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Abstract
Optimal control theory is implementedwith fully converged hierarchical equations ofmotion
(HEOM) describing the time evolution of an open systemdensitymatrix strongly coupled to the bath
in a spin-bosonmodel. The populations of the two-level sub-system are taken as control objectives;
namely, their revivals or exchangewhen switching off thefield.We, in parallel, analyze how the
optimal electricfield consequentlymodifies the information back flow from the environment through
different non-Markovianwitnesses. Although the controlfield has a dipole interactionwith the central
sub-systemonly, its indirect influence on the bath collectivemode dynamics is probed through
HEOMauxiliarymatrices, revealing a strong correlation between control and dissipation during a
non-Markovian process. A heterojunction is taken as an illustrative example formodeling in a realistic
way the two-level sub-systemparameters and its spectral density function leading to a non-
perturbative strong coupling regimewith the bath. Although, due to strong system-bath couplings,
control performances remain rathermodest, themost important result is a noticeable increase of the
non-Markovian bath response induced by the optimally driven processes.

1. Introduction

Open quantum systems are ubiquitous in physics and chemistry and havemany uses from setting quantum
technology in condensed phase to exploring long-lived coherence in biological systems [1–6]. They consist in
selecting a given partitioning into a central quantum system and a statistical surrounding bath. The reduced
systemdynamics is non-unitary and can be calledMarkovian or non-Markovian according to the importance of
memory effects [2]. The comparison of system and bath typical timescales is a relevant qualitativemeasure to
separate both situations: if the timescale characterizing the bath is shorter than the one of the system, dynamics
can be saidMarkovian, non-Markovian if not. For a two-level system, this characteristic time is the Rabi period
whereas the bath dynamics can be estimated from the time decay of the two-time correlation function of the
systembath coupling related to the Fourier transformof the bath spectral density. A nearly delta correlated bath
leads to aMarkovian behavior usually described by Lindblad [7] or Redfield [2, 5, 8] approaches involving
unidirectional relaxation.Non-Markovianity is described by strong quantummemory effects leading to
temporary information backflow from the environment to the system. Severalmeasures of non-Markovianity
have been proposed and compared recently in the literature [3, 4]. Among themone canmention the
distinguishability of quantum states estimated by their trace distance that can transitively decrease during the
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relaxation, as opposite to aMarkovian evolution inwhich it continuously increases [9, 10]. Other non-
Markovianity signatures refer to a re-amplification of the volume of accessible states during the decay process
[11], the detection of a negative canonical decay rate [12, 13], or a non-monotonous time evolution of the system
vonNeumann entropy [14]. Evenmore importantly, the role of transitory information backflow in externally
controlled dynamics remains an open issue and an active research area [15–31].

Ourmain purpose is to take advantage of the backflowof information from the surrounding bath,
characterizing non-Markovianity, to enforce the control of the central systemphysical observables, protecting
them against decoherence. At that respect, the present paper is a second one of a series of three [29, 30]where an
optimal control scheme is worked out, still acting on the central system alone, aiming at some protection against
decoherence (population revivals, or robust and efficient transfers) and subsequently examine its consequences
in terms of the bath non-Markovian response.More precisely, we analyze non-Markovianity during an ultra-
shortfield pulse optimized by quantum control [32–34] in a spin-boson (SB)model [1, 2, 35]where the active
sub-system strongly interacts with the bath. The controlled dynamics ends before the complete decay of the
volume of accessible states in the Bloch sphere [11], i.e. before the decay of the bath correlation functionwhich
means before quantummemory (or non-Markovian) effects are expected to vanish. The control is also shorter
than the full relaxation time of the state populations towards equilibrium. The interaction of the two-level
systemwith the bath is described by the standard SBHamiltonianwhich can used inmany different situations
ranging fromqubit in quantumdots to exciton or charge transfer. In the present work, it is built and calibrated
to simulate a charge transfer between donor and acceptor electronic states in a heterojunction [36–38]. The
model addresses ultra-short control of electronic dynamics in a complex system strongly coupled to the nuclear
vibrationalmotion [5]. Similar coherent control of excitation energy transfers in photosynthetic systems has
already been investigated, but inweak coupling regimes, referring toMarkovian approaches [39, 40]. Herewe
analyze a non-perturbative situation, described through hierarchical equations ofmotion (HEOM) [41–43,
44–46].We focus on early dynamics andwe investigate the extent towhich optimal control field enhances non-
Markovianity during control. The canonical decoherence rates and the vonNeumann entropy are taken as
signatures of non-Markovianity. In a recent work, the enhancement of non-Markovianity during laser driven
dynamics has been studiedwith simple periodic fields in a SBmodel with a smooth Lorentzian spectral density
[25]. This example shows an enhancement of non-Markovianity signatures but for weak coupling only. On the
contrary, in the present work, we obtain nonMarkovian behaviors even in the strongly coupled case.

