Diachronic and areal patterns:

Stéphane Polis
 (F.R.S.-FNRS / ULiège)

(resorting to joint work with Thanasis Georgakopoulos, ULiège;
E. Grossman \& D. Nikolaev, Jerusalem)

Outline of the talk

Semantic maps

- Background information: Different types of maps
- Principles of the classical model
- Connectivity hypothesis
- Economy principle

Outline of the talk

Semantic maps

- Background information: Different types of maps
- Principles of the classical model
- Connectivity hypothesis
- Economy principle

Le Diasema

- Focus on the lexicon and diachrony

Outline of the talk

- Semantic maps
- Background information: Different types of maps
- Principles of the classical model
- Connectivity hypothesis
- Economy principle

Le Diasema

- Focus on the lexicon and diachrony
$>$ Two case-studies
- Diachrony: dynamicizing a map of time-related meanings

Outline of the talk

Semantic maps

- Background information: Different types of maps
- Principles of the classical model
- Connectivity hypothesis
- Economy principle

Le Diasema

- Focus on the lexicon and diachrony
beautiful
> Two case-studies
- Diachrony: dynamicizing a map of time-related meanings
- Areality: patterns of polysemy for the verbs of perception and cognition

Semantic maps

Basic assumption

- Co-expressions (aka, polyfunctionality, polysemy, colexification patterns, etc.) point to recurrent relationships between meanings across languages

Semantic maps

$>$ Basic assumption

- Co-expressions (aka, polyfunctionality, polysemy, colexification patterns, etc.) point to recurrent relationships between meanings across languages

Semantic maps

$>$ Basic assumption

- Co-expressions (aka, polyfunctionality, polysemy, colexification patterns, etc.) point to recurrent relationships between meanings across languages

Semantic maps

Basic assumption

- Co-expressions (aka, polyfunctionality, polysemy, colexification patterns, etc.) point to recurrent relationships between meanings across languages

Found 7 colexifications for "see" and "know". ? Note that the number of attested colexifications may differ from the number of languages in which the colexifications were attested.					
Nr.	Language	ISO	Family	Source	Form
1	Araona	aro	Tacanan	IDS	ba
2	Ayoreo	ayo	Zamucoan	IDS	i mo?
3	Hawaiian	haw	Austronesian	IDS	?ike
4	Ese	mcq	Trans-New Guinea	IDS	6anahe
5	Maori	mri	Austronesian	IDS	kitea
6	Telugu	tel	Dravidian	SPRÅKBANKEN	aarayu
7	Telugu	tel	Dravidian	SPRÅKBANKEN	arayu

[^0]
Semantic maps

Basic assumption

- Co-expressions (aka, polyfunctionality, polysemy, colexification patterns, etc.) point to recurrent relationships between meanings across languages

Found 7 colexifications for "see" and "know". ? Note that the number of attested colexifications may differ from the number of languages in which the colexifications were attested.					
Nr.	Language	ISO	Family	Source	Form
1	Araona	aro	Tacanan	IDS	ba
2	Ayoreo	ayo	Zamucoan	IDS	i'mo?
3	Hawaiian	haw	Austronesian	IDS	2ike
4	Ese	mcq	Trans-New Guinea	IDS	6anahe
5	Maori	mri	Austronesian	IDS	kitea
6	Telugu	tel	Dravidian	SPRÅKBANKEN	aarayu
7	Telugu	tel	Dravidian	SPRÅKBANKEN	arayu

[^1]
Semantic maps

Basic assumption

- Co-expressions (aka, polyfunctionality, polysemy, colexification patterns, etc.) point to recurrent relationships between meanings across languages

(CLICs; http:/ / clics.lingpy.org/ direct.php; List et al. 2014)

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

The semantic map model: State of the art and future avenues for linguistic research

Thanasis Georgakopoulos ${ }^{1}{ }^{(\odot)}$ | Stéphane Polis $^{2}{ }^{\text {© }}$ (

Semantic maps

$>$ Two main types

- Connectivity maps (= classical maps)
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

- Graph
- Nodes = meanings
- Edges $=$ relationships between meanings

Semantic maps

Two main types

- Connectivity maps
- Proximity maps (= MDS maps)

Figure 1a. Haspelmath's (1997: 4) original semantic
map of the indefinite pronouns functions

