residual, noted r(ρ,u?, ū) = 0, σvm,j is the Von-Mises stress at
the centroid of finite element j and σ̄ is the maximum stress level that can be sustained by the
material. The sensitivity matrix of (1) is denoted by,

Sji =
dfj
dρi

(ρ,u?). (2)

It collects all performance functions (design constraints and objective function) derivatives with
respect to the optimization variables. The matrix (2) is typically dense.

The optimization problems arising from the global design criteria are of the same complexity
(in terms of the number of constraints) as the original minimum compliance problem. Con-
versely, topology optimization subjected to local stress constraints (1), or slope constraints,
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leads to a large scale optimization problem with at least as many constraints as design variables.
Therefore, the computational effort involved in repeated solutions of optimization problem (1)
becomes comparable to the effort involved in repeated solutions of the PDEs, thus dominating
the computational cost of the whole optimization iterative process.

Two paths have been followed over the years to make the solution of (1) able to tackle indus-
trial designs. On the one hand, several reformulations of the local stress constrained problem,
based on the behavior of the stresses, have been proposed to reduce the size of the problem,
while still having a more or less precise control on the peak value of the stress criterion. Among
the existing methods, the global stress constraint approach, [8], or its regional approach variant,
form clusters of stresses, see for instance [11, 12, 13]. The computational effort has also been
reduced by considering a global compliance constraint along with local stress constraints com-
bined with an active-set strategy, [14, 15]. Much effort has been dedicated, on the other hand, to
the design of efficient optimization algorithms for the solution of (1). The best approaches are
based on the so-called sequential convex programming approach, [16], in which high precision
local approximations of the performance functions, called subproblems, are built as convex and
separable approximations by means of the gradient (2). Moreover, the approximated perfor-
mance functions are explicit in terms of the design variables, and hence their evaluation does not
require a FEM analysis. Such subproblems are solved efficiently thanks to dual maximization
solvers, [17, 18, 19, 20], or interior point solvers, see for instance [21]. This paper aims at re-
designing the linear algebraic core of the interior point optimization algorithm so as to solve (1)
in a CPU time comparable to the global design criterion problem.

In the dual approach, a Lagrange multiplier is associated to each performance function of the
subproblem. It is therefore transformed into a quasi unconstrained maximization problem which
is solved in the space of the Lagrange multipliers, also called dual space, [19, 20]. The dimension
of the dual space corresponds to the number of active constraints. It is, in particular for global
design criteria, much smaller than the dimension of the design variables and leads therefore to an
effective dual method. However, the dimensionality of the dual space tends to grow drastically
for problems like (1) which involve local constraints and requires hence some adaptations.

IP methods, on the other hand, replace the inequality constrained subproblem by an equality
constrained subproblem, called barrier subproblem, by introducing slack variables. Both the
subproblem and the barrier subproblem have the same KKT optimality conditions and they
have therefore the same optimizers. One should notice that the quasi unconstrained problem
of the dual method can also be solved with an IP method. A Newton’s method is, in general,
used to obtain the design variables and the Lagrange variables for a sequence of linearized KKT
systems of the barrier subproblems for a decreasing barrier parameter, see for instance [22, 23].
This system is however indefinite. It is therefore a common practice to perform block elimination
and further reduce the system to the Schur complement. By doing so, the indefinite unreduced
system is transformed into a symmetric positive definite system of normal equations. Any positive
definite direct solver can hence be applied to the normal system of equations to obtain the
optimal solution. However, turning to the point of view of algorithmic performance for large scale
problems as (1), the CPU time spent in forming the system matrix of the normal equations could
grow as fast as O

(
n3
)
. Unfortunately, other strategies, e.g. [24], based on gradient projection,

e.g. [25], would lead to the same pessimistic conclusion.
The replacement of the direct linear solver with an iterative method, e.g. preconditioned con-

jugate gradient (PCG), from the Krylov subspace family, [26], is hence considered in this paper.
The convergence rate of Krylov-subspace iterative methods is however greatly influenced by the
distribution of eigenvalues of the linearized KKT system matrix and its conditioning number.
Unfortunately, the presence of barrier parameters and slack variables introduce an increasing
ill-conditioning of the sequence of linearized systems along the iterations, from which only direct
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solvers do not seem to suffer [27]. As far as the problem is feasible, the normal equations solved
by a direct solver provide sufficiently accurate solutions. This property does not hold any more
for iterative Krylov-subspace methods, and makes the solution of the system intractable unless
suitably preconditioned, and at the expense of an increased number of iterations, [28, 29, 30].

In this paper, the preconditionner is designed as an approximated Cholesky factorization
of only a few KKT matrix columns that contain the largest diagonal entries of the matrix,
rather than the whole matrix. The method leads to a lower triangular matrix and a block
diagonal matrix. The latter contains a Schur complement to which a sequence of successive partial
Cholesky factorizations is applied so as to improve and preserve the quality of the preconditioner
as the IP method unfolds. It has already been shown for the normal equations arising in linear and
also quadratic programming, that the cluster of the largest eigenvalues of the system matrix can
be captured by the use of partial Cholesky factorization of the matrix with static ordering, [31].
The application of the preconditioner brings therefore the highest eigenvalues down, and hence
leads to a significant reduction in the condition number of the preconditioned matrix with respect
to the unpreconditioned matrix.

The memory usage of the preconditioner is in general crucial. State-of-the-art preconditioners
such as incomplete Cholesky factorizations, e.g. ILUT [26], try to limit the memory usage, but
they may fail for general semi-positive definite (SPD) matrix, even though several strategies
have been proposed to prevent the breakdown, e.g. [32]. Alternatively, approximate inverse
preconditioners (AINV), [33], are successful approaches aiming at constructing a substitute for
the inverse of the system matrix. After suitable permutations, the approximated inverse would
be represented as the product of sparse triangular matrices, even the exact inverse is dense. In
exact arithmetic, the preconditioner can be computed without breakdown for any SPD matrix.
However, both ILUT and AINV struggle with memory requirements for dense matrices, which
can grow linearly with the number of nonzero entries of the matrix for a zero fill-in variant
of the Cholesky factorization. The preconditioner developed here avoids any excessive storage
as the system matrix is only used to perform multiplication with a vector. Furthermore, our
preconditioner requires memory bounded by the size of the problem rather then the number of
nonzero entries of the system matrix.

In this paper, the preconditioner is further improved for the topology optimization subject
to local stress constraints, by observing that the highest values of the stress sensitivity (2) with
respect to a material density, defined at a given finite element, are located in a close vicinity
of the element and tend rapidly to relatively small values for furthest elements. Using this
practical observation, the density of the sensitivity matrix is significantly reduced by neglecting
the elements located outside the neighborhood. The sensitivity matrix becomes sparse and it is
hence used as an effective preconditioner of the system of normal KKT equations.

Two of the most classical topology optimization benchmarks with stress constraints are con-
sidered to assess the developments, Fig. 1. The optimized geometry of the two bar truss as well as
the L-shape are obtained by using the IP solver which makes use of the proposed preconditioners.
The computational cost of the overall solver tends to grow as O

(
n2
)

instead of O
(
n3
)
.

The paper is organized as follows. In Section 2 we introduce the statement of a sequential
convex programming approach based on a MMA approximation of the design problem (1), as
well the relaxed KKT optimality conditions. Section 3 develops the Newton’s based IP method
and highlights the limitations of the solver in terms of computational effort. Section 4 details the
preconditioner based on the partial Cholesky factorization of the linearized KKT system matrix.
A sparse version of the former preconditioner is proposed in Section 5 based on a physical
truncation of the original problem sensitivity matrix. Section 6 studies the spectral properties
of both preconditioners so as to determine the permutation of rows, as well as the columns of
the linearized KKT system of equations. Section 7 showcases the improvement of the numerical
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Figure 1: The two-bar truss, left, and the L-bracket, right, problems are considered in this paper in both a 2D
and a 3D geometrical configuration. The Young modulus of the non void material, noted E1, is set to unity, while
the SIMP law is adopted for the intermediate material densities. The Poisson ratio, noted ν, is set to 0.3.

method of optimization problems subject to local stress constraints. The approach is applied to
the classical stress-constrained topology design of two benchmarks: the two-bar truss and the
L-bracket in 2D and 3D geometrical configuration.

2. Sequential convex programming approach

In this section, we adopt MMA approximation, available on https://people.kth.se/

~krille/mmagcmma.pdf , to solve the original problem, see [34].

2.1. Successive convex approximations

Let us consider a sequence of approximated subproblems,

(P̃ (k))





min
ρ

f̃
(k)
0 (ρ)

s.t. f̃
(k)
j (ρ)− bi ≤ 0, j = 1, . . . ,m

αi ≤ ρi ≤ βi, i = 1, . . . , n,

(3)

valid in the vicinity of a design point ρ(k). In (3), the approximated functions are convex,
separable and explicit in the design variables ρ. Their evaluation is then very efficient compared
to the evaluation of the original functions of (1) as they do not require any FEM solution, [16, 18].