Optimal control theory (OCT) is implemented here together with theHEOMmethod. Rabitzmonotonous
algorithm in Liouville space we are referring to [47–49, 50], requires the forward and the backward propagations
of themaster equation. Thememory kernel occurring in a time non-localmaster equationwith a final condition
has been discussed in different works. It has been implemented at second order level keeping thememory kernel
[48, 51, 52] and by the auxiliarymatrixmethod leading to time local coupled equations [50, 53].We generalize
here thismethodology withHEOMequations at higher order. TheHEOMmaster equation can be rewritten as a
time dependent Lindblad superoperator with time dependent canonical rates to get awitness of non-
Markovianity [12, 13]. This interesting Krauss decomposition [54, 55] has already been suggested to analyze the
control in [20]. In afirst attempt, we do not impose any constraint on the field area so that the optimal field is not
necessarily an optical onewith zero area [56–58, 59]. Such a constraint could be added in a second step, but this
issuewould go beyond the scope of this paper. The electric field is assumed to have a dipole interactionwith the
central systemonly.However, since thememory kernel depends on the external field through the system
Hamiltonian, this latter has an influence on the bath dynamics so that control and dissipation are strongly
correlated. Themodification of the bath dynamics is probed here from theHEOM formalism by analyzing the
firstmoment of the bath collectivemode [60].

The paper is organized as follows. Section 2 describes the SBmodel calibrated fromdata simulating a charge
transfer in a heterojunction. TheHEOMequations, the signatures of non-Markovianity and the optimal control
theory in dissipative system are presented in section 3. Section 4 gives the results for three ultra-short control
cases, two forwhich the target is the initial state itself (a revival), and one forwhich the control enforces a
transition between the two levels. Finally, some perspectives are presented in section 5.

2. Themodel

The SBmodel is a two-level quantum system linearly coupled to a bosonic bath of harmonic oscillators at
thermal equilibrium. TheHamiltonian reads

H t H t H H , 1S B SB= + +( ) ( ) ( )

where H t W E t2S z x md s s= + -( ) ( ), H p qB k k k k
1

2
2 2 2w= å +( ) inmassweighted coordinates and

H S c qk k kSB = å . Atomic units are usedwithÿ= 1. The systemoperator is S= σzwithσi operators taken as Pauli
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matrices. The control field E(t) only acts on the two-level system and is assumed to be linearly polarized. In the
context of a charge transfer between a donor and an acceptor in a heterojunction,HS(t= 0) corresponds to the
zero-order or diabatic representation forwhich the parameters are estimated at the equilibrium geometry. The
corresponding eigenstates (namely, gñ∣ and eñ∣ ) are the delocalized adiabatic electronic states. Starting from gñ∣
and eñ∣ , zeroth order site-basis states 1ñ∣ and 2ñ∣ are defined as the following coherent superposition:

c g c e1 2g e1 1ñ = ñ + ñ∣ ∣ ∣ ( )

and

c g c e2 . 3g e2 2ñ = ñ + ñ∣ ∣ ∣ ( )

Such site-states still remain coupled through an interstate potential couplingW. The diabatic parameters δ and
W are taken from amodel heterojunction between oligothiophene and fullerene [36, 37]. The inter fragment
distance isfixed toR= 3Å leading to δ= 0.21 eV andW= 0.13 eV. The corresponding Rabi period is 12.3 fs
and the eigenenergy gap is 0.33 eV. Themmatrix is thematrix of the dipole operator in the zero-order basis set.
The dipolematrices are not calibrated from ab initio calculations and different dipolemodels have been used to
discuss the stability of the observed behaviors. In this electron transfer framework, the bath is formed by all the
normalmodes of the two fragments, taken as 264 in the presentmodel. The harmonic frequencies are assumed
to be the same in both electronic states but the equilibrium geometries differ by a distance dk. Taking the origin
of bath coordinates at amiddle position between these equilibriumpoints, the vibronic coupling coefficients
are c d 2k k k

2w= .
The bath is fully characterized by the spectral density

J
c

2
4

k

k

k
k

2

åw
p

w
d w w= -( ) ( ) ( )

leading to the two-time correlation function

C t B t B
J

Tr
1

d
e

e 1
, 5B B

t
eq

i

òt t r
p

w
w

- = =
-

w t

bw-¥

+¥ -
( ) [ ( ) ( ) ] ( ) ( )

( )

where B t H t B H texp i exp iB B= -( ) ( ) ( ) is the bath operator B c qk k k= å in theHeisenberg representation.
H Hexp Tr expB B B B

eqr b b= - -( ) [ ( )] is the Boltzmann equilibriumdensitymatrix of the bath andβ= 1/kBT.
Spectral density and correlation functions (real, imaginary parts andmodulus) of this heterojunctionmodel are
displayed infigure 1. In this example, the Rabi period (12.3 fs) is smaller than the correlation time (25 fs) so that
non-Markovian dynamics is expected.

As displayed infigure 1, the spectral density J(ω) isfitted by four four-pole functions

J
p

, 6
l

l

l l1

4 3

,1 ,2
åw

w
w w

=
L L=

( )
( ) ( )

( )

where

. 7l l l l l, 1,2 , 1,2
2

, 1,2
2

, 1,2
2

, 1,2
2w w wL = + W + G - W + G( ) [( ) ][( ) ] ( )( ) ( ) ( ) ( ) ( )

Cauchyʼs residue theorem is used to compute the integral of equation (5)with a contour closed in the upper
half-plane enclosing 4nl poles in ,l l,1 ,1W G( ), ,l l,1 ,1-W G( ), ,l l,2 ,2W G( ), ,l l,2 ,2-W G( ) and an infinity of poles on the

Figure 1.Panel (a): spectral density of the spin-bosonmodel. The red arrowmarks the value of the system energy gap. Panel (b):
correlation function of the bathmode forT= 298K. The blue dashed curve is the real part and the red dotted curve is the imaginary
part of the correlation functionC(t). The black solid line is the absolute value ofC(t), given in 10–4 a.u. units.
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imaginary axis j j0, j
2* n" Î = p
b{ }( ) called theMatsubara frequencies. In practice, the number of

Matsubara terms is limited ensuring convergence for a given temperature.