- Graph
- Nodes $=$ meanings
- Edges $=$ relationships between meanings

Figure 1b. MDS analysis of Haspelmath's (1997) data
on indefinite pronouns (Croft \& Poole 2008: 15)

- Two-dimensional space
- Points $=$ meanings (or contexts)
- Proximity $=$ similarity between meanings (or contexts)

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

Figure 1b. MDS analysis of Haspelmath's (1997) data
on indefinite pronouns (Croft \& Poole 2008: 15)

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

Figure 1b. MDS analysis of Haspelmath's (1997) data
on indefinite pronouns (Croft \& Poole 2008: 15)

1. Specific known

Somebody called you, guess who

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

Figure 1b. MDS analysis of Haspelmath's (1997) data
on indefinite pronouns (Croft \& Poole 2008: 15)

1. Specific known

Somebody called you, guess who
2. Specific unknown:

Somebody called you, but I don't know who

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

Figure 1b. MDS analysis of Haspelmath's (1997) data
on indefinite pronouns (Croft \& Poole 2008: 15)

1. Specific known

Somebody called you, guess who
2. Specific unknown:

Somebody called you, but I don't know who
6. Indirect negation:

I don't think that anybody called

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

Figure 1b. MDS analysis of Haspelmath's (1997) data on indefinite pronouns (Croft \& Poole 2008: 15)

Other application: ‘Typology without types’

- Points $=$ contexts
- Shape of the points = lexical items
- Proximity = higher probability of coexpression

Semantic maps

Two main types

- Connectivity maps
- Proximity maps

Figure 1a. Haspelmath's (1997: 4) original semantic map of the indefinite pronouns functions

Figure 2. A MDS map of 'go', 'come', and 'arrive' in Spanish (Wälchli \& Cysouw 2012: 692)

Other application: ‘Typology without types’

- Points = contexts
- Shape of the points = lexical items
- Proximity $=$ higher probability of coexpression

Semantic maps

$>$ Two main types

- Connectivity maps
- Proximity maps

Semantic maps

$>$ Two main types

- Connectivity maps
- Classical maps (= simple graphs)
- Lattices (= ‘hierarchical’ graphs)

Formal Concept Lattices as Semantic Maps

Daria Ryzhova and Sergei Obiedkov
National Research University Higher School of Economics,
daria.ryzhova@mail.ru sergei.obj@gmail.com

Semantic maps

Semantic maps

Semantic maps

Conditional

FCA solves the problem of form/ meaning mapping, since it shows:
\checkmark How forms maps onto meanings

Semantic maps

FCA solves the problem of form/ meaning mapping, since it shows:
\checkmark How forms maps onto meanings
\checkmark Which concepts are lexicalized and which are not

Semantic maps

FCA solves the problem of form/ meaning mapping, since it shows:
\checkmark How forms maps onto
meanings
\checkmark Which concepts are lexicalized and which are not

Semantic maps

FCA solves the problem of form/ meaning mapping, since it shows:
\checkmark How forms maps onto meanings
\checkmark Which concepts are lexicalized and which are not
\checkmark Implication sets can be computed automatically

[^2]$4<46>$ Irrealis Non-specific Question ==> Conditional;
$5<25>$ Specific Known Conditional $==>$ Specific Unknown Irrealis Non-specific Question
$6<32>$ Specific Unknown Conditional $==>$ Irrealis Non-specific Question;
$7<46>$ Irrealis Non-specific Conditional $==>$ Question:
$8<14>$ Specific Known Indirect Negation ==> Specific Unknown Irrealis Non-specific Question Conditional;
$9<16>$ Specific Unknown Indirect Negation $==>$ Irrealis Non-specific Question Conditional;
$10<27>$ Irrealis Non-specific Indirect
$11\langle 1\rangle$ Specific Known Comparative $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation Direct Negation;
$12<3>$ Specific Unknown Comparative $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$13<11>$ Irrealis Non-specific Comparative $==>$ Question Conditional Indirect Negation;

$\begin{array}{ll}14 \\ 14 \\ 15 & \text { S }\rangle \text { Specific Known Direct Negation }==>\text { Specific Unknown Direct Negation }==>\text { Irrealis Nonknown Irrealis Non-specific Question Conditional Indirect Negation; }\end{array}$
$15<6>$ Specific Unknown Direct Negation $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$16<12>$ Irrealis Non-specific Direct Negation $==>$ Question Conditional Indirect Negation;
$17<26>$ Question Direct Negation $==>$ Indirect Negation;