Using the sensitivity matrix (2) of the original problem at a given design point ρ(k), the

approximated functions f̃
(k)
j are obtained with either a first order or if available a second order

Taylor series. The MMA approximation reads,

f̃
(k)
j (ρ) = r

(k)
j +

n∑

i=1

( p
(k)
ij

U
(k)
i − ρi

+
q
(k)
ij

ρi − L(k)
i

)
. (4)

It is a first order and monotonous approximation of function fj in (1) in terms of the intermediate

variables 1/(U
(k)
i − ρi) and 1/(ρi − L(k)

i ). The approximation (4) uses either a lower asymptote

L
(k)
i or an upper asymptote U

(k)
i for each design variables ρi. Their values are obtained as
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follows,

p
(k)
ij = max

{
0, Sji(ρ

(k),u?) (U
(k)
i − ρ(k)i )2

}
,

q
(k)
ij = max

{
0,−Sji(ρ(k),u?) (ρ

(k)
i − L

(k)
i )2

}
,

r
(k)
j = fj(ρ

(k))−
n∑

i=1

( p
(k)
ij

U
(k)
i − ρ(k)i

+
q
(k)
ij

(ρ
(k)
i − L

(k)
i )

)
.

They match the function value and its first derivative around the current point, i.e. f̃j = fj and

df̃j/dρi = Sji at ρi = ρ
(k)
i .

The sensitivity matrix of the approximation (3) writes,

S̃ji =
df̃

(k)
j

dρi
(ρ) =

df̃ji
dρi

(ρi) (5)

=





Sji(ρ
(k),u?)

(U
(k)
i − ρ(k)i )2

(U
(k)
i − ρi)2

, if
dfj
dρi

> 0

Sji(ρ
(k),u?)

(ρ
(k)
i − L

(k)
i )2

(ρi − L(k)
i )2

, if
dfj
dρi

< 0

It preserves the sparsity pattern of the sensitivity matrix (2) of the original problem at a given
iteration point ρ(k). Hence if the original problem is dense, as it is the case for the topology
optimization problem with stress constraints, the approximation of the problem will also be
dense.

2.2. Optimality conditions of the convex approximations

To transform the inequality-constrained subproblem (3) into an equality-constrained problem
at a given iteration point ρ(k), let us introduce successively slack variables s and a barrier function
B(s) := −∑m

j=1 log(sj) so as to ensure sj > 0, j = 1, . . . ,m,

min
ρ,s

f̃
(k)
0 (ρ) + µpB(s)

s.t. f̃
(k)
j (ρ) + sj = 0, j = 1, . . . ,m

ρmini ≤ ρi ≤ ρmaxi , i = 1, . . . , n,

(6)

which depends on barrier parameter µp.
Minimization of (6) for a decreasing sequence of the barrier parameter µp → 0 results in a

sequence of strictly feasible minimizers ρ(l), such that the index l = 0 corresponds to the current
point, i.e. ρ(l=0) = ρ(k), and the actual minimizer ρ? = ρ(k+1), of the original subproblem (3),
which turn out to be the solution of the original problem (1).

Introducing the Lagrangian function of (6),

Lp(ρ, s,λ) = f̃
(l)
0 (ρ) + µ(l)

p B(s) +

m∑

j=1

λj(f̃
(l)
j (ρ) + sj),
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with λj the Lagrange multiplier (dual variables) for the jth equality constraint, the first order
optimality conditions of the barrier problem (6) are

∂f̃
(k)
0

∂ρi
(ρ?) +

m∑

j=1

λ?j
∂f̃

(k)
j

∂ρi
(ρ?) = 0, i = 1, . . . , n (∂Lp/∂ρi = 0) (7)

λ?js
?
j − µ?p = 0, j = 1, . . . ,m (∂Lp/∂sj = 0 : compl. slackness)

f̃
(k)
j (ρ?) + s?j = 0, j = 1, . . . ,m (primal feasibility)

αi ≤ ρi ≤ βi, i = 1, . . . , n (primal feasibility)

λ?j ≥ 0, j = 1, . . . ,m (dual feasibility)

They consist of a nonlinear system respectively in the primal variables ρ and in the dual variables
λ. Subproblem (3) has exactly the same optimality conditions as the barrier subproblem (6).
Therefore, solving (6) is also equivalent to solving the initial subproblem (3).

3. Newton-like interior point solver

A Newton’s method is used to solve optimality conditions (7) for a given µp. Let l be
the index of the iterative Newton Raphson process. Subsequent approximations of the solution
w(l+1) = w(l)+γ(l)∆w, are obtained, by setting respectivelyw(l) = (ρ(l), s(l),λ(l)) for system (7)
and using a linesearch technique to determine γ(l). We shall, for the sake of simplicity, omit the
Newton’s iteration index l.

Starting from an initial solution verifying (7), Newton’s direction ∆w for the barrier subprob-
lem is obtained by solving the linearized KKT-system of (n + m) equations, for a given barrier
parameter µ,

A2×2 ∆w =


 Dρ S̃

T

S̃ −Dλ



(

∆ρ

∆λ

)
=



−δ̃ρ
−δ̃λ


 (8)

with

Dρ,i = Ψii + ξi/(ρi − αi) + ηi/(βi − ρi), i = 1, . . . , n

Dλ,j = sj/λj , j = 1, . . . ,m

and (δ̃ρ, δ̃λ)T , the appropriately computed right-hand-side vectors, [35]. In (8), η and ξ are the
Lagrange multipliers for the side constraints, while Ψ is the Hessian matrix, computed as the
derivative of the MMA approximation (5) with respect to design variables ρ. The square system
matrix A2×2 of size (n + m) is symmetric and relatively sparse, since the upper left and lower
right part are diagonal. Moreover, A2×2 is indefinite, i.e. it has eigenvalues with both negative
and positive real parts.

A practical alternative for sparse sensitivity matrix S̃, consists in reducing A2×2 to a smaller
system of normal equations. One can either write ∆λ in terms of ∆ρ,

∆λ = D−1λ (δ̃λ + S̃∆ρ),

and solve the reduced system of n equations and n unknowns, in terms of the primal variables,

A1×1,ρ∆ρ =
(
Dρ + S̃

T
D−1λ S̃

)
∆ρ = −δ̃ρ − S̃

T
D−1λ δ̃λ, (9)

7

94
Paper III: Efficient iterative solver for MMA subproblems in topology

optimization with stress constraints

C



or equivalently, ∆ρ can be expressed in terms of ∆λ thanks to (8),

∆ρ = −D−1ρ (S̃
T

∆λ+ δ̃ρ),

leading then to a system of m equations and m unknowns in the dual Lagrange variables,

A1×1,λ∆λ =
(
Dλ + S̃D−1ρ S̃

T
)

∆λ = δ̃λρ − S̃D−1ρ δ̃ρ (10)

to be solved. Both system matrices in (9) and in (10) are positive definite. The solution of
system (9) is preferred when the number m of performance functions fj exceeds the number of
design variables n, m > n, otherwise the system (10) is preferable.

1 2 3 4 5 6
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104
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108

Subproblem iterations

Condition number

A1×1

A2×2

2 4 6 8

100

101
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103

104
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107

Subproblem iterations

Condition number

A1×1

A2×2

Figure 2: The Newton’s system matrix A1×1,ρ (equivalently A1×1,λ) of the normal equations remains better
conditioned than the unreduced matrix A2×2 for the optimization problem with stress constraints applied to a
L-bracket in both 2D (left) and 3D (right). The normal equations are then better suited for an iterative method.

Newton’s method has been derived for the solution of the optimality conditions of the sub-
problem in the vicinity of a given primal point ρ(k). A full rank system (8) of size (n+m) with a
symmetric and indefinite matrix A2×2 can be solved. Alternatively, the smaller positive definite
systems either of size m to obtain the dual variables (10) or a system of size n to obtain the
primal variables (9) can also be solved.

An effective method to solve either the full system or the normal equations is based on a direct
solver [36], due their robustness. As the computational cost of a direct Cholesky decomposition
of a dense system, e.g. of size N , grows as O

(
N3
)
, direct solvers are rather preferred for small size

problems, particularly in 2D. Moreover, as problems are nowadays formulated in 3D geometries,
the use of direct methods impractical.

To this end, iterative Krylov-subspace methods [26] are usually preferred. However, their
application to the symmetric indefinite system (8) here, requires some extra care about precon-
ditioning, which is an open research field [37, 38]. We prefer to consider the positive definite
system of normal equations (10), or equivalently (9) since they allow for a straightforward ap-
plication of the preconditioned conjugate gradient method.