3.Methods

3.1.HEOMequations
The systemdensitymatrix is the partial trace of the full densitymatrixΞ(t) over the bath degrees of freedom

t tTrBr = X( ) [ ( )]. As afirst approximation, the initial condition is assumed to be factorized as:

t t0 0 . 8B
eqr rX = = =( ) ( ) ( )

This assumption is fully valid only for fast bath response leading toMarkovian dynamics, or at least for weakly
coupled systems. Initial correlation is expected tomodify the dissipative dynamics andwitnesses of such initial
entanglement have also been discussed [3, 4, 61–63]. This important issue has been addressed by different
methods, for instance inMulti Configuration TimeDependentHartree approach [64], second order auxiliary
matrices [65] orHEOMmethodology [43, 66]which leads to an interesting strategy taking partially into account
initial correlations, as is briefly discussed hereafter.

HEOMequations have been established from the path integralmethod [44] or from the stochastic Liouville
equation [41–43]. The non-Markovianmaster equation

t H tiTr , 9Br = - X˙ ( ) ([ ( )]) ( )

is solved by a time local systemof coupled equations among auxiliarymatrices arranged in a hierarchical
structure. The algorithm requires a particular parametrization of the correlation function as a sumof ncor
exponential terms, written as:

C t e . 10
k

n

k
t

1

i k

cor

åt a- = g t

=

-( ) ( )( )

Analytical expressions for theαk and γk parameters can be derivedwhen the spectral density isfitted by a sumof
two-poles [67] or four-pole Lorentzian functions leading to anOhmic or superOhmic behavior at low
frequencies [38]. The complex conjugate of the correlation function can be expressed by keeping the same
coefficients γk in the exponential functions but usingmodified coefficients kã according to:

C t e 11
k

n

k
t

1

i k

cor

* åt a- = g t

=

-( ) ˜ ( )( )

k being a collective index such that, l l,1 ,2*a a=˜ , l l,2 ,1*a a=˜ , l l,3 ,4*a a=˜ , l l,4 ,3*a a=˜ and j j,matsu ,matsua a=˜ ,
where ,l m l m, ,a ã withm=1, 4 are related to the four poles of each Lorentzian l [65].

The level L of the hierarchy corresponds to an order 2L in the perturbation expansion of the initial non-
Markovian equation. Auxiliarymatrices are labeled by a collective index n nn , , n1 cor

= { } specifying the
number of occupation of each artificialmode associatedwith one of ncor decaying components. The system
densitymatrix ρ(t)has the index n 0, , 0= { }. Thefirst level L=1 contains ncor auxiliarymatrices with a
single excitation only n 1k kå = . TheHEOMcoupled differential equations are given by :

t H t t n t

S t n S S

i , i

i , i 12

S
k

n

k k

k

n

k

n

k k k

n n n

n n n

1

1 1
k k k

cor

cor cor
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å å

r r g r

r a r a r

=- +

- - -

=

= =

+ - -

⎡
⎣⎢

⎤
⎦⎥

˙ ( ) [ ( ) ( )] ( )

( ) ( ˜ ) ( )

with n n nn , , 1, ,k k n1 cor
= + ¼+ { }and n n nn , , 1, ,k k n1 cor

= - ¼- { }. Eachmatrix is coupled only to the
superior and inferior levels in the hierarchy. The level of the hierarchy is chosen until convergence is reached for
the systemdensitymatrix.

TheHEOM formalism allows one to get insight into the correlated system-bath dynamics by probing the
differentmoments X t B tTrn

B
n= X( ) [ ( )]( ) of the collectivemode B c qi i i= å [60]. In particular, the expectation

value ofB in each state is given by the diagonal elements of theX (1)(t) operator given by the sumof the first level
auxiliarymatrices

X t t , 13
n n

1 å r= -( ) ( ) ( )( )

where the sum runs over all index vectors n nn , , n1 cor
= { }with n 1l lå = . Recursive formula for higher

orders can be found in [60]. Thisfirstmoment already provides a signature of the induced correlated system-
bath dynamics. As discussed in [60], themaster equation can be recast to emphasize the role ofX(1)(t) in the
systemdynamics bywriting
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t H t S X ti , i , . 14S
1r r= - +˙ ( ) [ ( )] [ ( )] ( )( )

Assuming system-bath separability equation (8), auxiliarymatrices are set equal to zero at initial time. An
improvement to account for initial system-bath correlation consists in propagating infield-free conditions up to
equilibrium, i.e. for timesmuch longer than the bath correlation time [66]. The resulting state is in principle a
partially coherent superposition of the system and the bath. The equilibrated auxiliarymatrices are then used to
describe initial conditions, while the systemdensitymatrix is set to a specific initial state.