Semantic maps

FCA solves the problem of form/ meaning mapping, since it shows:
\checkmark How forms maps onto meanings
\checkmark Which concepts are lexicalized and which are not
\checkmark Implication sets can be computed automatically
$1<27>$ Specific Known Irrealis Non-specific $==>$ Specific Unknown;
$2<25>$ Specific Known Question $==>$ Specific Unknown Irrealis Non-
$3<32>$ Specific
fir Ouestion $=\Rightarrow$ Conditional- .
$5<25>$ Specific Known Conditional ==> Specific Unknown Irrealis Non-specific Question;
$6<S<$
$7<46>$ Irrealis Non-specific Conditional $==>$ Questinn
$7<46>$ Irrealis Non-specific Conditional $==>$ Question;
$8<14>$ Specific Known Indirect Negation ==> Specific Unknown Irrealis Non-specific Question Conditional:
$9<16>$ Specific Unknown Indirect Negation $==>$ Irrealis Non-specific Question Conditional;
$11<1>$ Specific Known Comparative $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation Direct Negation;
$12<3>$ Specific Unknown Comparative $==>$ Irrealis Non-specific Question Conditional Indirect Negation,
$13<11>$ Irrealis Non-specific Comparative $==>$ Question Conditional Indirect Negation;
$14<5>$ Specific Known Direct Negation $==>$ Specific Unknown Irrealis Non-specific Ques
$14<5>$ Specific Known Direct Negation $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation;
$15<6>$ Specific Unknown Direct Negation $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$16<12>$ Irrealis Non-specific Direct Negation $==>$ Question Conditional Indirect Negation;
$17<26>$ Question Direct Negation $==>$ Indirect Negation;

Semantic maps

FCA solves the problem of form/ meaning mapping, since it shows:
\checkmark How forms maps onto meanings
\checkmark Which concepts are lexicalized and which are not
\checkmark Implication sets can be computed automatically

[^3]$4<46>$ Irrealic Unknown Question $==>$ Irrealis Non-specific Conditional;
$5<25>$ Specific Known Conditional $==>$ Specific Unknown Irrealis Non-specific Question;

$7<46>$ Irrealis Non-specific Conditional $==>$ Question;
$8<14>$ Specific Known Indirect Negation ==> Specific Unknown Irrealis Non-specific Question Conditional;
$9<16>$ Specific Unknown Indirect Negation $==>$ Irrealis Non-specific Question Conditional;
$11<1>$ Specific Known Comparative $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation Direct Negation;
$12<3>$ Specific Unknown Comparative $==>$ Irrealis Non-specific Question Conditional Indirect Negation,
$13<11>$ Irrealis Non-specific Comparative $==>$ Question Conditional Indirect Negation;

$\begin{array}{ll}14 \\ 14 \\ 15 & \text { S }\rangle \text { Specific Known Direct Negation }==>\text { Specific Unknown Direct Negation }==>\text { Irrealis Nonknown Irrealis Non-specific Question Conditional Indirect Negation; }\end{array}$
$15<6>$ Specific Unknown Direct Negation $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$16<12>$ Irrealis Non-specific Direct Negation $==>$ Question Conditional Indirect Negation;
$17<26>$ Question Direct Negation $==>$ Indirect Negation;

Semantic maps

[^4]$4<4 \mathrm{~F}>$ Irrealic Unknown Question $==>$ Irrealis Non-specific Conditional;
$5<25>$ Specific Known Conditional $==>$ Specific Unknown Irrealis Non-specific Question;

$7<46>$ Irrealis Non-specific Conditional $==>$ Question;
$8<14>$ Specific Known Indirect Negation ==> Specific Unknown Irrealis Non-specific Question Conditional;
$9<16>$ Specific Unknown Indirect Negation $==>$ Irrealis Non-specific Question Conditional;
$11<27>$ Irrealis Non-specific Indirect Negation $==>$ Question Conditional;
$11\langle 1\rangle$ Specific Known Comparative $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation Direct Negation
$12<3>$ Specific Unknown Comparative $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$13<11>$ Irrealis Non-specific Comparative $==>$ Question Conditional Indirect Negation;
$14<5>$ Specific Known Direct Negation $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation;
$15<6>$ Specific Unknown Direct Negation $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$16<12>$ Irrealis Non-specific Direct Negation $==>$ Question Conditional Indirect Negation;
$17<26>$ Question Direct Negation $==>$ Indirect Negation;