The sensitivity matrix (2) of the original constraints naturally appears in both systems and
its sparsity pattern affects greatly the density of their respective system matrix. Furthermore,
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the smaller systems of normal equations involve the product of the sensitivity matrix S̃ by its

transpose S̃
T

, S̃S̃
T

, which requires O
(
n2m

)
operations for a dense S̃. They are thus intractable

for large scale problems with a dense sensitivity matrix, which is the case for problems involving
stress constraints, solved by a direct method. However, iterative solvers do not require the
construction of the whole system matrix but only its application to a vector, making the solution
of the normal equations more attractive.

The inverse of the diagonal scaling matrix, with entries λj/sj , see (8), introduces ill-conditioning
into the system. When the method converges to the optimal solution, the slack variables converge
to their optimal values resulting in a spread of eigenvalues of the matrix from zero to infinity.
Therefore, the condition number continuously increases throughout the Newton’s iterations per-
formed in a given subproblem for both A1×1,ρ (equivalently A1×1,λ) and A2×2 but it reaches
some constant value for the system matrix of normal equations, see Fig 2. Direct methods to
solve (8) do not seem to suffer from this ill-conditioning of the matrix, [27]. However, the iterative
Krylov-subspace methods are made intractable unless suitably preconditioned.

4. Partial Cholesky based preconditioned iterative method

We shall, without lack of generality, consider one particular system of normal equations, for
instance (9), and denote the system matrix as A1×1. The treatment of any other Schur reduced
system, such as (10), would be similar.

4.1. Cholesky-like factorization of the system matrix

The rows and columns of A1×1 are first reordered,

A = ΠTA1×1Π =




A11 AT
21

A21 A22


 , (11)

with a permutation matrix, Π, that will be specified latter on, and the resulting symmetric
matrix A is partitioned into a small square block matrix, A11 of size k, a larger square matrix
A22 of size (n− k) and the remaining block A21 of size (n− k)× k.

The matrix in (11) is factorized,

A = LDLT (12)

with

L =

(
L11 0

L21 I

)
=




1
× 1
× 1
× × 1
× × 1
× × 1
× × 1
× × 1
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a lower triangular matrix, and

D =

(
D1 0

0 SA

)
=




×
×

× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×




a block diagonal matrix. The sparsity pattern of the resulting matrices, L11, L21 and SA depends
on the application, and are particularly dense for the system arising in topology optimization
with stress constraints, as shown above where × denotes a nonzero entry.

In (12), the lower triangular matrix L11 and the diagonal matrix D1, both of size k × k, are
obtained at a negligible cost since k is small,

A11 = L11D1L
T
11, (13)

with the Cholesky factorization of A11, while L21 is obtained by solving a n− k linear system,

L11D1L
T
21 = AT

21, (14)

of size k. The Schur complement of A22 in A,

SA = A22 −A21A−111 A
T
21,

is computed equivalently as,

SA = A22 −L21D1L
T
21. (15)

The resulting square and symmetric block matrix (15),

SA =

(
SA,11 STA,21
SA,21 SA,22

)
, (16)

of size (n− k), can be partitioned similarly to A and then factorized,

SA = L(1)D(1)L(1T ) (17)

with the following matrices

L(1) =



L

(1)
11 0(1)

L
(1)
21 I(1)


 =




1
× 1
× 1
× × 1
× × 1
× × 1




a lower triangular matrix of size (n− k)× k, and

D(1) =



D

(1)
1 0

0 S
(1)
A


 =




×
×

× × × ×
× × × ×
× × × ×
× × × ×
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a block diagonal matrix of size (n− k)× (n− k).
The resulting lower triangular matrix is inserted into L,

L =




L11 0 0

L
(1)
11 0(1)

L21 L
(1)
21 I(1)


 =




1
× 1
× 1
× × × 1
× × × 1
× × × × 1
× × × × 1
× × × × 1




while the diagonal matrix, D(1), is inserted into D,

D =




D1 0 0

0 D
(1)
1 0(1)

0 0(1) S
(1)
A


 =




×
×

×
×

× × × ×
× × × ×
× × × ×
× × × ×




.

The resulting Schur complement S
(1)
A is further partitioned, similarly to (16), and the resulting

matrix is factorized. Applying this procedure, Np times in a row, to a small block of size k much
smaller than the size n of the matrix A allows to obtain the lower triangular L and the block
diagonal matrix D.

4.2. Limited-memory Cholesky-like preconditioner

A preconditioner,

P =

(
L11 0
L21 I

)(
D1 0
0 S̄A

)(
LT11 LT21
0 I

)
(18)

= LD̄LT

is derived from (12) by approximating the large block of Schur complement, SA appearing in
the block diagonal matrix (12), by S̄A. Classically, SA is replaced by its diagonal, S̄A =
diag(SA), [31]. This approach requires forming only the diagonal entries of A, and computing
the diagonal of L21D1L

T
21 which amounts to scaling LT21 by D1 and computing n − k scalar

products between vectors of dimension k. Although the diagonal approximation of the Schur
complement is advantageous in terms of memory requirements, it has been shown that it is
not preferable for a dense Schur complement, [39]. The quality of the resulting preconditioner
built with this approach is quickly degraded through the successive linear systems solutions,
leading therefore to an increase of iterations required by the iterative solver to reach the desired
convergence criterion.

In order to improve the quality of the preconditioner, Np successive partial Cholesky decom-
positions are applied to the sequence of Schur complement block matrices of decreasing size as
explained in previous section. The Schur complement obtained at the last iteration of the process
is then approximated by its diagonal entries, according to Algorithm 1. The method requires
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the initial blocks A11 and A21 of the initial partition of the matrix A, and avoids therefore the
construction of the whole system matrix A.

The method produces the block diagonal matrix, D, and the lower triangular matrix, L.
The LDLT factorization is applied only to small systems of size k × k and is thus pretty fast.

Furthermore, the Schur complement, S
(l)
A , is computed for a sequence of decreasing size through

the iterations.
However, the unfavorable sparsity pattern of the sensitivity matrix S̃ makes A dense, and

therefore also the lower triangular matrix L, Fig. 7, leading to a dense representation of the
inverse of preconditioner (18). The construction of (18) becomes then too expensive for prac-
tical applications. Thus, an approximate constraint preconditioner which rather uses a sparse
approximation, S̄, of the sensitivity matrix instead of the highly dense matrix S̃ is derived here
using physics constructions.

The construction of both preconditioner (18) is breakdown-free and the maximum storage is
known a-priori for a dense matrix as it can be controlled by the number k of columns which are
factorized.

Algorithm 1: Block-Cholesky preconditioner, BCP(k,Np)

while not converged do
// Sequential construction of the preconditioner,

// given (A(0)
11 , A(0)

21 ) of (11), k and Np
for l = 0 : Np − 1

// Partial factorization of (A(l)
11, A(l)

21)

Compute, A(l)
11 = L

(l)
11D

(l)
1 L

(l T )
11

→ discard A(l)
11

Solve, L
(l)
11D

(l)
1 L

(l T )
21 = A(l T )

21

→ discard A(l)
21

// Assemble in the global matrices

D ← D
(l)
1

L ← (L
(l)
11 ,L

(l)
21 )

// Generate the remaining block (Schur)

S
(l)
A = A(l)

22 −L
(l)
21D

(l)
1 L

(l T )
21

// Partition S
(l)
A of size (n− l ∗ k) into block matrices

A(l+1)
11 ← S

(l)
A,11, of size k × k

A(l+1)
21 ← S

(l)
A,21, of size (n− l ∗ k)× k

A(l+1)
22 ← S

(l)
A,22, of size (n− l ∗ k)× (n− l ∗ k)

end
// Diagonal approximation of the last block

S
(l+1)
A = diag(A(l+1)

22 )− diagL
(l+1)
21 D1L

((l+)1T )
21

Let P take the form (18), with the computed D and L.
end
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5. Sparse approximation of the preconditioner

Figure 3: The topology optimization of a L-bracket with stress constraints is considered, (1). The first component
of σj(

du
dρi

) appearing in sensitivity matrix (2) is shown in top left at a given finite element j. The highest values

of sensitivity are clustered in the vicinity of the element j, while the sensitivity decreases significantly for the
farthest elements. Sensitivity matrix Sji is successively truncated for various local neighborhood (20) radius
values, leading hence to sparse approximations, S̄ji, of the original sensitivity matrix.

One can further improve the effectiveness of the approach if it would be possible to generate
a sparse sensitivity matrix while forming the approximation of the sensitivity matrix. In many
design optimization problems with constraints associated to each finite element of a mesh, one
observes that the sensitivity at a given finite element j mainly depends on the finite elements
located in the closest vicinity of that element, see Fig. 3. This can be motivated as follows. First
of all, St Venant principle tells us that modifying the local element density impact stresses only
in its vicinity. Secondly, modification of density has the same effect as a rigid body motion far
from the FE. Therefore, it leads to no stress modification for the farthest elements from the FE.

