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Abstract—In the context of operation planning, probabilis-
tic reliability assessment essentially boils down to predicting,
efficiently and with sufficient accuracy, various economic and
reliability indicators reflecting the expected performance of the
system over a certain look-ahead horizon, so as to guide the
operation planner in his decision-making. In order to speed-
up the crude Monte Carlo approach, which would entail a very
large number of heavy computations, we propose in this paper an
approach combining Monte Carlo simulation, machine learning
and variance reduction techniques such as control variates. We
provide an extensive case study testing this approach on the
three-area IEEE-RTS96 benchmark, in the context of day-ahead
operation planning while using a security constrained optimal
power flow model to simulate real-time operation according to
the N-1 criterion. From this case study, we can conclude that
the proposed approach allows to reduce the number of heavy
computations by about an order of magnitude, without sacrificing
accuracy.

Index Terms—Reliability assessment, Operation Planning, Ma-
chine learning, Monte Carlo simulation, Variance reduction,
Control variates, Security Constrained Optimal Power Flow

I. INTRODUCTION

In the context of operational planning, power system re-
liability management aims at taking, as early as necessary,
decisions facilitating the operation of the system over a future
target horizon. For example, decisions may be taken to adjust
market coupling capacities, to postpone planned outages, or
to acquire flexibility resources for real-time operation. The
question entails anticipating the decisions to be made by the
real-time operator throughout the target horizon, as per the
applicable reliability criterion, and complementing these by
already taking suitable decisions ahead in time. In practice,
such a question is typically addressed in a progressive manner
using reliability assessment (i.e., evaluating the anticipated
outcomes of real-time operation) to inform reliability control
(i.e., selecting which decisions to commit to achieve a near
optimal socio-economic tradeoff) [1].

In this paper we address the day-ahead operation planning
problem as a ‘template’, and focus on reliability assessment
while adopting a probabilistic approach. Specifically, we aim
at evaluating over the 24-hours of the next day the expected
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costs associated to operating the system. Our approach relies
on two fundamental components, namely a probabilistic model
of the exogenous uncertainties and a computational model
of real-time operation. The former describes the possible
operating conditions that could be encountered the next day
by the operator. The latter is a Security Constrained Optimal
Power Flow (SCOPF) model, formalizing his choice of preven-
tive (pre-contingency) and/or corrective (post-contingency)
controls in real-time.

Using these two components, it is in principle possible to
solve the operational planning reliability assessment problem
by adopting a crude Monte Carlo approach: sample a suit-
able number of scenarios of next-day operating conditions
according to the probabilistic model, run the SCOPF model to
gather for each hour of each scenario values of operating costs,
average these quantities over the set of simulated scenarios to
yield an estimate of the expected operating costs. An obvious
drawback of this approach is however its computational bur-
den, due to the very large number of SCOPF computations
that would typically be necessary.

A. Proposal & experimental setup

To make this approach more tractable, we propose to work
along two complementary directions, namely i) speeding up
the individual computations by leveraging Machine Learning
to replace the SCOPF computations by a much faster proxy
of real-time operator response, and ii) instead of using the
crude Monte Carlo approach, leveraging variance reduction
techniques (more specifically, control variates approaches), so
as to reach the same accuracy while relying on fewer SCOPF
computations. The proposed approach works as follows:
• During a first stage, we sample a number of scenarios

and solve them with the SCOPF model in order to
compute values of the cost function. It yields a dataset
of input-output pairs which is then exploited according
to the machine learning methodology presented in [2] in
order to build simplified models (proxies) of real-time
operation.

• During a second stage, we exploit the learnt proxies
together with the control variates approaches, in order
to estimate the expected values of the concerned cost
components, while also exploiting a second (independent)
sample of scenarios solved with the SCOPF model.



Comparing the accuracy obtained by the proposed approach
to that of the crude Monte Carlo approach with an identical
total budget of SCOPF computations, allows one to infer the
potential computational speed-up of the proposed approach for
a given target accuracy.

We test this approach on the (three-area) IEEE-RTS96,
while modeling real-time operation according to the N-1
criterion, and in order to estimate the expected value of
different components of the real-time operating cost, such as
preventive control costs, and corrective control costs.

B. Paper organization

The rest of the paper is organised in four further sections:
II. Problem statement, background and proposed methods, III.
Case study, IV. Related works and contribution, V. Conclusion
and further research.

Moreover, we also point the interested reader to the ap-
pendix for the detailed formulation of mathematical models
and machine learning methods adopted in this work.

II. PROBLEM STATEMENT, BACKGROUND, AND METHODS

A. Problem statement

In day-ahead (da), the operation planner needs to assess how
the operation of the system would turn out during the next day
(nd), and if necessary takes some decision to ensure that real-
time operation will turn out in the best possible way. While
doing this, he faces uncertainties ξnd about the exogenous
factors (renewable generation, weather conditions, demand,
etc.) that will influence the outcome of reliability management
during the next day, and he needs to anticipate how the control-
room operators will react to them in real-time.

In this paper, we model the behaviour of the real-time
control-room operators by a Security Constrained OPF model,
aiming at meeting the N-1 criterion at the least cost.

Furthermore, in day-ahead conditions, we suppose that the
operation planning engineer disposes of a generative model
allowing him to sample scenarios of next-day conditions
{ξ1nd, ξ2nd, . . .} and to plug them into a SCOPF computational
module that will reveal the response of real-time operation
based on the N-1 criterion1. We suppose that the planning
engineer wants to evaluate the consequence of a given day-
ahead decision, by estimating the resulting expectation of real-
time operation cost components.

We thus focus on the following computational problem:
given a day-ahead decision, a generative model of exogenous
uncertainties over a horizon of 24 next-day hourly time-steps,
and a software implementing a sequence of SCOPF problems
over a next-day scenario (or trajectory), how to minimize
the number of SCOPF calls to obtain a sufficiently accurate
estimate of the expected next-day operating costs.

1These next-day scenarios are defined over a horizon of 24 hours via 24
time steps of one hour, and the SCOPF module is then actually applied for
each such scenario in a sequential way over the 24 time steps, to reveal the
outcome of real-time operation along such a scenario.