3.2. Non-Markovianwitnesses
Signature of non-Markovianity is discussed here through the volume of accessible states [11] and through the
canonical decoherence rates of a time-dependent Lindblad form [12, 13]. In the two-level case, the dynamical
map t 0tr f r=( ) [ ( )] isfirst expressed in the basis set of the d2Hermitian operators (here d=2) formed by the

identity G dI0 = and three operatorsGmwithm=1, 3which are the Paulimatrices dx y z, ,s . The equation
then becomes

t G GTr 0 . 15
k

d

k t k
0

12

år r f=
=

-

( ) ( ( )) [ ] ( )

The volume of accessible statesmay be obtained from thematrix representation of the dynamicalmap in this
basis set F t G GTrm n m t n, f=( ) ( [ ]) by

V t Fdet . 16=( ) ( ) ( )
This volumemay also be expressed as a function of the decoherence canonical rates. Themaster equation is then
recast in a canonical Lindblad formbutwith time dependent rates associatedwith time-dependent decay
channels. Details can be found in [12, 13]. Themaster equation is reformulated as

t H t a t G t Gi , . 17S
j k

d

jk j k
, 0

12

år r r= - +
=

-

˙ ( ) [ ( )] ( ) ( ) ( )

In order to describe the decrease of the Bloch volume independently of the translation of its center, the
contribution of the unity operator is separated by gathering terms containing coefficients aj0. One then defines
an operator O a d a d G2 i

d
i i00 1

1
0

1 22
= + å =

- ( ) and a corrected systemHamiltonian H O Oi 2S cor = -( )† .
The relaxation operator then involves only the three operators associatedwith the Paulimatrices and themaster
equation takes the form:

t H t D t G t G G G ti ,
1

2
, , 18S

j k

d

jk j k k jcor
, 1

12

år r r r= - + -
=

-
⎜ ⎟⎛
⎝

⎞
⎠˙ ( ) [ ( )] ( ) ( ) { ( )} ( )

whereDjk(t) is the decoherencematrix. Its diagonalization provides the decoherence canonical rates gk(t) and the
decay channelsCk(t). Equation (18) becomes

t H t

g t C t t C t C t C t t

i ,

2 , , 19

S

k

d

k k k k k

cor

1

12

å

r r

r r

=-

+ -
=

-

˙ ( ) [ ˆ ( )]

( )( ( ) ( ) ( ) { ( ) ( ) ( )}) ( )† †

with D t U t g t U tij k
d

ik k jk1
12

*= å =
-( ) ( ) ( ) ( ) and C t U t Gk i

d
ik i1

12
= å =

-( ) ( ) .
It is worthwhile noting that the occurrence of negative canonical decoherence rates gk(t) yields another

characterization of non-Markovianity [12]. The rates are linked to the volume of accessible states through the
relation

V t V s s0 exp d d , 20
t

0
ò= - G⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( ) ( )

with

t g t . 21
k

d

k
1

12

åG =
=

-

( ) ( ) ( )

The criterion based on the volume can be considered as an averagemeasure since it depends of the sumof the
rates only. Thus, it can be considered as a less stringent witness of non-Markovianity than a negative canonical
decoherence rate gk(t).

A possible numerical strategy to compute the decoherencematrixDij(t) has been discussed in [12] and is
given by
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D t G G G GTr 22ij
m

d

m i t m j
0

12

å= L
=

-

( ) [ [ ] ] ( )

with

G G F . 23t j
k

d

t k kj
0

1
1

2

å fL =
=

-
-[ ] [ ] ( )

Besides the analysis of the decoherence canonical rates, we also compute the vonNeumann entropy of the
system that should varymonotonously in aMarkovian evolution [14]

S t t tTr log log , 24
k

k k2 2år r r l l= - = -( ( )) [ ( ) ( )] ( )

whereλk are the eigenvalues of the systemdensitymatrix.

3.3.Optimal control theory
Weuse optimal control theory in the Liouville space [47, 48, 50] to optimize thefield driven state-to-state
transfer at the end of the pulse of total duration tf. The cost functional Ƒ to beminimized is built from a chosen
performance index t tTrf ftarget targetr r r rá ñ =( )∣ [ ( ) ]† togetherwith two constraints, namely on thefield strength

and on the fulfillment of themaster equation at any time.More specifically Ƒ is given as:

t E t t

t t t H t

d

2 i , d . 25

f

t

f

t

S

target 0
0

2

target
0

f

f

Ƒ ò

ò

r r a

r r c r r

= á ñ - D

- á ñ á ¶ ¶ + ñ
⎡
⎣⎢

⎤
⎦⎥

( )∣ ( )