A truncated sensitivity matrix for stress constraints,

S̄ji =
p− q
ρj

σvm,j(u) δi,j +
1

σvm,j
σTj (u) V σ̄Tj (

du

dρi
), (19)

with

σ̄Tj (
du

dρi
) =

∑

i∈Nj

σTj (
du

dρi
)
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the truncated stress field which depends on the derivative of the displacement field. A typical
approximation of the stress field is obtained by keeping only the elements i located into the closest
neighborhood Nj of element j. For sake of simplicity, let us consider a circular neighborhood of
radius r,

Nj =
{
i : d(j, i) ≤ r

}
. (20)

In (20), d(j, i) is the distance between the centroids of element j and i. Practically, the radius r
can be easily determined such that the relative L2-error between the approximated and the exact
sensitivity matrices is under a given value, Fig. 3. The resulting truncated sensitivity matrix is
obtained by setting to zero the components of the original matrix related to the variables outside
the ball. It has therefore a much sparser pattern than the original sensitivity matrix.

Let us consider
Ā1×1 = Dρ + S̄

T
D−1λ S̄, (21)

a sparse approximation of A1×1, obtained with the truncated and sparse sensitivity matrix S̄.
One can hence derive a sparse preconditioner

P̄ =

(
L̄11 0
L̄21 I

)(
D̄1 0
0 S̄A

)(
L̄
T
11 L̄

T
21

0̄ I

)
(22)

= L̄D̄L̄
T
.

In (22), L̄11 and D̄1 are obtained at a negligible cost by applying a Cholesky factorization to the
small square matrix Ā11 of size k, while L̄21 requires the solution of n−k sparse linear systems of
size k for a sequence of Np block Cholesky factorizations, see Algorithm 1. The sparsity pattern
of the approximated lower triangular matrix L̄ is illustrated in Fig. (7). For practical problems in
which a truncated sensitivity matrix Ḡ does not exist, L̄11 and D̄1 can be obtained through an
incomplete Cholesky factorization to A11. The construction of the sparse preconditioner (22) is
breakdown-free and the maximum storage is significantly lowered compared to the dense matrix
case.

6. Spectral-based permutations of the system matrix

Let us drive now a spectral analysis of the preconditioned matrix P−1A, in order to derive
an heuristic method for the construction of the permutation matrix Π appearing in (11). One
writes,

P
(
P−1A

)
= A,

which is equivalent to a block diagonal matrix,

LT
(
P−1A

)
L−T =

(
I 0

0 S̄
−1
A SA

)
(23)

obtained by using successively (12) and (18). In (23), the preconditioned matrix, P−1A, is
similar to a block diagonal matrix which has k eigenvalues equal to one, while the remainder are

equal to the eigenvalues of S̄
−1
A SA. Let γ be an eigenvalue of S̄

−1
A SA, and v the corresponding

eigenvector, (
S̄
−1
A SA

)
v = γv

The eigenvalue γ is also given by

γ =
vTSAv

vT S̄Av
.
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If γm(.) and γM (.) stand respectively for the minimum and the maximum eigenvalue of the
eigenvalue γ, one has

γm(SA)

γM (S̄A)
≤ γ ≤ γM (SA)

γm(S̄A)

which can be further transformed as

γm(A)

γM (S̄A)
≤ γ ≤ γM (A22)

γm(S̄A)
(24)

by using the properties of the Schur complement, see for instance [40]. Furthermore, as P−1A
is (semi) positive definite, the trace of P−1A is,

tr(P−1A) =

n∑

i=1

γi(P−1A), (25)

with γi(P−1A), the ith eigenvalue of P−1A. Therefore,

γM (P−1A) ≤ tr(I) + tr(S̄
−1
A SA) (26)

≤ k + tr(S̄
−1
A A22)

by using (23). It appears respectively from (24) and (26), that the lower and upper bounds of
the eigenvalues of P−1A are given by the minimum eigenvalue of A, γm(A) and the trace of
A22, tr(A22). Reordering the rows and columns of A in such a way that the k largest diagonal
entries of A are put in the first block, A11 seems a good heuristic, which helps to greatly reduce
tr(A22). Furthermore, γm(P−1A) can be increased (shifted away from zero) by regularizing the
matrix A, as A := A + σI, for some small shift σ.

7. Numerical examples

In this section we illustrate the numerical behavior of both the partial Cholesky-like precon-
ditioner (18), as well as the sparse preconditioner (22). We analyze their performance in solving
MMA subproblems of the topology optimization problem with local stress constraints (1). The
properties of the algorithm are illustrated in solving three topology optimization benchmarks:
a L-bracket, a two-bar truss and the MBB beam submitted to stress constraints. In a second
set of experiments we applied both preconditioners to solve the stress constrained optimization
problem of a cantilever beam as well as an MBB beam. In the following, we consider the linear
system of normal equations (10) which arise in the IP iterative method and we set the tolerance
of the solver as |A∆w − δ|2 ≤ 10−7 |δ|2, with a null initial guess. For all numerical applications,
the reference solution performance will be based on a direct LU factorization of the linearized
KKT systems which arise for MMA subproblem. We have used a MacBookPro laptop computer
with a 2.3 GHz (four cores) processor and 8 GB of RAM. We have implemented all the iterative
solvers in Matlab version 2015b.

7.1. Experiments with the design of a L-bracket

The geometry of the L-bracket test bench is provided in Fig. 1. The material data are
normalized: the Young modulus, E, is set to 1(N/m2), Poisson’s ratio, ν, is set to 0.3, and
the material density is set to one. The problem statement (1) is the following: minimize the
structural volume subjected to local stress constraints in each finite element. The Von-Mises
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local Von-Mises: LU
local Von-Mises: BCP(k:0.1 n,5) - S

local Von-Mises: BCP(k:0.1 n,5) - S̃
global Von-Mises
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local Von-Mises: BCP(k:0.1 n,5) - S

local Von-Mises: BCP(k:0.1 n,5) - S̃
global Von-Mises

Figure 4: Top: The optimized topology of a L-bracket is obtained by solving the stress constraints problem, (1),
in both 2D and 3D geometrical configurations. The normal system of equations of the IP method is solved equiva-
lently with a conjugate gradient method preconditioned with the block-Cholesky preconditioner, see Algorithm 1.
We consider 10% of the system columns by setting k to 0.1n and Np = 5 successive block decompositions. Both
the dense preconditioner (18) (based on the sensitivity matrix S, and noted BCP(k:0.1n,5) - S), as well as the

sparse preconditioner (22) (based on the truncated and sparse sensitivity matrix S̃, in which r = 2rf , and noted

BCP(k:0.1n,5) - S̃), have been tested and lead to the same numerical results. Bottom: The CPU-time spent in
the solution of the linear system in a 2D case, left as well as in a 3D case, right, grows as n2. For this partic-
ular problem, we can expect in average a reduction of time by a factor of 256, i.e. a reduction by two order of
magnitudes.
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stresses are evaluated in the Q4 finite element centroids. The stress limit is arbitrarily set to
1(N/m2).

We investigate the solution performance for a number of design variables n equal to the
number of restrictions m, ranging from 211 to 215. The MMA subproblem (3) is built using the
sensitivity matrix (2). In order to make use of the sparse preconditioner (22), we obtain the
physical truncation of sensitivity (19), by neglecting the elements located outside the circular
neighborhood (20) of radius r. It is set as two times larger than the density filter radius rf . The
increase of r in this particular example doesn’t change the optimized topology.

The optimized topologies are obtained by setting the parameter k (number of KKT matrix
columns) of both preconditioners to 10% of n, see Fig. 4. The execution time includes also the
time of building the preconditioner. We also compared the behavior of PCG with that of direct
LU solver. The CPU-time spent in the solution of the linear system in a 2D case, as well as in a
3D case, grows as n2. Both preconditioned iterative solvers are better than the LU based direct
solver which grows as n3. However, the preconditioner based on the sparse truncated sensitivity
matrix allows to get a CPU time closer to the one involved in an equivalent global design criterion,
such as the p-norm of the Von-Mises, see [8]. In all the geometrical configurations the material
distribution is similar for all obtained results in this paper, and in the 2D case in a very good
agreement with results of the reference [11].

The main computational cost for both preconditioners comes from the building of the diagonal
of the system matrix and its k first columns. The parameter k is hence chosen so as to decrease
that time but it should be large enough to preserve the good quality of the preconditioner. It
should be noted that these operations can be significantly simplified if the system matrix can be
accessed by rows.

In the following, the influence of the k parameter is investigated on the preconditioning of a
KKT system matrix. First, statistics of the dense preconditioner (18) runs are reported in Fig. 5.
Along the subproblem iterations, the eigenvalue bounds are stable and the conditioning number
of the preconditioned matrix is much lower than the one of the real one. The low condition
number drastically reduces the PCG effort. The condition number of the preconditioned KKT
matrix can be finely tuned by the number k of columns used in the partial Cholesky factorization.
As mentioned in (24), an increase of k allows to reduce the gap between the lower and the upper
bounds of eigenvalues. It follows a considerable reduction of the number of iterations performed
by the iterative solver, PCG, to reach the prescribed tolerance.