B. Background

1) Crude Monte Carlo approach: The crude Monte-Carlo
approach [3] uses the generative model in order to sample
next-day scenarios and then runs the SCOPF model on each
one of them to compute the costs and constraint violation
indicators. It averages such costs over a number n of sce-
narios until the accuracy is sufficient. Denoting by y(ξnd) an
output of the SCOPF model of real-time operation2 and by
{ξ1nd, ξ2nd, . . . , ξnnd} an i.i.d sample3 of exogenous scenarios of
next day conditions, the crude Monte Carlo approach estimates
the mathematical expectation µy of y by:

µ̂y = n−1
n∑
i=1

y(ξind), (1)

and its standard deviation σy by

σ̂y =

√√√√n−1
n∑
i=1

(
y(ξind)− µ̂y

)2
. (2)

It is well known that the crude Monte Carlo estimator µ̂y is
an unbiased estimator of µy [3]. Further, the standard error of
µ̂y depends on the value of σy and on the sample size in the
following way

σµ̂y
=
√
n−1σy. (3)

Thus, in the crude Monte-Carlo approach, one classically
determines the required number of samples by checking the
ratio

√
n−1σ̂y/µ̂y . Typically the number n of simulations is

determined so that this quantity is smaller than 1%.
2) Variance reduction by using the control-variates ap-

proach: The crude Monte Carlo approach requires the compu-
tation of y(ξnd) over a set of next day scenarios that is large
if the variance of y is large. Each one of these computations
implies solving a sequence of SCOPF problems over the 24
hourly time-steps of the next day along a realization ξind of
exogenous variables. The total number of required samples
n to reach a required level of accuracy is thus larger if
the uncertainties in ξnd induce higher variabilities of costs
and other indicators that need to be computed. In order to
reduce the computational burden, various approaches have
been proposed in the literature to reduce the variance of Monte
Carlo methods. The one that we propose to investigate in this
paper is called the “control variates” approach and is based
on the following rationale.

Suppose that we dispose of a “proxy” allowing us to
compute at a very cheap cost an approximation yp(ξnd) of
the function y(ξnd). If yp(ξnd) is very cheap to compute,
we can estimate its mean µyp by crude Monte Carlo, using
a very large number of samples at negligible cost. Since
µy = µyp + µy−yp , we can thus reframe the estimation of
µy by estimating separately µyp and µy−yp . If at the same

2In our case, this value y would be obtained as the sum of hourly values of
some term of the SCOPF objective function computed for the 24 successive
hourly time-steps composing a scenario ξnd.

3Note that it is not required that the successive time-steps in a given scenario
are i.i.d. Rather the n different scenarios are assumed i.i.d.



time x(ξnd) = y(ξnd)−yp(ξnd) has a small variance, we then
can estimate µx = µy−yp by using the crude Monte Carlo
approach, at sufficient accuracy, with a number of samples that
will be relatively small (in the extreme case, x(ξnd) is almost
constant, and its expectation could be estimated by using a
very small number of samples).

Thus, the control variates approach consists of seeking a
good proxy yp (“good” meaning that σx is much smaller than
σy) so that using the estimate:

µ̂ypy = µyp +m−1
m∑
i=1

x(ξind) (4)

would need a much smaller number m of samples than the
crude Monte Carlo approach applied directly to y, while
obtaining the same level of accuracy.

Indeed, the control variates estimator is by construction also
an unbiased estimator of µy , since µx = µy − µyp and since
the second term of eq. (4) is itself an unbiased estimator of
µx. On the other hand its standard error is given by

σµ̂yp
y

=
√
m−1σx, (5)

so that for a same level of accuracy than the crude Monte Carlo
approach this method would need a sample size m equal to

m = n
σ2
x

σ2
y

, (6)

which will be (much) smaller than n if σ2
x is (much) smaller

than σ2
y . Notice that we do not suppose in any case that µyp =

µy; indeed if this could be guaranteed we could say in advance
that µx = 0, so that we would not need any additional samples
to estimate this quantity.

C. Proposed methods

1) Building control variates by supervised machine learn-
ing: In some cases, a suitable proxy of the quantity y to esti-
mate can be hand-crafted. In our context, it is unlikely that this
can be done, given the complexity of the relationship between
next day conditions ξnd and the considered variables y (cost
indicators reporting the outcome of real-time operation).

We thus propose to use supervised machine learning in order
to build, from a sample of pairs (ξind, y

i = y(ξind))
i=1,k, a

proxy yp, and then use the inferred proxy within the control
variates approach. Given a total budget n of next-day possible
scenarios for which we can compute the exact value of y, we
investigate how to split them in two parts in the best way,
the first k being used to learn a proxy, and the remaining
m = n − k being used in the control variates approach. We
will also consider different settings for applying the machine
learning approach, so as to build for a given learning sample
size k the most accurate proxy yp of y.

2) Stacked Monte Carlo approach (SMC): In the SMC
approach [4] a sample of pairs (ξind, y

i)i=1,n is used in a
more intensive way to build an estimate of µy . The sample
is first split into V folds of kv ≈ n

V pairs, then for each fold
v ∈ {1, . . . , V } a proxy yvp is built by using machine learning

applied to the union of all other V − 1 folds, and then used
to predict the value xv = y − yvp over the held-out fold only.
Also, for each fold, the value of µyvp is estimated separately
with high accuracy. The final SMC estimate is computed as
follows

µ̂SMC
y = V −1

V∑
v=1

µyvp + k−1v

kv∑
j=1

xv(ξvj )

 , (7)

where vj denotes the index of the j-th sample of fold v.
Rather than splitting the whole sample once in two folds,

one for training a proxy and the rest for use in the control
variates approach, this approach uses all available samples
both for training and for the control variates estimate, while
however avoiding to use any sample both in a certain training
sample and in the corresponding control variate estimate. It is
therefore likely to lead to an even better variance reduction.

D. Overall proposed study approach

In order to study the effectiveness of the above approaches,
we first evaluate the baseline, i.e. the Crude Monte Carlo
approach, in terms of the number n of samples required
to yield a reasonable target precision, based on empirical
simulations with a given test system and target quantity y to
be evaluated in day-ahead conditions.

Next, we investigate how to exploit in the best way the set
of n samples by studying different settings of the approaches
proposed: i.e. different ways of splitting into k and n − k
samples, different machine learning methods used to build
the proxies, and different ways of stating these machine
learning problems. The goal of this study is to determine
the gain in accuracy that can be obtained with the proposed
approaches with respect to the crude Monte Carlo approach,
while using a same budget for the detailed simulations (and
SCOPF computations) of day-ahead conditions.

Finally, we translate the gain in accuracy in gain in compu-
tational requirements, by determining how many samples n′

would be needed to obtain the same level of accuracy than
our approaches, while using the crude Monte-Carlo approach.

III. CASE STUDY

A. Test system, uncertainties, and real-time operation model

We explore the applicability of this approach on the 3-
area version of the IEEE RTS-96 [5], as modernized with the
addition of 19 wind power generators by [6]. Our studies refer
to the 1st day of the year, for a peak demand of 3135 MW,
per area.