( )∣ ( )∣ [ ] ( )R /

The corresponding Lagrangemultipliers are the scalarα0 and the densitymatrixχ(t) respectively. However, we
do not use the procedure, for instance presented in [68], tomodify the parameter during the optimization in
order to precisely control the totalfinal intensity.We havemerely stopped the control iterationswhen the field
amplitude reaches about 0.01 a.u. (seefigure 2, panels (d)–(f)). This roughly corresponds to leading intensities
less than 3× 1012W cm−2, which are considered to be not too strong.We do not enforce here the constraint on
the zero pulse area which is required for a purely optical field [59]. The aim, for this first attempt, is to obtain the
maximumefficiency that could be expected from the control process. The optimal field is obtained from the
systemdensitymatrix propagated by themaster equationwith initial condition ρ(t= 0)= ρini and from the
Lagrangemultiplier propagatedwith afinal conditionχ(t= tf)=ρtarget. The correspondingmaster equations
with initial and final conditions take the formwith L H t• i , •S= - [ ( ) ]

t L t K t t t t, d 26
t

0
òr r r= + ¢ ¢ ¢˙ ( ) ( ) ( ) ( ) ( )

t L t K t t t t, d . 27
t

t f

òc c c= - ¢ ¢ ¢˙ ( ) ( ) ( ) ( ) ( )†

It is worthwhile noting that these equations lead to a correlation between control and dissipation since the
Liouvillian and thememory kernelK in equations (26, 27) take into account the external control field, even
though, in ourmodel, dipole interaction is solely actingwithin the central system [50, 67].

When themaster equation is solved by theHEOMalgorithm, the operational equations for the Lagrange
multiplier can be derived by using equations (10) and (11)

t L t n t

S t n S S

i

i , i . 28

k

n

k k

k

n

k

n

k k k

n n n

n n n

1

1 1
k k k

cor

cor cor

å

å å

c r g r

r a r a r

= -

- + -

=

= =

+ - -

⎡
⎣⎢

⎤
⎦⎥

˙ ( ) ( ) ( )

( ) ( ˜ ) ( )

In practice equation (28) is solved backwards starting from t tf0,0 ,.., 0 targetc r= =( ){ } .Within the initial
factorization approximation, the auxiliarymatrices are set equal to zero for both initial and target states.We have
checked that the coupledOCT-HEOMalgorithm remains stable when starting from the auxiliarymatrices
obtained by propagating the initial state up to equilibrium.However, a detailed analysis of the control process
with initial correlation, goes beyond the scope of thismanuscript, and should be addressed in futureworks.

Thefield at iteration k is obtained byE( k)=E( k−1)+ΔE( k), whereΔE( k) is estimated by [47]:

E t m t t t t
1

Tr Tr , . 29
0

m
a

r c c rD =( ) { ( ( ) ( )) ( ( )[ ( )])} ( )I
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4. Results

HEOMequations are solved using aCash–Karp adaptative stepsize Runge–Kutta algorithmwith a small time
step of 2 a.u. duringwhich thefield is assumed to be constant. Dynamics converges at level L=6 of theHEOM
hierarchy, i.e. at order 12 in perturbation theorywhich shows a strong system-bath coupling. In the above
examples the dipolematrix ismerely set equal to zm ms= withμ=1 a.u. It is worthwhile noting that the
diagonal structure of the dipolematrix ismerely due to its representation in the zeroth order diabatic basis. Off-
diagonal elements would result when going to its adiabatic eigenbasis set representation. Stability of the results
has been verified for different non diagonal dipolematrices. The guess field is a sine squarewithmaximum
amplitude 10−3 a.u. The duration of the control is fixed to 20 fs, smaller than typical times for the completefield
free decay of the Bloch sphere volume (equation (16)). No constraint on the shape of the field is imposed by the
OCT algorithm, except a penalty factor in such away that the field amplitude does not exceed 10−2 a.u.
(3.51× 1012W cm−2).

4.1. Field-controlled dynamics
Weconsider three control objectives defined by the populations of the system. In the twofirst strategies that are
denotedC1-1 andC2-2, the target is the revival of initial zero-order state, either state 1ñ∣ or 2ñ∣ , at the end of the
control.We recall that these site-states are coherent superpositions of some ground and excited states of the
heterojunctionmodeled as a donor-acceptor dimer (see equations (2) and (3)). A third control denotedC1-2,
enforces the fast decay from state 1 to state 2 (a fast switch from1 to 2).We compare the control without orwith
dissipation and analyze both the system and bath responses (memory effects) during the corresponding field-
driven dynamics.