Semantic maps

$2<25>$ Specific Known Question ==> Specific Unknown Irrealis Non-specific Conditional;
$3<32>$ Specific Unknown Question ==> Irrealis Non-specific Conditional;
$4<4 \mathrm{~h}>$ Irrealic Non-snecific Oluestion $==>$ Conditional
$5<25>$ Specific Known Conditional $==>$ Specific Unknown Irrealis Non-specific Question;
$6<5>$ spectic unknowiconaitional $7<46>$ Irrealis Non-specific Conditional $==>$ Question;
$7<46>$ Irrealis Non-specific Conditional $==>$ Question;
$8<14>$ Specific Known Indirect Negation ==> Specific Unknown Irrealis Non-specific Question Conditional:
$9<16>$ Specific Unknown Indirect Negation $==>$ Irrealis Non-specific Question Conditional;
$11<1>$ Specific Known Comparative $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation Direct Negation $12<3>$ Specific Unknown Comparative $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$13<11>$ Irrealis Non-specific Comparative $==>$ Question Conditional Indirect Negation;
$14<5>$ Specific Known Direct Negation $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation;
$15<6>$ Specific Unknown Direct Negation $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$16<12>$ Irrealis Non-specific Direct Negation $==>$ Question Conditional Indirect Negation;
$17<26>$ Question Direct Negation $==>$ Indirect Negation;

$2<25>$ Specific Known Question ==> Specific Unknown Irrealis Non-specific Conditional;
$3<32>$ Specific Unknown Question $==>$ Irrealis Non-specific Conditional;
$4<4 \mathrm{~h}>$ Irrealic Non-snecific Oluestion $==>$ Conditional
$5<25>$ Specific Known Conditional $==>$ Specific Unknown Irrealis Non-specific Question;

$7<46>$ Irrealis Non-specific Conditional $==>$ Question;
$8<14>$ Specific Known Indirect Negation ==> Specific Unknown Irrealis Non-specific Question Conditional;
$9<16>$ Specific Unknown Indirect Negation ==> Irrealis Non-specific Question Conditional;
$11<1>$ Specific Known Comparative $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation Direct Negation
$12<3>$ Specific Unknown Comparative $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$13<11>$ Irrealis Non-specific Comparative $==>$ Question Conditional Indirect Negation;
$14<5>$ Specific Known Direct Negation $==>$ Specific Unknown Irrealis Non-specific Question Conditional Indirect Negation;
$15<6>$ Specific Unknown Direct Negation $==>$ Irrealis Non-specific Question Conditional Indirect Negation;
$16<12>$ Irrealis Non-specific Direct Negation $==>$ Question Conditional Indirect Negation;
$17<26>$ Question Direct Negation $==>$ Indirect Negation;

Semantic maps

Semantic maps

- Background information: Different types of maps
- Principles of the classical model

Semantic maps

Semantic maps

- Background information: Different types of maps
- Principles of the classical model
- Connectivity hypothesis (Croft 2001): any language-specific item should map on a connected region of the graph
- Economy principle (Georgakopoulos \& Polis 2018): given three meanings (Meaning_1, Meaning_2, Meaning_3), if the linguistic items expressing Meaning_1 and Meaning_3 always express Meaning_2, there is no need to draw an edge between Meaning_1 and Meaning_3

Semantic maps

English:

- 'Direction': The teacher is going to the school
- 'Purpose': The lifeguard ran to rescue the child
- 'Recipient': The teacher gave the book to the student

Semantic maps

English:

- 'Direction': The teacher is going to the school
- 'Purpose': The lifeguard ran to rescue the child
- 'Recipient': The teacher gave the book to the student

(Haspelmath 2003)

Semantic maps

German:

- 'Purpose': Anna ging zum Spielen in den Garten
- 'Direction’: Ich gehe zu Anna

- 'Recipient': Ich gebe dir das Buch

Semantic maps

German:

- 'Purpose': Anna ging zum Spielen in den Garten
- 'Direction’: Ich gehe zu Anna

- 'Recipient': Ich gebe dir das Buch

recipient

Semantic maps

French:

- 'Purpose': Je donne la balle pour jouer dans le jardin \neq
- 'Direction': Je vais $a ̀$ Moscou
- 'Recipient': Je donne le livre à Paul

Semantic maps

French:

- 'Purpose': Je donne la balle pour jouer dans le jardin \neq
- 'Direction': Je vais \grave{a} Moscou
- 'Recipient': Je donne le livre à Paul

Semantic maps

German

Semantic maps

German

Semantic maps

Mini-map

Semantic maps

Mini-map

Le Diasema

- Adding the diachronic dimension to semantic maps of content words

Le Diasema

- Adding the diachronic dimension to semantic maps of content words

Le Diasema

http://web.philo.ulg.ac.be/lediasema/

Le Diasema

Objectives

- To plot automatically weighted and diachronic semantic maps (tomorrow 9AM)
- To incorporate the diacbronic dimension into semantic maps of content words and to provide information about the cognitive and cultural factors behind the development of the various meanings (today)
- Protocol to construct lexical diachronic semantic maps
- Case-study: The semantic extension of time-related lexemes
- To investigate areal patterns of polysemy with semantic maps (today)
- Case-study: The verbs of perception and cognition in typological perspective

Case-study 1
 Lexical diachronic semantic maps

The semantic extension of time-related lexemes

Protocol to construct a (lexical) diachronic semantic map

1. Choose the concepts/domains
2. Identify cross-linguistic polysemy patterns
3. Build a lexical matrix
4. Plot a weighted semantic map
5. Remove infrequent polysemy patterns
6. Select languages with diachronic data
7. Add diachronic information

Protocol to construct a (lexical) diachronic semantic map

Choice of concepts

- For the purpose of universality and stability, we chose the entries for timerelated concepts in the Swadesh 200-word list (Swadesh 1952: 456-457)
- DAY/DAYTIME

THE TEST VOCABULARY

The lexical test list used for studying rate of change consisted of 215 items of meaning expressed for convenience by English words. In some cases, where the English word is ambiguous or where the English meaning is too broad to be easily matched in other Janguages, it is necessary oo specify which meaning is intended. and this is done by means of parenthetic additions. If it is inderstood that normal everyday meanings rather han figurative or specialized usages are to be 15 resom mmended tor of ion and with is
day
all (oi a number), and. anmal. astics, at, back (person's), had (deleterions or unsuitahle), hark (of tee), lectase, belly, berty (or fruit), big, bird, to bite, black, blood, to blow (oi wind. hone. breathe. to burn (intrans.)
child tyoung pursurn rather than ats relationship termy. cloul, colld iof weather i, to come, to count. to cut, day (opposite of night rather than time measare), to dic, to dig, dirty, dog, to drink, dry (sub) ge g. cy
to rall (drop rather than topple), iar, fat (organic sulstance), father, to fear, feather (larger feathers
rather than down), few, to fight, fire fish, five, to flost, to flow, flower, to fly, iog, ioot, four, to frecze. 0 give.
good, grass, kreen, guts, hair, hand, he, head, to hear, heart, heavy, here, to hit, to hold (in hand). how, to innt (game), husband. I. ice, ii.

Protocol to construct a (lexical) diachronic semantic map

Choice of concepts

- We chose the entries for timerelated concepts also for the sake of comparability (see, e.g. , Youn et al. 2016)

On the universal structure of human lexical semantics

Protocol to construct a (lexical) diachronic semantic map

Identify cross-linguistic polysemy patterns

- Identify in CLICS (List et al. 2014) the main polysemy patterns attested for these three meanings (subgraph approach) [16 meanings]

Protocol to construct a (lexical) diachronic semantic map

Identify cross-linguistic polysemy patterns

- Identify in CLICS (List et al. 2014) the main polysemy patterns attested for these three meanings (subgraph approach) [16 meanings]
- DAY/DAYTIME: CLOCK/TIMEPIECE, HOUR, SEASON, SUN, TIME, WEATHER
- NIGHT: DARK (in color), DARKNESS, BLACK, OBSCURE
- YEAR: AGE, SPRING, SUMMER

Protocol to construct a (lexical) diachronic semantic map

Identify cross-linguistic polysemy patterns

- All the colexification patterns attested for these 16 meanings were gathered from the CLICs source files (http:/ / clics.lingpy.org/download.php):