1) Horizon, uncertainties & temporal resolution: We place
ourselves 12 hours before the start of the day under con-
sideration (that is, at noon of the previous day) and assume
that, at this point in time, the yet unresolved uncertainties
restrict to the forecast errors of wind power injections and
load demand. Our modeling approach for these exogenous
uncertainties is based on our earlier work detailed in [7].
Here, we build on top of this model by further considering
the spatial correlation between the forecast errors concerning



power injections/demands located in the same area of the 3-
area system. To do so, we assume that the forecast error
of each power injection/demand is composed by a global
and a local term. The global term is common for all wind
power generators/loads in the same area while the local term
is distinctive per each individual power injection/demand.
Adopting a one-hour interval as the time step for real-time
operation, we exploit this model to generate via Monte Carlo
simulations scenarios of 24 forecast error realizations per load
demand and wind power generator.

2) Day-ahead planning model: In order to simulate day-
ahead decision making, we regard the commitment status and
economic dispatch of all dispatchable generators as well as
the provisional curtailment of wind power generation. To fix
such decisions, we solve a multi-period Security Constrained
Optimal Power Flow (SCOPF) problem in anticipation of the
demand values from the original system description [5] and the
wind power “favorable” forecast from [6]. More specifically,
we use the DC power flow approximation while taking into
account the N-1 criterion concerning all transmission system
components (i.e., transmission lines, cables, and transformers).
Further, as a preventive measure to address the wind/load
uncertainties we impose 300 MW up-ward and down-ward
spinning reserve capacity constraints. The full mathematical
formulation is available in Appendix A-B.

3) Real-time operation model: To model the system tra-
jectory within the day under consideration, we sequentially
go through the 24 single period real-time operation instances.
That is, for any such instance, we i) generate a set of wind
power & load demand realizations, and, ii) re-compute real
time preventive and/or corrective (alternatively, pre- and/or
post-contingency) control actions to maintain conformity with
the N-1 criterion4. These decisions should adjust to the most
recent forecast error realizations, and are taken with a single-
hour horizon. For the sake of simplicity, the real-time control
decisions already applied within the trajectory do not constrain
the candidate decision space. It is only potentially constrained
by day-ahead decisions. Nevertheless, the existence of control
actions to achieve the N-1 criterion is certainly not guaranteed
at this stage. Rather, the decision maker would attempt a “best-
effort” approach avoiding to the extent possible load shedding
and wind curtailment to maintain the system operational under
any postulated contingency within the considered set. We again
resort to a DC-SCOPF to model such “best-effort” approach.
More specifically, we consider the preventive and/or corrective
re-dispatch of each generating unit as the available actions
of first priority and, in our objective, take into account the
respective marginal re-dispatch costs. Further, we model pre-
and post-contingency load shedding and wind curtailment and
treat these actions as options of last resort by means of
appropriately high penalty cost coefficients in the objective
function of the resulting optimization problem. The detailed
mathematical formulation of this problem, notably including

4Notice that, at this stage we exclude from consideration the outages of
the single lines feeding nodes 207 and 307; such outages would lead to the
islanding of these nodes.
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Figure 1. Methodology applied to the database used to learn the proxies yp.

ramping constraints between any preventive re-dispatch action
and the day-ahead dispatch for the forthcoming period for
every generating unit is available to the reader in Appendix
A-C.

4) Operational cost assessment: Finally, given the deci-
sions for the solution of this real-time SCOPF problem, we
evaluate the respective hourly costs of operation. At this stage
we adopt a penalty for wind-curtailment of 300e/MWh for
any wind power generator and, consider an identical value
of lost load for each load demand5, which is an average of
the coefficients published in [8], assuming a 1 hour supply
interruption duration. Using this process, we build a database
of 2400 trajectories. Figure 1 schematically summarises the
database generation.

B. Machine learning settings and predictors

Once the database is generated, we can use it to learn
the proxies. We study in particular two classes of regression
predictors: Extremely Randomized Trees (which is a random
forest method) with 1000 trees [9] and Neural Networks [10].
In the rest of the paper, we call them respectively ET and NN.
The NN used in this paper is a multi-layer perceptron with a
ReLU activation function. Both ET and NN are two well-
known non-parametric methods to solve regression problems
and are both non-linear. Furthermore they have complementary
characteristics. A value predicted by the NN predictor is not
bounded by the values seen in the training database, contrarily
to the ET predictor. On the other hand, the ET predictor is
smoother. Furthermore, with a random forest algorithm such
as ET, we can exploit a by-product of the training models:
the feature importances. This allows to rank the features by
importance score to predict the target output and thus have a
better understanding of the system studied.

1) Designing the predictors: In order to build the predic-
tors, we divide our dataset into two sets: a learning and a test
set. The proxies are built with the learning set and then used
to predict the target output over the test set. The comparison
between the true value of the test set and the prediction of the
proxy allows us to assess how the proxy performs on unseen
data drawn from the same distribution.

5In this study, we are only interested in the amount of load shedding and so
we do not want to discriminate by the value of lost load in case load shedding
is necessary.



Both methods depend on meta-parameters that can be tuned
to improve the performance of the predictors. In order to find
the best meta-parameters but still avoid overfitting, we use
5-fold cross-validation. We first divide the learning set into
five folds. Then, for each possible combination of the meta-
parameters, we use four of the five folds to learn a model
and the left-out fold to assess the performance by computing
a score (in this paper, we use the R2-score, as in [2]). If
we repeat the process five times, leaving out a different fold
each time, we obtain five scores that we average to obtain
a generalization score. We keep the combination of meta-
parameters leading to the best generalization score. The tested
meta-parameters are enumerated in Appendix C.

2) Choice of the setting for machine learning: In order to
learn the proxies, we have investigated two different settings
of applying machine learning to a dataset of trajectories solved
with the SCOPF model.

Setting 1 was to use a dataset of (say k) trajectories, each
one described by a set of features describing the uncertainty
realisations for each of the 24 hours (as well as the generation
schedule decided the day ahead), and as output the sum of
hourly costs along that trajectory.

Setting 2, on the other hand, consisted of splitting each
trajectory into 24 hourly snapshots, inferring on the basis of
these k×24 hours a proxy of the hourly costs, and predicting
then for a certain trajectory the total cost by the sum of its 24
hourly proxy predictions.

In a preliminary study, we applied these two approaches
with both the ET and NN predictors, different cost terms and
different training sample sizes k. By comparing the perfor-
mances of these two settings on independent test samples, in
terms of the overall accuracy of their predictions, we made two
observations, namely i.) Setting 2 very clearly outperforms
Setting 1, in all cases, and ii.) the NN predictor is often
significantly more accurate than the ET predictor, but it needs
a more careful tuning of its meta-parameters. As an example,
Figure 2 shows four scatter plots comparing one of the terms of
the real-time operating costs (the total preventive cost, in euro)
against its predicted value over the test set for both settings and
learning algorithms in the case of k = 850 learning trajectories
(each one of 24 hours).

