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Introduction:

Quantitative MRI (qMRI) finds increasing application in neuroscience and clinical research due to its greater specificity and its sensitivity to
microstructural properties of brain tissue - myelin, iron and water concentration. Multi-parameter mapping (MPM) is a comprehensive qMRI
protocol, including an acquisition, modeling, and processing framework that ultimately provides high-resolution maps of the magnetization
transfer saturation (MT), proton density (PD), longitudinal (R1=1/T1) and apparent transverse (R2*=1/T2*) relaxation rate. Here, we present
the hMRI toolbox for neuroscience research, an easy-to-use open-source tool for creating and processing these qMRI data.

Methods:

The hMRI toolbox is organized in five parts: 
1. The "Configure toolbox" module provides a set of standard default processing parameters. It allows the user to define site- or protocol-
specific default parameters to be used across the following data processing modules. 
2. "DICOM import" is a tool to convert DICOM data into NIfTI files, storing the whole DICOM header as JSON-encoded metadata. By
enabling the storage of data acquisition and processing parameters alongside the brain imaging data sets, the hMRI toolbox follows the
BIDS recommendations [1]. 
3. "Auto-reorient" is a simple tool for rigid-body reorientation of all images to the MNI space prior to data processing, in order to ensure the
stability of spatial processing steps (mainly segmentation [2]). 
4. "Map creation" computes quantitative estimates of R2*, R1, PD, and MT from unprocessed multi-echo T1 -, PD-, and MT-weighted
FLASH acquisitions stored as NIfTI volumes (Fig. 1) [3,4]. This module corrects the qMRI estimates for spatial receive and transmit field
inhomogeneities based on additional reference data [5,6] or using image processing methods [3,7].  
5. "Process hMRI maps" provides dedicated tools and tissue probability maps [8] for the spatial processing of the qMRI data based on the
SPM processing framework. In particular, spatial registration of the qMRI parameters in standardised space is implemented using the voxel-
based quantification approach [9], taking a weighted sum of the qMRI estimates over the spatial extent of the smoothing kernel in native
space, and incorporating the Jacobian determinant of the deformation into the weighting (Fig. 2). The weighting is carried out in a tissue-
specific manner, producing sets of qMRI maps separately for each tissue class, while reducing partial volume effects on parameter
estimates [9].
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   ·Fig. 1. Map creation.
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   ·Fig. 2. Map spatial processing.
 
Results:

The hMRI toolbox provides a time-efficient, robust, and simple framework for use of qMRI data in clinical and neuroscience research.
Quantitative MPM maps computed with the hMRI toolbox have been used for e.g. (a) the combined study of myelin and iron concentration
in brain tissue [10], (b) the study of brain atrophy using improved delineation of tissue boundaries [11], and (c) assessment of layer-specific
microstructure [12] acquiring high-resolution data (800 μm in 25 min @3T and 400 μm in 70 min @7T [13]).  
Segmentation of subcortical areas benefits from the multiple, bias-free contrasts of the qMRI data computed by the hMRI toolbox, leading to
improved sensitivity in subcortical regions [14]. The MPM framework is currently used in a multi-site clinical trial (NISCI trial [15]), including
different vendors. This has been possible because the MPM acquisition relies mostly on multi-echo FLASH that is available on all modern
scanner platforms. The hMRI toolbox allows advanced biophysical modelling of MRI data, such as g-ratio mapping [16], for improved
inference of brain tissue differences at the microscopic level.

Conclusions:

This toolbox is embedded in the SPM framework, profiting from the high accuracy spatial registration to common space and the variety of
available statistical analyses. It is available from http://www.hmri.info. It also offers flexibility for calculation of novel MRI biomarkers of
tissue microstructure.
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