

Effects of fluid preservation on sea star stable isotope compositions: Can museum collections be used for trophic ecology studies?

Baptiste LE BOURG^a, Gilles LEPOINT^a, Pierre BALTHASART^b, Loïc N. MICHEL^{a,c}. a: Laboratory of Oceanology, University of Liège, 4000 Liège, Belgium, b: Collectif des Enseignements en Biologie, University of Liège, 4000 Liège, Belgium, c: Deep Environment Laboratory (LEP), Ifremer Brittany, 29280 Plouzané, France Contact: baptiste.lebourg@doct.ulg.ac.be

1. Introduction

Stable isotope analyses of carbon ($\delta^{13}C$) and nitrogen ($\delta^{15}N$) are a common tool to investigate marine food webs functioning

Organisms stored in museums sampled during past periods with environmental conditions different from today

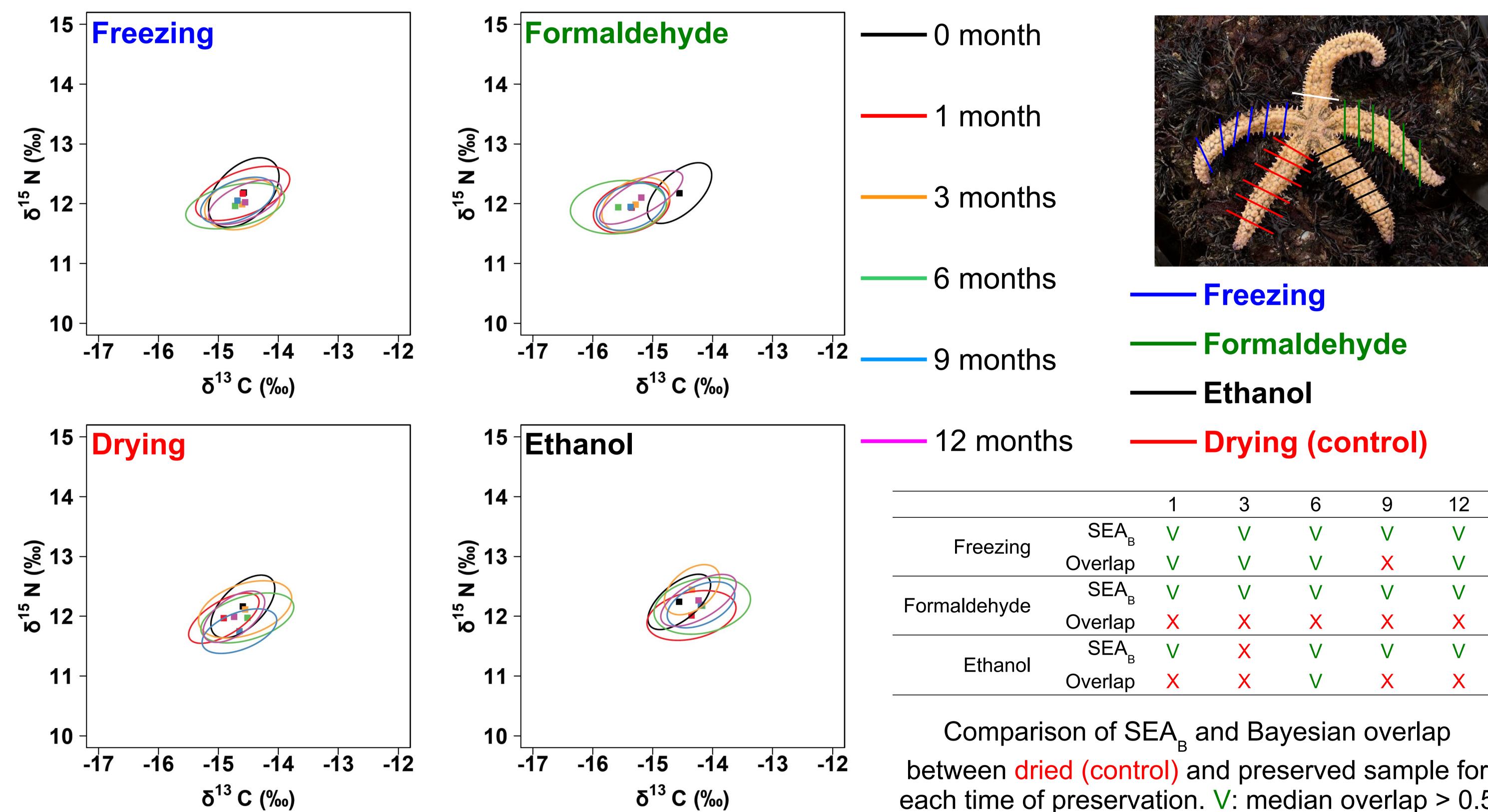
 \rightarrow Possibility to use them for stable isotope analyses to study past food webs?

2. Material and methods

Analysis of stable isotope ratios in dissected tegument of 20 sea stars:

- One arm: **t0 = 0 month** (drying and immediate grinding)
- Other arms: preservation treatments = freezing at -28°C, 3.7% formaldehyde, 99.8% ethanol, drying (control)
- Arms sections randomly assigned to **time** of grinding and

 \rightarrow Does preservation treatment alter stable isotope ratios? No study on sea stars


Objective: To investigate the influence of preservation treatments on C and N stable isotope ratios in *Marthasterias* glacialis

analysis (1 to 12 months)

Comparison to t0 and dried samples of mean stable isotope ratios and isotopic niche areas (SEA_B) of preserved samples

Estimation of the overlap between t0 and preserved samples

3. Results

		1	3	6	9	12
Freezing	SEA _B	V	V	V	V	V
	Overlap	V	V	V	X	V
Formaldehyde	SEA _B	V	V	V	V	V
	Overlap	Х	X	X	X	Х
Ethanol	SEA _B	V	X	V	V	V
	Overlap	Х	Х	V	Х	Х

or SEA_R not significantly different, X: median overlap < 0.5 or SEA_{$_{R}$} significantly different

Evolution of δ^{13} C and δ^{15} N mean values (‰, squares) and isotopic niche (ellipses) during 12 months of preservation

4. Discussion

Non-consistent pattern of changes of stable isotope values and

Formaldehyde: immediate decrease and then stability of δ^{13} C values (-0,8 ± 0,5 ‰)

 \rightarrow very low overlap between t0 and preserved samples

for the other treatments, no δ^{13} C values significantly different from the control; No significant nor consistent pattern for changes of δ¹⁵N values

 \rightarrow yet, sufficient to reduce the overlap between t0 and preserved samples

For all treatments, **no significant change from t0 of isotopic niche area** except at 6 months for samples preserved in ethanol

reduced overlap \rightarrow variation of isotopic ratios in individual sea stars, minor preservation-induced variation or analytical error

Formaldehyde: Possibility to use a same correction factor for δ^{13} C no matter how long samples have been preserved

Take home message: Can museum collections be used for trophic ecology studies?

- Yes, samples stored frozen, in ethanol or dried may be used to study past trophic ecology of sea stars.

- Yes, but samples stored in formaldehyde may be used after using a correction factor.

This work is part of vERSO (Ecosytem Response to global change: a multiscale approach in Southern Ocean) and RECTO (Refugia and Ecosystem Tolerance in the Southern Ocean) projects funded by the Belgian Science Policy Office (BELSPO, BRAIN-be). Baptiste Le Bourg is a PhD student (FRIA scholarship).