Hence in the rest of this paper we only report our results
obtained with Setting 2, and we provide comparisons of the
ET and NN predictors, when of interest.

C. Results

In our study we have investigated different terms of the real-
time operating costs, namely total preventive control cost (i.e.
the sum of preventive generation re-dispatch, load shedding
and wind curtailment costs), expected corrective control cost
(also composed, per contingency, of generation re-dispatch,
load shedding and wind curtailment cost sub-components),
preventive load-shedding and wind-curtailment costs.

1) Comparison of the approaches: To compare the different
approaches, we first apply them to estimate the ‘Total preven-
tive control cost’ (Cptot).
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Figure 2. Scatter plots showing true vs predicted values for the total preventive
cost over the test set, in case of (a) direct prediction of the trajectory cost and
(b) sum of the 24 hourly proxy predictions. k = 850.

a) Computational budget: To start, Figure 3 shows the
convergence of the crude Monte-Carlo approach when applied
to the estimation of the expected value µCp

tot
of the total

preventive control cost, as a function of the sample size n.
With a total number n = 2400 of sampled scenarios, the
standard error of this crude Monte Carlo approach is slightly
above 2 × 104, i.e. about 1.4% of the estimated value of
µCp

tot
≈ 1.44× 106.

Next, we apply the control variates approach while using
the first 850 scenarios to build our proxies (with Setting 2),
and both ET and NN predictors. Figure 4 shows that in both
cases this approach leads to a reduction of the standard error
of about a factor 2, the NN predictor being more accurate
than the ET predictor. With a total number of trajectories of
n = 2400 (k = 850,m = 1550), the standard errors of the
control variates approaches is smaller than 1 × 104 (0.7% in
relative terms).

Thus, while all estimators seem to converge to the same
final value, with the crude Monte Carlo approach, we would
need about 10,000 trajectories (i.e. about 240,000 SCOPF
computations at the hourly basis) to reach the same level of
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Figure 4. Convergence of the control variate approach applied to Cp
tot for a

learning set size of k = 850, and up to n− k = 1550 additional samples

accuracy than the control variates approaches using only about
60,000 SCOPF computations.

In order to construct the above estimators, we have used
the crude Monte Carlo approach to estimate µyp of the proxy
predictions on a sample of 20,000 trajectories (without any
SCOPF computation, of course). Figure 5 shows, for the
NN predictor, how this side computation converges with the
number of (side) samples. We also see from this figure that
using this proxy alone, even with a much larger number of
additional side scenario samples (say about 10,000), would
lead to an estimator that would be quite biased (in the present
case underestimating the actual value of the expected total
preventive cost around 1.42× 106) while also having a higher
variance than the two estimators using the control variates
approach. Notice that with the ET method we obtain a quite
similar curve (not shown), with the main difference that in this
case the bias is positive and even a bit larger (with a mean
µyp converging towards 1.47× 106).

From these results, we observe that for a same budget
of 2400 scenarios solved with the SCOPF computations, we
can significantly improve the crude Monte Carlo approach by
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Figure 5. Estimation by crude Monte Carlo of µ̂yp(NN) from side samples
(here the proxy is based on NN and was built using 850 training trajectories).

using part of the sample to build a control variate by machine
learning, and the rest to reduce the bias of these proxies in a
systematic way.

b) Size of the learning sample: Of course, the budget
of trajectories could possibly be used in different ways. To
investigate this aspect, we have made further analyses. Table
I reports numerical results. The first line gives the average
and its standard error as obtained with the crude Monte Carlo
approach for a total budget of 2400 scenarios solved with the
SCOPF model, each one with 24 hourly time steps; the next
lines show the results of the proposed approach, for different
ways of splitting this budget into learning sample (k), the
2400−k being used for the control variates approach. For each
value of k and for both ET and NN predictors, we indicate the
value of their mean (µ̂yp) estimated from 20,000 side samples
(and its standard error), and the mean and standard error of
using it in the control variates approach. We observe from the
values in this table that, in spite of the biased values of µ̂yp
and for all settings, the control variates approach is yielding
a non biased estimator with a factor two improvement of the
standard error with respect to the crude Monte Carlo approach.
We also see that the most accurate setting seems to be the NN
approach with k = 750 (with a standard error of about 8×103),
but the variation of accuracy with k and the predictor used is
actually not very strong, the worst setting (ET with k = 1000)
and the best one (NN with k = 750) yielding a difference in
standard error of less than 20% (both are highlighted in bold
in the table).

c) The Stacked-Monte Carlo approach: In order to con-
clude our analysis of variance reduction methods, let us report
some preliminary experiments using the SMC approach. The
results of Figure 6 were obtained in the following way: for a
given number of samples n ∈ [250; 2400], we used the SMC
method with the NN predictor and V = 10 folds. We can
observe from this graph that with a budget of only n = 1000
trajectories, we already obtain a non biased estimate of µCp

tot

with a standard error comparable to those obtained with the
above control variate approaches when they were exploiting a
budget of more than 2000 trajectories.



TABLE I
ACCURACIES OF DIFFERENT SETTINGS OF THE CONTROL-VARIATE

APPROACH TO ESTIMATE THE EXPECTED VALUE OF Cp
tot

Method Mean Std Err
CMC - n = 2400 1.438e+06 21.45e+03

µ̂yp(ET ) - k = 250 1.524e+06 5.87e+03
µ̂yp(NN) - k = 250 1.416e+06 7.14e+03

MC with control variate (ET) - k = 250 1.440e+06 9.57e+03
MC with control variate (NN) - k = 250 1.436e+06 9.03e+03

µ̂yp(ET ) - k = 500 1.499e+06 6.23e+03
µ̂yp(NN) - k = 500 1.426e+06 7.13e+03

MC with control variate (ET) - k = 500 1.437e+06 8.93e+03
MC with control variate (NN) - k = 500 1.431e+06 8.97e+03

µ̂yp(ET ) - k = 750 1.478e+06 6.33e+03
µ̂yp(NN) -k = 750 1.428e+06 7.09e+03

MC with control variate (ET) - k = 750 1.440e+06 9.68e+03
MC with control variate (NN) - k = 750 1.434e+06 8.07e+03

µ̂yp(ET )- k = 1000 1.474e+06 6.41e+03
µ̂yp(NN) -k = 1000 1.419e+06 7.01e+03

MC with control variate (ET) - k = 1000 1.441e+06 9.85e+03
MC with control variate (NN) - k = 1000 1.431e+06 8.19e+03
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Figure 6. Convergence of the expected value of Cp
tot by the Stacked MC

method, with 10 folds and NN as learning algorithm

2) Application to the estimation of other terms of the cost
function: For the sake of completeness we also briefly report
here on results obtained from the application of these ap-
proaches to the sub-components of the real-time cost function.
More specifically, we present results on estimating the cost of
preventive load shedding, preventive wind curtailment as well
as expected corrective cost (that is, sum of expected corrective
generation re-dispatch, load shedding and wind curtailment)
respectively.