We study, on the other hand, the use of truncated and sparse sensitivity matrix (19). In
addition, we investigate the influence the neighborhood radius r on the conditioning of the
preconditioned KKT matrix by means of sparse truncated preconditioner (22), see Fig. 6. In
this case, the number of columns k used in the partial Cholesky factorization of Ā1×1 has a little
influence in the maximum eigenvalue of P−1A. However, the eigenvalue bounds of the sparse
preconditioner (22) greatly depend on the radius r of the circular neighborhood (20) used to
make the sensitivity matrix of the problem sparse. However, an increase of the neighborhood
radius r, has a greater effect as the truncated sensitivity matrix S̄ becomes closer to S̃.

The KKT system arising for the L-bracket is shown in Fig. 7 for a number of block set to
one. As r is increased, the triangular matrix L̄ converges to L, hence the sparse preconditioner
behaves similarly to the dense preconditioner. However, we noticed that the PCG iterations
become more costly.

For this particular problem, we can expect in average a reduction of time by a factor of 256,
i.e. a reduction by two order of magnitudes.
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Figure 5: A sequence of linear systems is solved within a given MMA subproblem arising from the topology
optimization of a L-bracket submitted to stress constraints. The system matrix has been preconditioned by (18)
with k set to 50 and 250. As already mentioned, an increase of the parameter k (number of columns of A used in
the Cholesky factorization) allows to reduce the maximum eigenvalue of P−1A, and helps for a better clustering
of the eigenvalues around one, leading hence to a further decrease of the condition number of P−1A. The iterative
solver, PCG, performs then fewer iterations.
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Figure 6: The sparse preconditioner (22) is used in the solution of a sequence of linear systems which arise within
a given MMA subproblem of problem (1) applied to the design of a L-bracket. The number of columns k used in
the partial Cholesky factorization of Ā1×1 has a little influence in the maximum eigenvalue of P−1A. However,
an increase of the neighborhood radius r, has a greater effect as the truncated sensitivity matrix S̄ becomes closer
to S̃. The iterative solver, PCG, converges therefore to the desired tolerance in fewer iterations.
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Figure 7: A given MMA subproblem arising in the topology optimization of a L-bracket with stress constraints
is considered. The preconditioner (18), top left, has a fully dense lower triangular part L, fixed by the dense

sensitivity matrix S̃, while there is some freedom in the control of the density of the lower triangular matrix, L̄,
of the sparse preconditioner (22) through the radius r of the neighborhood (20). As r is increased, the truncated
sensitivity matrix, S̄, becomes denser and hence the resulting preconditioner too.
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7.2. Experiments with the design of a two-bar truss and MBB beam problems

In the final experiments we consider sequences of the normal equations (10) arising in the
solution of MMA subproblems of two other classical topology optimization benchmarks which
we solve with stress constraints. For each subproblem and for both preconditioning strategies,
we provide the optimized geometries as well as the time spent in the resolution of the normal
equations, including the time spent in the construction of the preconditioner, see Fig. 8. The
iterative solver is preconditioned by the sparse preconditioner (22) based on the truncated and
sparse sensitivity matrix. The same results are obtained by making use of the limited memory
Cholesky preconditioner (18). Both preconditioned iterative solvers are better than the LU based
direct solver. However, the preconditioner based on the sparse approximation of the sensitivity
matrix, obtained by setting the radius of the circular neighborhood two times larger than the
density filter radius, enables a CPU time closer to the one involved in an equivalent global stress
criterion, such as the p-norm of the Von-Mises, according to [8]. In these favorable cases, one can
save two order of magnitudes with the preconditioned system and even four order of magnitudes
for the sparse preconditioner.
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Figure 8: Top: The topology optimization problem submitted to stress constraints, (1), is considered for a two-
bar truss as well as an MBB beam. The state-of-the-art topologies are recovered by solving the linearized KKT
system, (10), of the MMA approximation (1), by means of a conjugate gradient solver preconditionned with (22).
Similar results are obtained with the preconditioner (18). Bottom: The CPU-time spent in the solution of the
linear system of the cantilever beam, left, as well as the MBB beam, right, is four order of magnitudes less than
the one spent in the direct LU based solver.

21

108
Paper III: Efficient iterative solver for MMA subproblems in topology

optimization with stress constraints

C



8. Concluding remarks

When solving topology optimization problems using MMA approximation and primal-dual
algorithms, one has to solve large scale linear systems of equations. Prohibitive computational
time is observed because of the dense structure of the sensitivity matrix of the problem. First of
all, we noticed that the positive definite linear systems of normal equations that arise throughout
the iterations of primal-dual interior point solvers have a favorable spectral structure. We derived
an efficient preconditioner for the system using a Cholesky like factorization of the Schur comple-
ment of the system. Then, we also explored a physical based approximation strategy to produce
sparse approximations of the truncated sensitivity matrices of the restrictions with respect to
local material densities. Thanks to the local nature of stress, one can ignore the components of
sensitivity with respect to variables located outside of a local neighborhood. The combination
of both algebraic and physical approximation accelerations technique showed up large improve-
ments of computational effort spent in solving stress constrained topology optimization problems
that are well known to be difficult to solve.

Our numerical experiments showed that we can reach a solution CPU time for each subprob-
lem that is close to the effort involved in the FEM solution of the compliance type problem.
Typically, one can expect a CPU time only of the same order of magnitude of the FEM analysis,
which is about two order of magnitudes for the full matrix preconditioned and up to four order
of magnitudes for specific problems and truncated sensitivity matrix.

In future work, we expect to extend the present results to problems with other local con-
straints, like slope constraints. It is also interesting to have a look at other physical engineering
problems involving local constraints such as the design of electromagnetic systems where current
densities are involved, or composite laminates optimization subjected to ply failure criteria.
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Abstract

This paper presents a framework for the simultaneous application of shape and topology opti-
mization in industrial design problems. Whereas the design variables of a shape optimization
are the geometrical parameters of the CAD description, the design variables upon which density-
based topology optimization acts represent the presence or absence of material at each point of
the region where it is applied. These topology optimization design variables, which are called
densities, are by essence substantial quantities. This means that they are attached to matter
while, on the other hand, shape optimization implies ongoing changes of the model geometry.
An appropriate combination of the two representations is therefore necessary to ensure a con-
sistent design space as the joint shape-topology optimization process unfolds. The optimization
problems dealt with in this paper are furthermore constrained to verify the governing partial
differential equations (PDE) of a physical model, possibly nonlinear and discretized by means
of, e.g., the finite element method (FEM). Theoretical formulae, based on the Lie derivative, to
express the sensitivity of the performance functions of the optimization problem are derived and
validated to be used in gradient-based algorithms. The method is applied to the torque ripple
minimization in an interior permanent magnet synchronous machine (PMSM), with a limiting
constraint on the weight of the optimal design.
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1. Introduction

Industrial design issues in structural engineering have been handled over the years by ap-
plying shape optimization or topology optimization separately, see for instance [1, 2, 3]. Shape
optimization finds out the optimal layout within the design space determined by the geometrical
parameters of the CAD description of the model. Density based topology optimization, on the
other hand, optimally removes material in a structure, holding its strength between prescribed
limits. Whereas the former seeks for an optimal layout within an a priori known and fixed
design space, the latter is characterized by its ability to find optimal layouts with sometimes
unusual contours and unexpected holes, but in general significantly lighter (in weight). There is
therefore nowadays a desire to combine the two optimization methods in order to reach better
performances.

Only little work about joint shape-topology optimization has been reported so far in the
literature. In the context of packaging, for instance, the position [4] and shape [5] of the packaged
items are determined by a shape optimization process while, at the same time, the protective
material usage is minimized by means of a density-based topology optimization, [6, 7], so as to,
e.g., minimize the overall volume of the package. An alternative approach with a fixed mesh is
also possible. A Level Set representation of the component boundaries is used, instead of a CAD
representation [8], and the model is solved with an extended finite element method (XFEM) [5].
However, the use of a Level Set representation of the geometry makes it difficult to take into
account geometries with sharp angles (see for instance [9] or [10]). It limits hence the range of
systems that can be optimized.

A combination of the respective design variables representations of shape and topology op-
timization is demonstrated in this paper. The solution of the joint optimization problem is
then found by a sequential convex programming approach, [11, 12], called Method of the Mov-
ing Asymptotes (MMA) in which local approximations of the performance functions are built
as convex and separable approximations (called subproblems). The MMA is a gradient based
method. A substantial gain in computation time is obtained when sensitivities, i.e., the deriva-
tives of the performance functions with respect to the design variables, are obtained analytically
(prior to discretization) by differentiation under the integral sign instead of evaluating a finite
difference, which requires one additional solution of the physical problem for each design vari-
able. Analytical sensitivities have been used in the past for analysis based on XFEM, e.g. [5],
but, as far as FEM-based analyses are concerned, a semi-analytic approach is used in general
and it is reported for linear elasticity problems only. Still, we have shown in previous work that
sensitivities in linear elastic and in electromagnetic problems can be derived in a unified fashion,
in 2D or 3D with the velocity method [13], by means of an explicit Lie derivation of the FEM
terms [14]. Building on the same methodology, analytical expressions are derived in this paper
for the sensitivies of the topological density parameters. The proposed approach has been vali-
dated by comparison with the results published in [4] in case of classical structural optimization
benchmarks, see Fig. 1.
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Figure 1: A successive shape optimization, top, of the holes represented by splines, and a density based topology
optimization, middle, are performed separately to minimize the deflection of a MBB beam. In the bottom, the
shape of the holes are determined by a shape optimization, while the support is simultaneously lighten by means
of a topology optimization.