Figure 2.The three columns correspond to the three control strategies: C1-1, C1-2 andC2-2 respectively. Upper panels: evolution of
the population in the initial state (black full line: field-free dynamics, colored full lines: OCTwith dissipation, dashed lines: OCT
without dissipation).Middle panels: amplitude of the electric fields (black solid line: guessfield, colored full lines: optimalfieldwith
dissipation, dashed lines: optimal fieldwithout dissipation). Lower panels:fluctuations of the instantaneous system eigenenergy gaps
ω0(t) induced by the corresponding optimalfields (full lines: OCTwith dissipation, dashed lines: OCTwithout dissipation).
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Thefield-free andfield-driven populations in the initial state during the three control strategies are shown in
the upper panels (a)–(c) offigure 2. Thefield free evolution (full black lines infigure 2) displays the expected
dampedRabi oscillations of 12.3 fs. The dashed lines in panels (a) for C1-1, (b) for C1-2 or (c) for C2-2 are the
populations driven by the optimal fields without dissipation. The objective is then reached easily with a
performance index of 1.When the system is coupled to the bath, the populations are the full lines (blue for C1-1,
red for C1-2 and green for C2-2). Panel (a) shows, for C1-1 strategy, at almost all times (except between 12 and
15 fs) afield enhanced protection of the population of the initial state 1 resulting in about 10%of increase at the
end of the control with respect to thefield-free case. Similar final results are obtained for C2-2 illustrated in panel
(b) andC1-2 (panel (c)) but their final results nearlymatch their dedicated target. In the isolated system, the only
possiblemechanism should be amodification of the oscillation periods, a decrease in theC1-1 orC2-2 scenario
and an increase in theC1-2 case. This can be related to the transient variation of the energy gap induced by the
control. In presence of dissipation, the variation of the gap acts both on the period and on the strength of the
system-bath coupling. Panels (d)–(f) in figure 2 present the corresponding optimal fields for control with and
without dissipation. It is worthwhile noting that field profiles are very symmetrical for the two control strategies
C1-1 andC2-2. This observation ismerely in relationwith the structure of the evolution algorithm involving an
initial condition (for the forward propagation) identical to thefinal one (for the backward propagation). The
control scenarioC1-2, illustrated in themiddle panels of figure 2, is aiming at the enhancement of the
population of level 2, when level 1 is taken as an initial state (i.e. different initial and target states). Thefield-free
energy gap is 0.33 eV and the optimalfields induce different Stark shifts in a range of about 0.25–0.65 eV, so that
the instantaneous resonance frequencyω0(t)moves with respect to the spectral density peaks, with its expected
consequences on non-Markovianity [29, 30]. Obviously, different initial states, with differentfield-free energy
gaps (characterizing heterojunctionmodels with different inner-fragment distances [38])will result into
different control parameters, but still with transposable strategies and generic enough results. The fluctuations
of the eigenenergy gap of thefield-dressed systemHamiltonian are shown in panels (g)–(i) offigure 2.
Convergence has been checked by changing the sign of the initial field: this leads to nearly the samefinal shape of
the optimalfields. Themechanism found by the control exploits transitory decrease of the energy gap leading to
regionwhere the couplingwith the bath increases and transitory strong increase of the gap leading to a decrease
of the bath coupling but probably an enhancement of non-Markovian effects.

Obviously, control performances remain rathermodest. This point can be explained both by limitations of
the control parameters (rather lowfield amplitudes and short pulse duration), andmore importantly, by theway
the strong system-bath interactions inherent to the specificmolecular situation at hand interplays with the
control. This can be numerically rationalized through the analysis of the firstmoment of the bath collective
mode in each state given by the diagonal elements of the (2×2)X (1)matrix as depicted in equation (13).
Although the control only acts on the systemHamiltonian, it affects the overall dynamics through thememory
terms included in the right-hand-side of equation (12). Controlfields indirectlymodify the bath response
leading to a strong correlation between control and dissipation. This is illustrated infigure 3which displays the
firstmoment of the bath collectivemode, in terms of the diagonal elements X1,1

1( ) (left column) and X2,2
1( ) (right

column), starting either from initial state 1 (upper line) or 2 (lower line). Thefirst observation is that bath
oscillations roughly follow the field-drivenmodifications of the Rabi period, with some amplitude and period
variations. Butmarked differences are depicted according to the initial state. For initial state 1, the short time
dynamics (up to about 5 fs) is such that thefield-controlled bathmotions follow their field-free counterparts.
Discrepancies from thefield-free behaviors occurwith opposite signs for X1,1

1( ) and X2,2
1( ), starting from the time

when the gap is at itsmaximumvalue, i.e. close to 6 fs for C1-1 and 4 fs for C1-2 control strategies. Actually,
when dealingwith these two strategies, the gap is decreasing during the first femtoseconds, such that the system
internal transition frequencies bettermatch bath resonant phonons transitions. As a consequence, the
amplitudes of collectivemodes oscillations are expected to increase. For initial state 2 and the corresponding
C2-2 control strategy, early Stark shifts have an opposite sign leading to increasing gaps, preventing bath
resonant processes fromoccuring. Discrepancy from the field-free situation occurs at the very beginning of the
control process. Such observations on the firstmomentX(1) can be considered as additional insights for a
comprehensive rationalization of control strategies as they evolve in time. Actually, it turns out that control
fields take advantage from two simultaneousmechanisms: (i) population transfer improved bymodifying the
Rabi frequency, through the Stark shift directly affecting the central system; (ii) dynamical decoupling effects,
through indirect processes in the bath, preventing overall decoherence. It is worthwhile noting that, we have
previously reported similarmechanismswith single cycle or dc fields [30]. As afinal comment, these
mechanisms being dynamicallymixed, a non-Markovian diagnostic cannotmerely be inferred from their
analysis. Thismotivates the need to resort to other non-Markovianwitnesses as is done hereafter.
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4.2. Non-Markovian signatures
During thefield-free evolution, the volume of accessible states illustrated infigure 4 decreases very fast, in about
30 fs with a smoothmonotonous decreasing profile. Nevertheless the decay is not exponential as it should be in a
Markovian process. The duration of the control isfixed to 20 fs, i.e. less than the time for a complete decay of the
volume. The resulting behaviors are displayedwith the three control strategies C1-1, C2-2 andC1-2. Basically,
after 5 fs, the decay is slightly faster than the field-free case and,more importantly, one observes some bumps,
considered as clear signatures of non-Markovianity. Actually, the bumps arise at times close to 12 fs (for C1-1) or
17 fs (for C2-2)which could be associatedwith themaxima of the Stark shifts affecting the system energy gaps as
displayed infigure 2. As shown in equation (16), this volume can also be computed from the sumof the
canonical rates which are the eigenvalues of the decoherencematrix. This sum (equation (20)) displayed in
figure 5 clearly shows the increase of non-Markovianity during the controlled evolution.More precisely,
negative values forΓ(t), responsible for the bumps of the volume, occur between 12 and 17fs,mainly with the
C2-2 andC1-2 control strategies. It is worthwhile noting the relationwith important Stark shift affecting the
system at such times as seen onfigure 2. These analyses conclude that thefield-dressed dynamics during the
optimal control ismore non-Markovian than thefield-free evolution.Moreover, onemay question about the
particular role of the quantum channel with the negative rate that should correspond to some backward flow. In
order to observe the role of the different decoherence channels (equation (19)) during the evolution of a given
initial state, we compute theweight of the three quantum channels as:

Figure 3.Evolution of the diagonal elements of theX(1)(t) operator giving thefirstmoment of the bath collectivemode. Left panels
((a) and (c)) for X1,1

1( ) and right panels ((b) and (d)) for X2,2
1( ). Upper panels, for initial state 1: field-free in full black lines, control C1-1 in

full blue lines andC1-2 in dashed lines. Lower panels, for initial state 2:field-free in full black lines, control C2-2 in dotted lines.

Figure 4.Panel (a): volume (dimensionless) of accessible states forfield-free (solid black line) orfield-controlled dynamics using
strategies C1-1 (solid blue line), C2-2 (dotted green line) andC1-2 (dashed red line). Panel (b) is a zoomof (a) for times larger than 5 fs.
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c t C t tTr . 30k k r=( ) [ ( ) ( )] ( )†

Note that the operatorG0 (corresponding to the unitymatrix) is not involved in the computation of coherence
matrices so that the initial sumof c t 0k

2=∣ ( )∣ is equal to 0.5 and this sum is not conserved during the evolution
since the decoherencematrix only describes the decrease of the volume and not its translation in the Bloch
sphere. The upper panels offigure 6 show the three canonical rates during thefield-free andfield-controlled
evolutions. The rates are given in increasing order so that channel k=1 corresponds to the negative rate, which
may become evenmore negative during the control as seen in panels (c) and (e) after 7 fs during controls C1-2
andC2-2. The lower panels present theweights c tk

2∣ ( )∣ during the relaxation. This illustrates the different impact
of the negative rate during the control. Themain observations are the following: (i) theweights of channel k=1
with themost negative rates (black stars) always dominate around 5 fs but become the lowest after 8 fs except at
the end of controls C1-1 andC2-2; (ii) the leading channel after 8 fs is k=2 associatedwith the smallest positive
rates (blue curves) duringC2-2 andC1-2. It decreases with respect to thefield-free case at the end of theC2-2
strategy; (iii) the highest positive rates are increased by the control fields, butmore importantly their weights
may decrease, for instance in the range 10–15 fs during control C2-2. As a consequence, the effective decay rate is
basically affected by the combination of these effects. The increase of non-Markovianity during control does not
necessarily imply that the channel with the negative rate plays themost significant role. In otherwords, an

Figure 5. Sumof the canonical decoherence rates (equation (21)) for thefield-free (thick solid black line) and controlled system: thin
solid blue for C1-1, dotted green for C2-2 and dashed red forC1-2.

Figure 6.Panel (a): canonical rates (equation (19)) for the field-free (solid black k = 1, dashed blue k = 2 and dotted red k = 3 lines)
andfield-controlled (black stars, blue thin circles and red thick circles) evolution during the three control strategies. The rates are
given in ascending order. Panel (b): weights of the decoherence channels ck(t) during the same evolution.
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efficient control strategy for enforcing the bumps in the volume evolution, cannotmerely be the tracking at each
time of the channel with the negative partial rate, as it could be expected.

The volume of reachable states is a global property of the system. It is built from the dynamicalmap so that
when it exhibits non-Markovianwitness, it is expected that similar signatures could be found in properties
related to the evolution of a particular initial state. As already discussed [14], non-Markovianwitness can be seen
in the system entropy (equation (24)) shown infigure 7. TheMarkovian evolution of the entropywhen the initial
state is a pure state should be amonotonous evolution towards the value associated to thefinal Boltzmann
mixture. In the present case, due to the energy gap, the final state is nearly the ground eigenstate so that the
entropy profile should be amonotonous bell shape function. The non-Markovian signature is linked to any local
decrease in the entropywhich corresponds to a similar local bump in the purity Tr(ρ2(t)) and therefore to an
enhancement of the coherence. For instance, such a non-Markovian information backflowoccurs between 11 fs
and 18 fs in the field-free evolution of state 1 and between 6 fs and 12 fs for state 2 (black curves). One observes
that the dressed dynamics enhances this effect andmore interestingly reduces themaximum entropy in a given
time interval as during the control 1 to 2 (red dots in figure 7).