For each one of these sub-components, tables II – IV present
the performance of the crude Monte Carlo approach (first row),
with the control variate (third row) while using 850 trajectories
to construct proxies via the NN predictor, which as reported
earlier was found to out-perform the ET predictor. The middle
row per sub-component presents the mean value and standard
error of the NN predictor, once again estimated using 20,000
side-samples.

Tables II – IV verify in general the applicability of the
proposed approach in estimating the various sub-components
of the real-time cost function. It is of interest to comment here
that such sub-components are also indicative of the type of
problems to be anticipated in real-time operation. For instance,
increased preventive load shedding & wind curtailment costs

TABLE II
ACCURACIES OF ESTIMATING THE EXPECTED VALUE OF PREVENTIVE

LOAD SHEDDING COST – CLS

Method Mean Std Err
CMC - n = 2400 8.6157e+05 2.1374e+04

µ̂yp(NN) - k = 850 8.7661e+05 7.1728e+03
MC with control variate (NN) - k = 850 8.5968e+05 7.6484e+03

TABLE III
ACCURACIES OF ESTIMATING THE EXPECTED VALUE OF PREVENTIVE

WIND CURTAILMENT COST – CWC

Method Mean Std Err
CMC - n = 2400 4.5849e+05 2.9559e+03

µ̂yp(NN) - k = 850 4.5644e+05 1.0053e+03
MC with control variate (NN) - k = 850 4.5714e+05 1.1766e+03

TABLE IV
ACCURACIES OF ESTIMATING THE EXPECTED VALUE OF EXPECTED TOTAL

CORRECTIVE CONTROL COST – ĈCC
tot

Method Mean Std Err
CMC - n = 2400 2.8057e+03 4.3067

µ̂yp(NN) - k = 850 2.8037e+03 1.4425
MC with control variate (NN) - k = 850 2.8158e+03 2.9275

are indicative of the fact that the network may be inadequate
to securely accommodate the range of potential wind power
and demand injections, that is a lack in transmission capac-
ity and operational flexibility. These indicators can thus be
exploited to point towards the type of necessary operational
planning decisions. Likewise, increased expected corrective
control costs may indicate that exogenous factors (e.g., weather
conditions) and/or the system loading conditions increase the
likelihood and/or potential impact of contingencies. From
a planning perspective such finding can be exploited, for
instance, by considering to make more preventive real-time
flexibility resources available in order to reduce reliance on
corrective control, taking into account that in practice it may
turn out not to perform as expected.

Last but not least, these preliminary results on the sub-
components establish the potential for further investigation on
estimating the broad range of indicators that can be relevant
to describe the operability of the system in real-time, such as
load shedding and wind curtailment costs referring to specific
loads and wind generators of interest, the achievabililty of the
considered reliability criterion etc..

IV. RELATED WORKS AND CONTRIBUTION

In this section, we position our contribution with respect to
the literature of related works.

On the one hand, we refer the reader to the text-book [3]
for an up to date introduction to Monte Carlo methods, and
the huge body of variance reduction techniques that have been
proposed over the years in this context. We also refer to [10]
for an explanation of the prominent role of the bias-variance
tradeoff in the design of modern machine learning algorithms.
In direct relation to the methods developed in this paper, we
refer to [4], [11] which are studying from a theoretical point
of view the use of machine learning to build control variates
for the Monte Carlo approach. In particular, [11] shows that
by using a suitable class of non-parametric regression methods



(such as the ET and NN predictors used in our work), “Super-
root-n” convergence may be achieved for a very large class of
complex Monte Carlo integration problems.

On the other hand, the general idea of using machine learn-
ing in order to speed up power systems security and reliability
assessment dates back to the 1970s (see e.g. the bibliography
of [12]). Since its origins, this idea has continuously attracted
the interest of power system engineers, with an intensification
in the recent years, due to the significant progresses in machine
learning and the strong increase in computing power and
data gathering possibilities. A good bibliography review about
all these recent works is however missing at this stage, and
beyond the scope of this paper.

The more specific idea of using machine learning to build
proxies of shorter-term decision-making contexts to be used
when solving longer-term reliability assessment problems has
been proposed and studied only recently [13], [1], [14], [2].
Within this context, the method presented in this paper, using
machine learning to build control variates to speed up the
Monte Carlo approach, is to our best knowledge entirely novel.

V. CONCLUSION AND FURTHER RESEARCH

In this paper we have explored the use of machine learning
in order to speed up the Monte Carlo simulation approach
in the context of uncertainty aware reliability assessment in
operation planning.

The Monte Carlo simulation approach has two nice features
in this context: i) it lends itself almost trivially to massive
parallel computing architectures, ii) it is free of strong assump-
tions about the uncertainty and real-time operation models
and hence very generally applicable. The crude Monte Carlo
approach is nevertheless highly compute-intensive, and in
order to scale it to real-life use, speeding it up is therefore
highly desirable.

The approach investigated in this paper has solid theoreti-
cal guarantees: it is un-biased and may yield ‘Super-root-n”
convergence. On the basis of a systematic case study on the
three-area RTS96 benchmark, we found that when estimating
the expected value of various costs terms of next-day real-
time operation it allows one to reduce the standard error of
the crude Monte Carlo approach by a factor of about 3 to 4,
while using the same number of sampled trajectories of next-
day operation conditions. In computational terms, this means
a speed-up of a factor 9 to 16, for a given target accuracy.

There are many possible directions of future research to
broaden the potential of the proposed approach. Among them
we mention the following ones:
• How to adapt the approach in order to estimate the

probabilities of extreme situations that could occur in the
next day, e.g. leading to the inoperability of the system?

• How to enhance the approach to rank different possible
day-ahead decisions, rather than just estimating the cost
incurred by one of them, in order to more directly support
a planner in his decision-making?

• How to adapt the approach to estimate the gradient of the
expected value of the different cost terms or of extreme

situations’ probabilities with respect to the calibration of
day-ahead decisions, in order to provide further hints for
optimal day-ahead decision making?