The paper is organized as follows. The general optimization problem is posed in Section 2
and the parameterization of the design space is discussed in Section 3. Section 4 deals with the
theoretical definition of the sensitivities associated with the density variables and provide analytic
formulae to evaluate them practically. In Sections 5, the joint shape-topology optimization is
applied to the torque ripple minimization in an interior permanent magnet machine, with a
limiting constraint on the weight of the optimal design.

2. Optimization in mixed shape and topology design spaces

Let us consider a bounded domain Ω undergoing both shape and topology modifications. The
shape modifications are controlled by a set of geometrical design variables, noted τ , of the CAD
model description. Topology optimization acts, on the other hand, on design variables which we
call densities, noted ρ. They represent the presence or not of a specific material at each point
of model region where it is applied. Topology optimization offers a great flexibility in the design
since it allows for an improvement of the material usage while shape optimization, on the other
hand, allows for a fine tuning of the geometrical parameters.

A family of mappings,

pδτ : Ω(τ ,ρ) ⊂ E3 7→ Ω(τ + δτ ,ρ) ⊂ E3, (1)

describes the geometrical modification of Ω in the Euclidean space E3, with no tearing nor
overlapping, and it is parameterized by the set of geometrical design variables τ , see [15]. A
variation δτ of the shape variable brings the interfaces and the points of Ω from their current
position to their modified position. A flow with a velocity field noted v is determined on E3 by
varying δτ in the family of mappings (1) in a neighborhood of zero, see [14]. The parameter δτ
plays therefore the role of a pseudo time variable. The value of the density, on the other hand, at
a given point in the model is obtained by evaluating that field at the coordinates of that point.
However, the variation δρ of the density field ρ does not involve any movement of the physical
interfaces of Ω.

A physical problem is defined over Ω by a system of nonlinear PDEs expressed in terms of a
state variable z, the set τ of shape design variables which bring modifications to Ω and the set ρ
of density design variables which represent the material distribution over Ω. A weak formulation
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of this problem is obtained by, e.g., a Galerkin linearization approach, and can be written in a
generic form

r(τ ,ρ, z?, z̄) = 0, ∀z̄ ∈ Z0
z , (2)

with Z0
z an appropriate function space and z? the solution of the problem, and the functional

r(τ ,ρ, z, z̄) called residual.
The design problem aims at determining simultaneously the geometrical design variables,

τ , and the densities, ρ, that minimize a cost function f0(τ ,ρ, z), subjected to m inequalities
fj(τ ,ρ, z) ≤ 0, j = 1, . . . ,m, ensuring the manufacturability or the feasibility of the design. The
design space is also limited by side constraints either for the shape design variables, τmini ≤ τi ≤
τmaxi , i = 1, . . . , nτ , or the density design variables, ρmini ≤ ρi ≤ ρmaxi , i = 1, . . . , nρ. The shape
design variables are independent from the density design variables, but they are both involved
in the performance functions. Hence, the optimization problem reads

min
τ ,ρ

f0(τ ,ρ, z?)

s.t. fj(τ ,ρ, z
?) ≤ 0, j = 1, . . . ,m

τmini ≤ τi ≤ τmaxi , i = 1, . . . , nτ

ρmink ≤ ρk ≤ ρmaxk , k = 1, . . . , nρ

r(τ ,ρ, z?, z̄) = 0, ∀z̄ ∈ Z0
z .

(3)

In this article, a sequential convex programming algorithm, e.g. MMA [16], is used, coupled
with a finite element analysis code [17, 18] and makes use of the sensitivity matrix,

Sji =
dfj
dτi

(τ ,ρ, z?), (4)

of the derivatives of the performance functions with respect to the shape design variables, and
also

Qjk =
dfj
dρk

(τ ,ρ, z?), (5)

the matrix of the derivatives of the performance functions with respect to the density design
variables of problem (3), in order to reduce the number of function evaluations and hence, limit
the required number of resolutions of the finite element physical problem (2).

3. Shape and topology design spaces

State-of-the-art methods of density-based topology optimization represent the material den-
sities by a field defined on a fixed grid, identical to the FEM grid, [19], while shape optimization
methods completely remesh the structure so as to preserve the quality of the FEM solution
throughout the geometrical changes of the CAD model, see for instance [20].

In our approach, the densities are represented by a field defined on a fixed domain, noted
Ωρ, not involved in the geometrical changes induced by the shape optimization, but covering
in space all configurations allowed by it. The value of density at a point in the model is then
simply the value of that field at the coordinates of the point. The modified CAD obtained by the
variations of the shape design variables, are then discretized spatially by conformal meshes in
order to carry out FEM analysis based on the material properties interpolated from the density
field.

The shape design variables, τ , govern the CAD model description of the structure and their
variation implies ongoing geometrical changes of the model, see Fig. 2. Each point Aτ , resp.
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Bτ , is brought to a point Aτ+δτ , resp. Bτ+δτ , as the shape design variables are perturbed by
δτ and generates hence a velocity field, noted v. The densities, noted ρ, on the other hand, is
represented by a discrete field defined on the fixed grid covering all configurations allowed by
the variation of the geometrical design variable. The value of the density at a given point in the
model, e.g. Aτ or Bτ , is then obtained by evaluating that field at the coordinates, x1,x2,x3,
of that point.

x1

x2 Ωρ

Aτ

Aτ+δτ

Bτ+δτ
Bτ

ρ(x1,x2)

v

v

Figure 2: A 2D CAD model of a representative interior permanent magnet synchronous machine (PMSM) rotor
is considered. The shape modifications are reflected by means of a velocity field, noted v.

4. Sensitivity Analysis

We shall, for the sake of simplicity, consider one particular performance function, written
explicitly in the form of an integral 1

f(τ, ρ, z?) =

∫
Ω(τ)

F (τ, ρ, z?) dΩ, (6)

one single shape design variable, noted τ , and one single density design variable, noted ρ, which
amounts to dealing with one single entry of respectively the sensitivity matrix (4) and the sen-
sitivity matrix (5). The treatment of any other entry would be identical.

Theoretical formulae to express the derivative of f with respect to a shape design variable,
τ , at a continuous level, prior to discretization, have been demonstrated in detail using the Lie
derivative, in both the direct and the adjoint approaches, see [14], in the context of the family
of mappings (1), as introduced in [13].

Following the hybrid formalism introduced in [14], essentially based on vector analysis nota-
tions, analytical formulae of the derivative of f with respect to a density design variable, ρ, is
provided here. In this framework, the derivative of f ,

df

dρ
(τ,z?) =

∫
Ω(τ)

(
DρF (τ, ρ, z?) +

{
DzF (τ, ρ, z?)

}(dz?

dρ

))
dΩ, (7)

1If the performance function is a pointwise value, the expression of F (τ, ρ,z?) will then involve a Dirac function.
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has got two terms. The first term is the partial derivative of the functional,

DρF (τ, ρ, z?) =
dF

dρ
(τ, ρ, z?)

∣∣∣
dz
dρ=0

(8)

defined as the derivative holding the field argument z constant, while the second term involves
the Fréchet derivative of the functional F (τ, ρ, z) with respect to its field argument z, defined
by

lim
|δz|→0

1

|δz|

∣∣∣F (τ, ρ, z + δz)− F (τ, ρ, z)−
{

DzF (τ, ρ, z)
}(
δz
)∣∣∣ = 0, (9)

where the limit is taken over all sequences of non-zero δz that converge to zero. The Fréchet
derivative is a linear operator applied to the argument in between parenthesis outside the curly
braces, dz/dρ, and evaluated in arguments between parenthesis inside the curly braces. A simple
total derivative is involved in (38) instead of the Lie derivative of the equivalent equation (11)
of [14] obtained for a variable τ that modifies the geometry and therefore generates a non-null
velocity field v of the flow of the mappings (1).

In a direct approach, a linear problem,∫
Ω(τ)

(
DρR(τ, ρ, z?, z̄) +

{
DzR(τ, ρ, z?, z̄)

}(dz?

dρ

))
dΩ = 0, ∀z̄ ∈ Z0

z , (10)

is solved for dz?/dρ, following the procedure to obtain (19) in [14], where the Lie derivative has
been replaced, here, advantageously by a simple total derivative.