381 colexification patterns

	A	B	C
119	day	afternoon	hau_std:rana//ket_std:i///plj_std:piidi//rus_std:den//tli_std:yakyee
120	day	again	kha_std:sngi
121	day	age	gui_std:'ara//yad_std:hnda
122	day	anger	tzz_std:k'ak'al
123	day	bright	tzz std:k'ak'al
124	day	clock, timepiece	
125	day	cloud	haw_std:ao
126	day	country	cbr_std:niti/shp_std:niti
127	day	dawn	haw_std:ao//waw_std:enmart
128	day	doubt	haw_std:lả
129	day	earth, land	cag_std:nafu//haw_std:ao//mri_std:ao//tzz_std:osil
130	day	east	tob_std:na?a?k
131	day	fever	tzz_std:k'ak'al
132	day	fin (dorsal)	haw_std:la
133	day	fire	jpn std:hi
134	day	go	ote_std:pa//oym_std:aa
135	day	go away, depart	ote_std:pa
136	day	hour	sap_Standard:aknim//shb_std.tham
137	day	lamp, torch	ito_std:uwayo
138	day	lick	cmn_stditian
139	day	light (in color)	mri_stdiao
140	day	light (noun)	con_std:a 2 a/a/crt_std:xioma//haw_std:ao//hdn_Northern: ${ }^{5} \mathrm{~kat}{ }^{\text {kaja/ito_std:uwayo//mzt }}$
141	day	live, living, life	shp_std:niti

Protocol to construct a (lexical) diachronic semantic map

Convert the polysemy patterns into a lexical matrix

```
Tmap = [Tsenses]
for t in Tclean:
    split_langWord = t[2].split('//')
    for couple in split_langWord:
        langWord = couple.split(':')
        line = [langWord[0], langWord[1]]
        for i in range (2,len(Tsenses)):
            line.append('0')
        line[Tsenses.index(t[0])] = '1'
        line[Tsenses.index(t[1])] = '1'
        Tmap.append(line)
```

 Python script \(\alpha\)
 Languages Forms

	A	B	C	D	E	F
1			age	acid, sour	city, town	day
2	yad_std	hnda	1	1		0 1
3	vec_std	edat	1	0		00
4	jpr_std	toshi	1	0		10
5	gui std	ara	1	0		$0 \quad 1$
6	nog_std	йуз	1	0		00
7	mri_std	pakeke	1	0		00
8	pbb_std	hipph	1	0		00
9	khv_Khvarshi	замана	1	0		0

1 when a meaning is attested for one form
Lexical matrix

Protocol to construct a (lexical) diachronic semantic map

Plot a weighted semantic map

Tomorrow 9AM

Remove infrequent polysemy patterns

Semantic map of time-related senses
(colexification patterns attested in 2^{+}
languages)
Two connected sub-networks

- NIGHT/DARKNESS/DARK
- DAY/TIME/AGE/YEAR

Remove infrequent polysemy patterns

Semantic map of time-related senses (colexification patterns attested in 2^{+} languages)

Two connected sub-networks

- NIGHT/DARKNESS/DARK
- DAY/TIME/AGE/YEAR

Protocol to construct a (lexical) diachronic semantic map

Remove infrequent polysemy patterns

- In order to investigate directionality of change, 13 meanings that are connected on this map in at least 8 different languages were kept as a basis for diachronic investigation (in the sub-graph day/year)

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)
(1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)
(1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
(2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian -Czech; Realization Type: Cognate

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)
(1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
(2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian -Czech; Realization Type: Cognate
(3) Meanings: arc (source) \rightarrow rainbow (target) (ID: 393); Form: Bogen \rightarrow Regenbogen; Language: German; Realization Type: Morphological derivation

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)
(1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
(2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian -Czech; Realization Type: Cognate
(3) Meanings: arc (source) \rightarrow rainbow (target) (ID: 393); Form: Bogen \rightarrow Regenbogen; Language: German; Realization Type: Morphological derivation
(4) Meanings: to count (source) \rightarrow speech (target) (ID: 11); Forms: ratio \rightarrow Rede; Languages: Latin (donor) \rightarrow German (target); Realization Type: Borrowing