In addition, there is also room for further improving the
proposed approach by exploiting various existing machine
learning algorithms (such as deep learning methods), and
by finding out other settings than the two that we have
investigated in this paper.
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APPENDIX A
DAY-AHEAD AND REAL-TIME OPERATION MODELS

This section details the implementation of the day-ahead and
real-time operation simulators. It begins with introducing the
notations used in the mathematical models, then it presents the
day-ahead decision-making program and finally it describes
the real-time SCOPF.

A. Notations

a) Indices:
c Index of contingencies
d Index of demands
g Index of generating units
k Index of piece-wise linear dispatchable gen-

eration cost curve segments
l Index of transmission elements (lines, cables

and transformers)
n Index of nodes
t Index of hours in a day
w Index of wind power generators

b) Sets:
C Set of contingencies
D Set of demands
Dn Subset of demands connected at node n
G Set of dispatchable units
K Set of piece-wise linear dispatchable genera-

tion cost curve segments
L Set of transmission elements (lines, cables

and transformers)
N Set of nodes
W Set of wind power generators
Wn Subset of wind power generators connected at

node n
c) Parameters:

P forecastd,t Forecast of load active power of demand d at
time t

P forecastw,t Forecast of generation of wind power gener-
ator w at time t

PRTd,t Realisation of load active power of demand d
at time t

PRTw,t Realisation of generation of wind power gen-
erator w at time t

oninitg Initial status of generating unit g at the be-
ginning of the day-ahead decision-making (1
if started up, 0 otherwise)

tup,initg Minimum number of time periods generating
unit g must stay up at the beginning of the
considered day

tdn,initg Minimum number of time periods generating
unit g must stay down at the beginning of the
considered day

tup,ming Minimum number of time periods generating
unit g must stay up once started up

tdn,ming Minimum number of time periods generating
unit g must stay down once shut down

cg Redispatch marginal cost of generating unit g
c0g Start-up cost of generating unit g
cincg,k Marginal running cost of generating unit g at

the segment k of its piece-wise linear curve
Pmaxg Capacity of generating unit g
Pming Minimum stable output of generating unit g
∆P−g Ramp-down limit of generating unit g (for

60min)
∆P+

g Ramp-up limit of generating unit g (for
60min)

∆P−,cg Ramp-down limit of generating unit g in case
of corrective actions (for 20min)

∆P+,c
g Ramp-up limit of generating unit g in case of

corrective actions (for 20min)
P inc,maxg,k Maximum power output of generating unit g

at the segment k of its piece-wise linear curve
vd Voll of demand d in e/MWh
pw Wind penalty for curtailment of wind power

generator w in e/MWh
R+ Minimum up spinning reserve required per

hour for one area
R− Minimum down spinning reserve required per

hour for one area
fmaxl Long-term thermal rating of transmission el-

ement l
rl Ratio of the short-term thermal rating to the

long-term thermal rating of transmission ele-
ment l (rl ≥ 1)

Xl Reactance of transmission element l
βn,l Element of the flow incidence matrix, taking

a value of one if node n is the sending node
of element l, a value of minus one if node n
is the receiving node of element l, and a zero
value otherwise.

al,c Binary parameter taking a zero value if ele-
ment l is unavailable under contingency c.

d) Variables:

PDAg,t Dispatch of generating unit g at time t as per
the day-ahead decision-making

onDAg,t Binary variable representing the status of gen-
erating unit g as per the day-ahead decision-
making (1 if started up, 0 otherwise)

stupg,t Binary variable indicating when generating
unit g is started-up (value 1 when started up,
0 otherwise)

stdng,t Binary variable indicating when generating
unit g is shut down (value 1 when shut down,
0 otherwise)

WCDAw,t Provisional curtailment of wind power gener-
ator w at hour t in day-ahead

R+
g,t Upward redispatch flexibility provided by

generating unit g at time t in day-ahead
R−g,t Downward redispatch flexibility provided by

generating unit g at time t in day-ahead



fDAl,t Power flowing through transmission element
l at time t under the pre-contingency state in
day-ahead

fDASTl,t,c Power flowing through transmission element
l at time t following contingency c in day-
ahead

θDAn,t Voltage angle at node n under the pre-
contingency state in day-ahead

θDASTl,t,c Voltage angle at node n following contin-
gency c in day-ahead.

+PRTpg,t Preventive ramp-up of generator g in real-time
at hour t

−PRTpg,t Preventive ramp-down of generator g in real-
time at hour t

LSRTpd,t Preventive load shedding of demand d in real-
time at hour t

WCRT
p

w,t Preventive wind curtailment of wind power
generator w in real-time at hour t

+PRTcg,t,c Corrective ramp-up of generator g in real-time
at hour t following contingency c

−PRTcg,t,c Corrective ramp-down of generator g in real-
time at hour t following contingency c

LSRTcd,t,c Corrective load shedding of demand d in real-
time at hour t following contingency c

WCRTcw,t,c Corrective wind curtailment of wind power
generator w in real-time at hour t following
contingency c

fpl,t Power flowing through transmission element
l under the pre-contingency state

fSTl,t,c Power flowing through transmission element
l following contingency c and prior to the
application of corrective control.

f cl,t,c Power flowing through transmission element
l following contingency c and the successful
application of corrective control.

θpn,t Voltage angle at node n under the pre-
contingency state

θSTn,t,c Voltage angle at node n following contin-
gency c and prior to the application of cor-
rective control.

θcn,t,c Voltage angle at node n following contin-
gency c and the successful application of
corrective control.

All the variables are continuous, except for ong,t, stdng,t
and stupg,t which are binary variables. Powers flowing through
transmission elements and voltage angles are continuous in IR
and the remaining variables are positive.

B. Day-ahead decision-making

We simulate day-ahead decision-making with a multi-period
SCOPF in order to commit and dispatch the generating units
of the system and also determine the provisional wind cur-
tailment. We use the DC approximation [15] and consider as
reliability criterion the N-1 criterion for transmission elements
only.

The objective function minimizes generation cost as well as
provisional wind curtailment:

minimize
24∑
t=1

(∑
g∈G

(
c0g ∗ stupg,t +

∑
k∈K

cinc
g,k ∗ P inc

g,k,t

)
+
∑
w∈W

pw ∗WCDA
w,t

)
(8)

The first set of constraints (9-19) of the day-ahead program
concerns the minimum time a generating unit must stay up or
down, either at the beginning of the day or during the day.