The adjoint approach can be applied as an alternative to the previous method that solves
explicitly for dz?/dρ. An augmented Lagrangian function is defined,

f̄(τ, ρ, z,λ) = f(τ, ρ, z)− r(τ, ρ, z,λ)

=

∫
Ω(τ)

(
F (τ, ρ, z?)−R(τ, ρ, z?,λ)

)
dΩ, (11)

with λ a Lagrange multiplier. As (2) implies that the residual r(τ, ρ, z?, λ) is zero at equilibrium,
one has

f̄(τ, ρ, z?,λ) = f(τ, ρ, z?), (12)

and the sensitivity is expressed in terms of f̄ by

df

dρ
(τ, ρ, z?) =

df̄

dρ
(τ, ρ, z?,λ). (13)

The so-called adjoint problem,∫
Ω(τ)

({
DzF (τ, ρ, z?)

}(dz?

dρ

)
−
{

DzR(τ, ρ, z?,λ?)
}(dz?

dρ

))
dΩ = 0, (14)

is obtained here for λ?, again by following the procedure used to obtain (25) in [14], and the
sensitivity is then given by

df̄

dρ
(τ, ρ, z?,λ?) =

∫
Ω(τ)

(
DτF (τ, ρ, z?)−DτR(τ, ρ, z?,λ)

)
dΩ, (15)

in terms of the solutions of the nonlinear problem (2) and of the adjoint problem (14).
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The material law H(B) can be written as,

H(B) = η(ρ)H1(B), in Ωρ, (16)

with H1(B), the material law evaluated for ρ = ρmax, i.e. the density of the fully solid structure.
For sake of comparison, the derivative of a material law, H(B), is treated as in [14]. First,

the material law must be regarded as a relationship between the components of the fields

Hi(Bk) = νijBj , (17)

with νij the components of the nonlinear reluctivity tensor of the material. Taking the derivative
yields

dHi

dρ
(Bk) = νij

dBj
dρ

+
∂νij
∂Bk

Bj
dBk
dρ

+DτHi(Bk)

= ν∂ik
dBk
dρ

+DτHi(Bk),

with

ν∂(Bk) = ν∂ik eie
T
k =

(
νik +

∂νij
∂Bk

Bj
)
eie

T
k (18)

the components of the tangent reluctivity tensor of the material.
The partial derivative DτHi(Bk) represents a variation of the magnetic field components Hi

under a change of ρ, that would not be due to a variation of the field components Bk. This
term accounts thus for an explicit dependency of the material law in the design variable ρ,
independently of the field argument dependency, and reads,

DρH(B) =
dH

dρ
(B)

∣∣∣
dB
dρ =0

=
dη

dρ
H1(B). (19)

We can now write successively

dHi

dρ
(Bk) ei = ν∂ik dBk/dρ ei +DτHi(Bk) ei

= ν∂ij dBk/dρ eie
T
j ek +DτHi(Bk) ei

= ν∂ij eie
T
j dBk/dρ ek +DτHi(Bk) ei

= {ν∂(Bk)}(dBk/dρ ek) +DτHi(Bk) ei

where eTj ek = δjk has been used. At the last line, the tangent reluctivity tensor has been written
as an operator acting on the vector (actually a 2-form) dBk/dρ ek.

The vectors dHi/dρ(Bk) ei and dBk/dρ ek can now be expressed in terms of dH(B)/dρ and
dB/dρ to obtain

d

dρ
H(B) = {ν∂(B)}

(dB

dρ

)
+DρH(B). (20)

Similarly, one has for inverse material law B(H)

dB(H)

dρ
= {µ∂(Hk)}

(dH

dρ
H
)

+DρB(H), (21)

with µ∂ = (ν∂)−1.
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5. Application to the design of a PMSM

5.1. Magnetosatics modeling

A 3-phase interior permanent magnet synchronous machine (PMSM) fed by a sinusoidal
current is considered, see Fig 3. We describe the geometry of the PMSM by a two dimensional
CAD model. The PMSM is excited by the current density J in a region ΩS = ΩA∪ΩB∪ΩC ⊂ Ω
and by permanent magnets with a magnetization M on a region ΩM ⊂ Ω. In a two-dimensional
setting, the magnetic vector potential A = Azez formulation of Magnetostatics models the
magnetic behavior of the electrical machine and reads,

curlH(B) = J + curlM in Ω (22)

H(B) = νB in Ω. (23)

In (23), the reluctivity characteristic ν is a scalar, and it can be a function of B = curlA
(nonlinear material), which can be written by a SIMP law, in the region Ωρ, set as the rotor iron
parts, which undergoes topology optimization,

ν = ν0 + ρp(ν1(B)− ν0), in Ωρ (24)

with ν1 being the reluctivity of iron and ν0 the reluctivity of air.
A homogenous Dirichlet boundary condition

A|Γ3r
= A|Γ3s

= 0 (25)

is applied, which supposes that there is no magnetic flux density outside the domain. In addition,
considering the electromagnetic symmetries and anti-periodic boundary conditions,

A|Γ1r
= −A|Γ2r

, (26)

A|Γ1s
= − A|Γ2s

,

the domain used for the study and the optimization consists of 1/8 of the original structure.
Considering a standard three-phase winding, ΩA, ΩB and ΩC , distributed along the stator

slots, ∆θ is the angle describing the angular position of the rotor

pA = ∆θ · np

and assuming an electrical displacement equal to 2π/3 radians between each phase, the current
density reads

J = Is
nw
Sc

cos(pA) ez, in Phase ΩA (27)

J = Is
nw
Sc

cos(pA −
2π

3
) ez, in Phase ΩB (28)

J = Is
nw
Sc

cos(pA −
4π

3
) ez, in Phase ΩC

with nw, the number of wires per slot in the stator, Sc, the surface of the coil, and Is the maximum
current. Each phase is therefore supplied by current-controlled voltage source inverter, which is
however not modeled here for the sake of simplicity. The phase coils of such a winding are fed
by sine wave currents synchronous with the corresponding flux linkages due to the PM flux.
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Moreover, the spatial discretization of the rotor and the stator remain unchanged as the rotor
changes positions, and are connected by a single layer of elements in the moving band which is
remeshed for each rotor position [21].

The weak formulation of the problem reads [22]: find A? in an appropriate function space
ZA verifying (25) and (26) at a given rotor position θR, such that

r(τ, ρ,A?, Ā) ≡
∫

Ω

(
H(B?) · B̄ − J · Ā−M · B̄

)
dΩ = 0, ∀Ā ∈ ZA, (29)

with B? = curlA? and B̄ = curl Ā.
A method based on Maxwell’s stress tensor is used for the computation of torque. Choosing a

circular shell of axial length La and surface Sa in the airgap of the machine as a closed integration
surface that surrounds the rotor, the torque at a given rotor position θR = θl reads,

Tl =

∫
Ωmb

ν0 tg Br Bθ dΩ, (30)

with

tg = 2π
La
Sa
r · r (31)

being a geometrical coefficient where r is radial vector, Br = B · er and Bθ = B · eθ are the
scalar product of B with respectively the radial basis vector er and tangential basis vector eθ.

5.2. Optimization problem

Interior permanent magnets synchronous machines exhibit magnetic saturations which occur
in iron parts and hence suffer from a high level of torque ripple which should be reduced as much
as possible, while keeping the average torque above or equal to the nominal torque of the machine.
Let us perform a combined shape and topology optimization to determine simultaneously (1)
the distance of the PMs from the air gap, the angle between the PMs, both set as shape design
variables, and also (2) the iron fraction field which represents the density distribution in the
rest of the rotor. We want to smoothen the torque with respect to the movement of the rotor,
minimizing hence the torque ripple, while preserving an average torque to match the nominal
torque of the machine. In addition, we considered a resource constraint defined as a given volume
fraction of the available domain. The combined shape and topology optimization problem reads,

min
τ ,ρ

f0(τ ,ρ,A?) ≡
Np∑
l=1

(
Tl − Tnom

)2
s.t. f1(τ ,ρ,A?) ≡ 1

Np

Np∑
l=1

Tl − Tnom ≤ 0,

f2(τ ,ρ,A?) ≡
∫

Ωρ

ρ dΩ− α
∫

Ωρ

dΩ ≤ 0,

τmini ≤ τi ≤ τmaxi , i = 1, . . . , nτ

ρmink ≤ ρk ≤ ρmaxk , k = 1, . . . , nρ

r(τ ,ρ,A?, Ā) = 0, ∀z̄ ∈ Z0
A.

(32)

The design space is limited by physical or technological side constraints either for the shape
design variables, τmini ≤ τi ≤ τmaxi , i = 1, . . . , nτ , or the density design variables, ρmini ≤ ρi ≤
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Figure 3: A 3-phase interior permanent magnet (IPM) machine fed by a sinusoidal current, top left, and modeled
by a nonlinear magnetostatic problem in terms of the vector potential A is considered. The vector potential,
isovalues shown in bottom left, obtained by solving the nonlinear magnetostatic problem at a given rotor position
is used to evaluate the magnetic permeability map, bottom right, of the machine. A magnetic saturation (blue)
occurs in many regions of the iron parts where the induction flux is high.