The previous analysis concerns a time control close to the bath correlation time forwhich complete
relaxation is still not reached, since this would require about 200 fs.We have checked, for theC1-1 control,
longer pulse durations, 50 fs and 100 fs respectively, by choosing the same sine-square guess field, with a
maximumamplitude of 0.001 a.u. and compared the optimal control result after 200 iterations. For the 50fs
pulse, the optimal fieldmaximumamplitude remains similar to that of the 20 fs one, but it is twice smaller for
the 100fs pulse. After 200 iterations, the total pulse intensity is not the same so that one should be careful when
carrying out such a comparison. The optimization performances are similar. Nevertheless, we observe an
unexpected better result for the 50fs case that uses a differentmechanism in comparison to the onewe have
discussed in this work. As the pulse hasmostly positive amplitudes, we assume that a differentmechanism from
the onewe have discussed in this work is at stake.However the results containmost of the physics wewant to
exhibit: (1) the non-Markovianwitnesses qualitatively behave as during the short control. The studied system is
strongly non-Markovian as can be seen in the field-free case from the transitory negative sumof the canonical
rates well after the bath correlation time as shown in [38]. (2)Thefield driven dynamics exploits the non-
Markovian character of the bathwell beyond the bath correlation time. (3)The optimal pulse profile and its
induced Stark shift depend on the pulse duration: differentmechanisms can be found by the optimal control
algorithm. The temporary decrease or increase of the Rabi period shows that it can be a balance between a
dynamical decouplingmechanism and the use of non-Markovian effects. The 20 fs control presented here,
although typical with respect to all the qualitative behaviors, is not the unique route found by theOCT
algorithm.

Wehave checked on theC1-1 control case that taking into account initial correlation slightlymodifies the
dynamics, for instance the amplitude of the dampedRabi oscillation during the field-free evolution.However,
the controlmechanism remains qualitatively similar leading to comparable Stark shift. A deeper analysis is
necessary to generalize the conclusions, in particular to examinewhether initial correlation could better protect

Figure 7. System entropy during thefield-free (solid lines) orfield-controlled dynamics (dashed and dotted lines). Panel (a): initial
state 1, where dashed blue dashed line is for the control strategy C1-1 and red dotted line is for C1-2. Panel (b): same as (a) but for the
initial state 2 (control C2-2).
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coherence (i.e. longer lasting entanglement) as observedwhen properly describing the initial state [66]. The
control efficiency could possibly be slightly improved, but at least not deteriorated. This important development
is currently in prospect.

5. Conclusion

Thiswork is devoted to a detailed analysis of externalfield control versus dissipation in non-Markovian strongly
coupled open quantum systems. A heterojunction is taken as an illustrative examplewith its specific parameters
and spectral density, building up a SB typeHamiltonian.With respect tomethodology, the originality relies on a
complete implementation of an optimal control scheme, togetherwith a fully convergedHEOMtreatment of
themaster equation describing the time evolution of the two-level sub-systemdensitymatrix beyond a
perturbative regime.

We put the emphasis on control scenarios aiming at producing physically relevant processes within the two-
level sub-system interactingwith its environmental bath. The ultimate goal is to protect against decoherence, the
sub-system (such as a qubit), the control taking advantage frommemory effects to drawback some information
content from the bath to the sub-system. As afirst attempt, we consider two targets, namely, the revival of an
initial state iñ∣ (i=1, 2) or a transition between the two states of the sub-system. The optimal control is precisely
concernedwith these goals through the populations of these states given in terms of the diagonal elements ρ11(t)
and ρ22(t) of the sub-systemdensitymatrix. Once such control fields have been found, we address the
consequences on the bathmemory responses. Basically, we observe that non-Markovianity is increased during
the optimally driven process. This is actually quantified through some typical signatures: time-dependent
behavior of the volume of accessible states displaying bumps during itsmonotonic decay or the time-dependent
behavior of the entropy exhibiting transitory decreases. At that point, we have shown that a control aiming at the
protection against decay of the sub-system characteristics provides, as a consequence, higher non-Markovian
response of the bath.However, one of themain conclusions is that themechanism does not necessarily increase
the component on the quantumdecay channel with the negative rate.We observe inmost of the cases a decrease
of theweight of the channel with the largest decay rate. Similar behaviors have been obtained for other targets
such as the one inducing relaxation towards the ground system eigenstate. The control performances remain
however rathermodest. Themain reasons are the strong system-bath coupling and the limited range of ourflash
field amplitudes, in relationwith their experimental feasibility. To go beyond such limitations, we have to refer
to ultra short and intense laser pulses. This requires the introduction of an additional constraint in the optimal
control scheme to correct the time integrated pulse area that, followingMaxwell equations should be zero
[56–58, 59]. Finally, evenmore realistic calculations should be conductedwith ab initio transition dipoles,
resulting fromquantum chemistry codes. An additional challengewould be the relaxation of the system-bath
full separability assumptionmade by the introduction of an initial state through the factorization of the
corresponding densitymatrices, prior to the control. This could presumably be conducted referring to auxiliary
matrices resulting from field-free propagation for both initial and target states. According to some results on
non-Markovian entanglement dynamics [66], we could expect longer lasting coherence further improving our
control efficiency. Asmid-termperspectives, future works should deal with exerting control directly on bath
dynamics, in such away to decrease decoherence of the sub-system, or in otherwords, achieve appropriate
control of non-Markovianity to better protect sub-system characteristics. To that end, different strategies can be
proposed: (i) additional control of the environment through the introduction of a transition dipole among bath
normalmodes; (ii) extraction of a collectivemode from the bath so as to deal with a control involving an
augmented active system, as has already been done infield-free heterojunction [38] or in a SQUIDmodel [24].
We are actively pursuing research of these topics.
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