For t = 1, ∀g ∈ G:

stupg,t − stdng,t = onDAg,t − oninitg (9)

stupg,t + stdng,t ≤ 1 (10)

∀t = 2, ..., 24, ∀g ∈ G:

stupg,t − stdng,t = onDAg,t − onDAg,t−1 (11)

stupg,t + stdng,t ≤ 1 (12)

(13)

∀g ∈ G:
tup,init
g∑
t′=1

(
1− onDAg,t′

)
= 0 (14)

tdn,init
g∑
t′=1

onDAg,t′ = 0 (15)

(16)

∀g ∈ G, ∀t = 1, ...,
(
24− tup,ming

)
:

t+tup,min
g∑
t′=t

onDAg,t′ ≥ st
up
g,t · tup,ming (17)

(18)

∀g ∈ G, ∀t = 1, ...,
(
24− tdn,ming

)
:

t+tdn,min
g∑
t′=t

(
1− onDAg,t′

)
≥ stdng,t · tdn,ming (19)

(20)

The following set of constraints limits the power output of
each generating unit between its minimum stable output and
its maximum capacity, computes the upward and downward
redispatch flexibility of each generator and also imposes
ramping constraints to go from one committed dispatch to the
one of the next period in one hour:
∀g ∈ G, ∀t = 1, ..., 24:

−PDAg,t +R−g,t ≤ −Pming · onDAg,t (21)

PDAg,t +R+
g,t ≤ Pmaxg · onDAg,t (22)

PDAg,t+1 − PDAg,t ≤ ∆P+
g · onDAg,t + Pmaxg (1− onDAg,t )

(23)

−
(
PDAg,t+1 − PDAg,t

)
≤ ∆P−g · onDAg,t + Pmaxg (1− onDAg,t+1)

(24)



We assume a piece-wise linear cost function of |K| segments
for the marginal running cost of a generating unit g, which
gives eq. (25) and (27).
∀g ∈ G, ∀k ∈ K, ∀t = 1, ..., 24:

P incg,k,t ≤ onDAg,t · P
inc,max
g,k (25)

(26)

∀g ∈ G, ∀t = 1, ..., 24:

PDAg,t =

K∑
k=1

P incg,k,t (27)

Equation (28) represents the balancing of the system and
equations (30)-(32) the transmission constraints in case of the
DC approximation.
∀t = 1, ..., 24, ∀n ∈ N :∑

w∈Wn

(P forecastw,t −WCDAw,t ) +
∑
g∈Gn

PDAg,t

−
∑
l∈L

βn,l · fDAl,t =
∑
d∈Dn

P forecastd,t

(28)

∀t = 1, ..., 24, ∀w ∈ W:

0 ≤WCDAw,t ≤ P
forecast
w,t (29)

∀t = 1, ..., 24, ∀l ∈ L:

fDAl,t =
1

Xl

∑
n∈N

βn,l · θDAl,t (30)

fDAl,t ≤ fmaxl (31)

−fDAl,t ≤ fmaxl (32)

Equations (33)-(36) force the system to still be secure in
the case of the loss of one transmission element.
∀t = 1, ..., 24, ∀c ∈ C,∀n ∈ N :∑

w∈Wn

(P forecastw,t −WCDAw,t ) +
∑
g∈Gn

PDAg,t

−
∑
l∈L

βn,l · fDASTl,t,c =
∑
d∈Dn

P forecastd,t

(33)

∀t = 1, ..., 24, ∀c ∈ C,∀l ∈ L:

fDASTl,t,c = al,c ·
1

Xl

∑
n∈N

βn,l · θDASTl,t,c (34)

fDASTl,t,c ≤ al,c · fmaxl (35)

−fDASTl,t,c ≤ al,c · fmaxl (36)

Equations (37)-(42) determine the minimum size of the up
and down spinning reserves per area in the system (in this
work, we have three areas and the same spinning reserve
requirements per area).

∀t = 1, ..., 24, ∀g =∈ G∑
g∈Garea1

R+
g,t ≥ R+ (37)∑

g∈Garea1

R−g,t ≥ R− (38)∑
g∈Garea2

R+
g,t ≥ R+ (39)∑

g∈Garea2

R−g,t ≥ R− (40)∑
g∈Garea3

R+
g,t ≥ R+ (41)∑

g∈Garea3

R−g,t ≥ R− (42)

C. Real-time operation

In order to simulate real-time operation along a system
trajectory, we solve sequentially the 24 hourly steps of the
trajectory. That is we solve 24 single period problems corre-
sponding to the 24 hours of one day.

We model real-time operation with a SCOPF problem with
the N-1 reliability criterion, again considering only trans-
mission elements. We consider preventive (pre-contingency)
as well as corrective (post-contingency) actions and we do
not forget the intermediate state after the occurrence of a
contingency but before any corrective action can be applied,
that we call short-term post-contingency state.

Note that continuous variables from the day-ahead decision-
making program are parameters for this problem.

1) Objective function:
The objective function (43) minimizes the redispatch cost
(upward and downward) as well as load shedding and wind
curtailment, both in preventive and corrective modes. The
value of lost load and wind penalty should be such that load
shedding and wind curtailment are used only where no other
solution exists. In order to favour corrective actions over
preventive ones, we multiply the total preventive cost by a
large factor M .

minimize

M ∗
(∑

g∈G

cg
(
+PRTp

g,t +− PRTp
g,t

)
+
∑
d∈D

vd ∗ LSRTp
d,t

+
∑
w∈W

pw ∗WCRTp
w,t

)

+
∑
c∈C

(∑
d∈D

vd ∗ LSRTc
d,t,c +

∑
w∈W

pw ∗WCRTc
w,t,c +

∑
g∈G

cg
(
+PRTc

g,t,c +− PRTc
g,t,c

))
(43)

2) Pre-contingency state:
The following equations determine the preventive actions.The
possible redispatch of generating units is limited by maximum
and minimum output power of generating units as well as by
ramping constraints of one hour. Equations (48) and (49) also
impose that with the re-dispatch of a unit g, it is still possible
to go in one hour to the dispatch of the generating unit g at
time t+ 1 as per the day-ahead decision-making.