ρmaxi , i = 1, . . . , nρ, which are independent from the shape design variables, but involved in the
same performance functions.

The evaluation of the performance functions f0 and fj , j = 1, 2 for a given geometry configu-
ration, τ , and a given material distribution, ρ, requires the knowledge of A? for that particular
value of τ and ρ, which implies solving anew the nonlinear physical problem (29) at Np rotor
positions and evaluate the torque Tl at each position θl, by making use of (30). The repetition
of these evaluations is time-consuming for large scale applications.

5.3. Problem sensitivity analysis

The variation of a shape design variable, such as τ , brings a flow of continuous shape modifi-
cation of the geometrical model, with a velocity field noted v, and was taken into account using
the Lie derivative, [14].

In that context, the derivative of the residual (29) at equilibrium with respect to a shape
design variable τ requires the Lie derivative to describe the differentiation of the integral quantity

10

D.4. Sensitivity Analysis

D

123



over a deforming domain, and is obtained by applying the chain rule of derivatives,

d

dτ
r(τ,A?, Ā) =

∫
Ω

(
LvH(B?) · B̄ +H(B?) · LvB̄ (33)

− LvJ · Ā− J · LvĀ− LvM · B̄ −M · LvB̄
)

dΩ

=

∫
Ω

(
LvH(B?) · B̄ − LvJ · Ā− LvM · B̄

)
dΩ = 0,

since the fact that B? is the solution of (29) implies∫
Ω

(
H(B?) · LvB̄ − J · LvĀ−M · LvB̄

)
dΩ = 0,

since LvĀ ∈ Z0
A.

The magnetization M is a 1-form. Similarly to the current density, its Lie derivative de-
pends on how the magnetization is imposed in the model. If the magnetization M flowing in a
conducting region ΩM of the model is fixed, one has

dM

dτ
= 0 =

∫
ΩM

LvM dΩ, (34)

and the term LvM then simply vanishes. If on the other hand the magnetization density is
constant, which is the case in our application example, one has LvMi = 0 and by Eq. (38) of [14]

LvM = (∇v)M . (35)

Substituting Eqs. (53) and (55) from [14] and also (35) into (33) yields the linear system to
solve for LvA

?,∫
Ω

ν∂ LvB
? · B̄ dΩ +

[ ∫
Ω

(
ν∂
(
(∇v)TB? −B? div v

)
· B̄ (36)

+ (∇v) νB? · B̄ − (J div v − (∇v)TJ) · Ā− (∇v)M · B̄
)

dΩ
]

= 0, ∀Ā ∈ Z0
A.

The first term in (36) involves the tangent stiffness matrix at a given rotor position, which
is already known from the computation of A?, and the bracketed terms make up the partial
derivative term

∫
Ω
DτR dΩ of Eq. (19) of [14].

A variation of the material distribution, ρ, on the other hand, does not involve any explicit
interface modification, and hence has a zero velocity field, which greatly simplifies the analyti-
cal expression of sensitivity, by making use of only classical total derivative instead of the Lie
derivative. The direct expression of sensitivity (36) reads, now,∫

Ω

ν∂
dB?

dρ
· B̄ dΩ +

[ ∫
Ω

DρH(B?) · B̄ dΩ
]

= 0, ∀Ā ∈ Z0
A, (37)

where there is no dependency of J and M in ρ. In (37), the first term involves the partial
derivative of H(B),

DρH(B?) =
dH

dρ
(B?)

∣∣∣
dB
dρ =0

(38)

= p ρ(p−1)(ν1(B)− ν0)B

defined as the derivative holding the field argument B constant obtained by differentiating (24).
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5.4. Numerical example

In this article, a sequential convex programming algorithm, MMA [16], is used, coupled
with a finite element analysis code [17, 18] and makes use of the sensitivity matrix derived so
far. The results of the optimization problem are summarized in Fig. 4. The entire analysis
domain and design domain are discretized using 37,521 nodes and 64,640 triangular elements.
The densities are used to interpolate the magnetic reluctivity through a classical SIMP (24)
with a penalization parameter p fixed to 3. The optimization process results, after roughly 250
iterations, in PMs with a slightly increased angular openings compared to the original design,
indicating that the topology optimization allows, in this particular case, major improvements of
the electrical rotating machine. The torque ripple is reduced by 97% while the average torque is
set to the nominal torque of the machine.

A post-processing stage is needed to obtain a manufacturable design, see for instance [23]
or more recently [24]. Computer vision technologies to represent the boundary of the void-solid
finite element topology optimization result have first been performed in [25]. A density contour
approach has also been used in [26], or [27] as well as a geometric reconstruction approach, see
for instance [28].

Here we performed a spline-based interpolation of the density isovalues. This then leads to
a CAD model which is used for latter design stages as well as e.g. for additive manufacturing
purposes, see Fig. 5. However, a drawback inherent to such procedures, is that post-processed
results are no longer optimal and may also not comply with the given design criteria, thus slightly
deteriorating the topology optimization solutions. In this particular case, the torque ripple is
increased by 10% from the one computed with the density field.

6. Conclusion and perspectives

We have developed a unified tool for handling simultaneously the complex interactions be-
tween the material distribution model of topology optimization and the geometrical modifications
which occur throughout a shape optimization. Following the general framework of sensitivity
analysis derived so far, shape sensitivity is computed efficiently. We can obtain simultaneously
the sensitivity with respect to shape and density design variables. The theoretical results gath-
ered in the thesis have been implemented within ONELAB and have been successfully applied to
electro-mechanical optimization of the shape and topology of energy conversion systems which
are of a great importance in industry. The design of an electrical synchronous rotating machine
with interior permanent magnets, modeled by means of a two-dimensional CAD model coupled
to a nonlinear magnetostatic formulation, and aiming to minimize the torque ripple has been
successfully obtained in our framework.
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SHAPE AND TOPOLOGY OPTIMIZATION  
FOR ELECTRO-MECHANICAL  
ENERGY CONVERTERS 
 
	  
Erin	  Kuci	  
	  
	  
The	   sustained	   growth	   of	   the	   industrial	   sector	   requires	   high-‐efficiency	  
electro-‐mechanical	   energy	   converters,	   in	   particular	   electrical	   rotating	  
machines,	   at	   the	   lowest	   possible	   cost.	   The	   use	   of	   modern	   power	  
electronics	   converters	   at	   all	   levels	   of	   electrical	   power	   applications,	  
involves,	   on	   the	   other	   hand,	   switching	   components	   with	   very	   low	  
switching	   times	   and	   always	   increasing	   current	   levels.	   Passive	  
components	  in	  these	  devices	  (busbars,	  inductors,	  transformers)	  must	  be	  
designed	   to	   be	   compact	   without	   compromising	   their	   performance	   (e.g.	  
power	   losses,	   electromagnetic	   interference/compatibility).	   Automated	  
design	   optimization	   methods,	   in	   particular	   shape	   and	   topology	  
optimization,	   used	   so	   far	   mostly	   in	   the	   field	   of	   structural	   engineering,	  
offer	  a	  major	  step	  evolution	  in	  the	  design	  of	  such	  electro-‐mechanical	  and	  
electric	   energy	   converters.The	   objective	   of	   this	   thesis	   is	   to	   provide	  
engineers	  and	  practitioners	  of	  the	  field	  with	  appropriate	  methods	  which	  
allow	   to	   carry	   out	   such	   design	   tasks	   by	   numerical	   optimization	   in	   an	  
efficient	  way,	  and	  to	  extend	  the	  design	  capabilities	  to	  electro-‐mechanical	  
converters.	  
	  
This	  thesis	  exploits	  a	  computer	  aided	  design	  representation	  of	  industrial	  
systems	   and	   the	   finite	   element	  method	   to	   solve	   the	   partial	   differential	  
equations	   (PDEs)	   that	   govern	   their	   behavior	   under	   certain	   physical	  
conditions.	   This	   thesis	   addresses	   three	   main	   subjects.	   First,	   the	  
sensitivity	  analysis	  of	  electromagnetic	  PDEs	  solution	  is	  revisited	  in	  view	  
of	  being	  used	  with	  gradient-‐based	  methods.	  Classical	  scalar	  formulations	  
are	  extended	  to	  a	  general	  rigorous	  framework,	  and	  expressed	  analytically	  
prior	   to	   discretization,	   to	   treat	   the	   vector	   case.	   Secondly,	   an	   iterative	  
solver	  is	  designed	  so	  as	  to	  solve	  efficiently	  the	  large-‐scale	  linear	  systems	  
arising	   from	   the	   design	   problem.	   Third,	   the	   design	   improvement	  
capabilities	   are	   extended	   by	   developing	   an	   integrated	   and	   unified	  
formalism	  for	  simultaneous	  shape	  and	  topology	  optimization	  of	  a	  system.	  
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