∀g ∈ G:

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) ≥ Pming · onDAg,t

(44)

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) ≤ Pmaxg · onDAg,t

(45)
+PRTpg,t −− P

RTp
g,t ≤ ∆P+

g (46)

−(+PRTpg,t −− P
RTp
g,t ) ≤ ∆P−g (47)

PDAg,t+1 −
(
PDAg,t + (+PRTpg,t −− P

RTp
g,t

)
≤ ∆P+

g (48)

−
(
PDAg,t+1 −

(
PDAg,t ++ PRTpg,t −− P

RTp
g,t

))
≤ ∆P−g (49)

The next constraints correspond to the classical DC approx-
imation.
∀n ∈ N : ∑

w∈Wn

(PRTw,t −WCDAw,t −WCRT
p

w,t )

+
∑
g∈Gn

(
PDAg,t + (+PRTpg,t −− P

RTp
g,t )

)
−
∑
l∈L

βn,l · fpl,t

=
∑
d∈Dn

(PRTd,t − LSRT
p

d,t )

(50)

∀l ∈ L:

fpl,t =
1

Xl

∑
n∈Nn

βn,l · θpl,t (51)

fpl,t ≤ f
max
l (52)

−fpl,t ≤ f
max
l (53)

Finally, we ensure that we do not shed more load and wind
generation than what is possible:
∀d ∈ D:

0 ≤ LSRT
p

d,t ≤ PRTd,t (54)

∀w ∈ W:

0 ≤WCDAw,t +WCRT
p

w,t ≤ PRTw,t (55)

3) Short-term post-contingency state:
In this stage, a contingency occurred but the operator has not
reacted yet. Since we are in emergency state, the line thermal
ratings correspond to the short-term ones.
∀c ∈ C,∀n ∈ N :∑

w∈Wn

(PRTw,t −WCDAw,t −WCRT
p

w,t )

+
∑
g∈Gn

(
PDAg,t + (+PRTpg,t −− P

RTp
g,t )

)
−
∑
l∈L

βn,l · fSTl,t,c

=
∑
d∈Dn

(PRTd,t − LSRT
p

d,t )

(56)

∀c ∈ C,∀l ∈ L:

fSTl,t,c = al,c ·
1

Xl

∑
n∈Nn

βn,l · θSTl,t,c (57)

fSTl,t,c ≤ al,c · rl · fmaxl (58)

−fSTl,t,c ≤ al,c · rl · fmaxl (59)

4) Corrective control:
Finally, corrective actions can be applied to keep the system
secure.
∀c ∈ C,∀g ∈ G:

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) + (+PRTcg,t,c −− PRTcg,t,c )

≥ Pming · onDAg,t (60)

PDAg,t + (+PRTpg,t −− P
RTp
g,t ) + (+PRTcg,t,c −− PRTcg,t,c )

≤ Pmaxg · onDAg,t (61)
+PRTcg,t,c −− PRTcg,t,c ≤ ∆P+,c

g (62)

−(+PRTcg,t,c −− PRTcg,t,c ) ≤ ∆P−,cg (63)

∀c ∈ C,∀n ∈ N :∑
w∈Wn

(PRTw,t −WCDAw,t −WCRT
p

w,t −WCRT
c

w,t,c)

+
∑
g∈Gn

(
PDAg,t + (+PRTpg,t −− P

RTp
g,t ) + (+PRTcg,t,c −− PRTcg,t,c )

)
−
∑
l∈L

βn,l · f cl,t,c =
∑
d∈Dn

(PRTd,t − LSRT
p

d,t − LSRT
c

d,t,c )

(64)
∀c ∈ C,∀d ∈ D:

0 ≤ LSRT
p

d,t + LSRT
c

d,t,c ≤ PRTd,t (65)

∀c ∈ C,∀w ∈ W:

0 ≤WCDAw,t +WCRT
p

w,t +WCRT
c

w,t,c ≤ PRTw,t (66)

∀c ∈ C,∀l ∈ L:

f cl,t,c = al,c ·
1

Xl

∑
n∈Nn

βn,l · θSTl,t (67)

f cl,t,c ≤ al,c · fmaxl (68)

−f cl,t,c ≤ al,c · fmaxl (69)

APPENDIX B
CASE STUDY: THE IEEE-RTS96 - SHORT DESCRIPTION OF

THE DATA

We test our methodology on the IEEE-RTS96 benchmark
[5], where 19 windfarms have been added as in [6].

We consider in this case study the first day of the year,
with a peak demand per area of 3135MW. Demand, generating
units and line ratings data come from [5], while the forecast
wind generation (’favorable’) as well as the initial states of the
generating units are borrowed from [6]. Note that line ratings
have been reduced by a factor of 20%.

Concerning the reliability criterion, we use the N-1 criterion
for transmission elements only (transmission lines, cables



and transformers) and thus we have 120 contingencies. It is
important to note that for the real-time simulator we do not
consider contingencies of lines 49 and 82 in order to avoid
islanding of nodes 207 and 307. Therefore, we have only 118
contingencies in the real-time problem.

We choose as minimum up and down spinning reserve per
area 300 MW. The wind penalty is 300e/MWh and the voll
is an average of the coefficients from [8] converted in e and
is thus equal to 4018.2e/MWh.

Concerning the objective function of the real-time simulator,
we set M=150(> |C|) in order to be sure that corrective actions
will always be favoured over preventive ones.

APPENDIX C
MACHINE LEARNING SETTINGS AND PREDICTORS

In this section, we begin by introducing briefly the learning
algorithms used in the paper, then we describe the procedure
used to train and test the models and we list the values of
the meta-parameters tested to improve the performance of our
models.

A. Two regression algorithms: extremely randomized trees and
neural networks

We tested two types of predictors : extremely randomized
trees (ET) [9] and artificial neural network (NN)[10].

The ET algorithm is a Random Forest algorithm [16]. It is
an ensemble of regression trees where each tree is built with
some randomness. The final prediction is the average of the
predictions of each tree in the forest. This method has three
meta-parameters: the number of trees in the forest, the number
k of features selected randomly at each split and the minimum
number of samples required to split a node nmin.

The artificial neural network we studied is a multi-layer
perceptron with a ReLU activation function. We tuned the
number of hidden layers and the number of neurons per layer.

B. Description of the learning procedure

In order to avoid overfitting, we divide the dataset randomly
into two sets: a learning set and a test set. Each model is learnt
with the learning set and its performances are assessed on the
test set. It allows to see how well each model generalises on
unseen data. The measure used to compare each model is the
R2-score (coefficient of determination), which is computed on
the basis of N cases by [17]:

R2(y, ŷ) = 1−
∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳ)2

,

where yi is the true output of case i, ŷi is the predicted output,
and ȳ is the mean of the N true values. The best possible score
is 1 and corresponds to a model that perfectly predicts all the
target output values of the dataset used to estimate its value.

As said in the previous section, each model has some
meta-parameters that we can tune in order to improve their
performance. In order to select the best meta-parameters, we
used a 5-fold cross validation. For the ET algorithm, we tested
the following parameters: k = 1, p/3, p/2, p, where p is the

total number of features and nmin = 2, 4, 6, 8, 10, 20. The
number of trees was set to 1000, which is good trade-off
between performance and time needed to train and predict.
For the NN algorithm, we tried the following configurations:
two or three hidden layers with 10, 50 or 100 neurons per
layer. The best meta-parameters vary in function of the output
we want to predict or the setting used.