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)
(1) Meanings: tree (source)—forest (target) (ID: 600); Form: dar; Language: Aghul; Realization Type: synchronic polysemy
(2) Meanings: doll (source)—nymph, chrysalis (target) (ID: 927); Form: kukla; Language pair: Russian -Czech; Realization Type: Cognate
(3) Meanings: arc (source) \rightarrow rainbow (target) (ID: 393); Form: Bogen \rightarrow Regenbogen; Language: German; Realization Type: Morphological derivation
(4) Meanings: to count (source) \rightarrow speech (target) (ID: 11); Forms: ratio \rightarrow Rede; Languages: Latin (donor) \rightarrow German (target); Realization Type: Borrowing
(5) Meanings: to catch (source) \rightarrow to hunt (target) (ID: 415); Forms: capto \rightarrow cacciare; Languages: Latin \rightarrow Italian; Realization Type: Diachronic semantic evolution

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)

DatSemShifts			Meanings	Languages	Participants		Publications	Contact us L	
Home	Sema	ic shifts							
ID	Source	Direction	Target	Sta		Cont	ibuted by	Accepted realization	Show
53	time	-	weather	Acc	pted	DG		4	Show
109	time	-	opportunity	Acc	pted	IG		2	Show
395	time	-	hour	Acc	pted	DG		2	Show
406	time	-	24 hours	Sus	ended	DG		0	Show
795	time	\rightarrow	one time, onc	e New		MB		0	Show
1446	time	\rightarrow	journal, maga	zine Acc	pted	IG		3	Show

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)

DatSemShifts			Meanings La	Languages	Participants		Publications	Contact us L	
Home	Sema	ic shifts -							
ID	Source	Direction	Target	Stat		Cont	ibuted by	Accepted realization	Show
53	time	-	weather	Acce	pted	DG		4	Show
109	time	-	opportunity	Acce	pted	IG		2	Show
395	time	-	hour	Acce	pted	DG		2	Show
406	time	-	24 hours	Susp	ended	DG		0	Show
795	time	\rightarrow	one time, once	New		MB		0	Show
1446	time	\rightarrow	journal, magazine	Acce	pted	IG		3	Show

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- The Catalogue of Semantic Shifts in the Languages of the World (Zalizniak, 2006; Zalizniak et al., 2012; http:// semshifts.iling-ran.ru/)

| ID | Source | Direction | Target | Status | Contributed by |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1446 | time | \rightarrow | journal, magazine | Accepted | IG |

Comments:
Ср. греч. хронограф, откуда могут быть кальки.
Confirmed by 3 Guru(s)
Derivation: German Zeit \rightarrow Zeitung, Zeitschrift 'newspaper, journal
Derivation: Karaim вахт 'time' \rightarrow вахтлых 'journal'
Polysemy: Polish czas 'time' - 'journal'

Protocol to construct a (lexical) diachronic semantic map

Select languages with diachronic data

- Ancient Greek $\left(8^{\text {th }}-4^{\text {th }}\right.$ c. BC; in a few cases till $1^{\text {st }}$ c. BC)
- Perseus digital library (http://www.perseus.tufts.edu/hopper/), TLG (http://stephanus.tlg.uci.edu)
- Cunliffe (A lexicon of the Homeric Dialect), LSJ
- Ancient Egyptian (26th c. BC - 10th c. AD)
- Thesaurus Linguae Aegyptiae (http:// aaew.bbaw.de/tla/)
- The Ramses corpus (http:/ / ramses.ulg.ac.be),
- Lexical resources (Coptic etymological dictionaries)

The semantic extension of time-related lexemes

Add diachronic information

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
- TIME?

The semantic extension of time-related lexemes

- Ancient Greek: hóra 'season/time/moment'
(1)

hóssá	te	phúlla	kaì	ánthea
REL.NOM.PL.N	PTC	leave:ACC.PL.N	CONJ	flower:ACC.PL.N
gígnetai		hóréèi		

$\begin{array}{ll}\text { (2) óphra } & \text { Poseidáōni } \\ \text { CONJ } & \text { Poseidon:DAT.SG.M }\end{array}$

kaì	állois	athanátoisin
CONJ	other:DAT.PL	immortal:DAT.PL

speísantes
pour.libation:PART.AOR.NOM.PL.M
koítoio
bed:GEN.SG.M
medốmetha:
think.of:PRS.1PL.SUBJ.M/P

tô̂o	gàr	hốrē
DEM.GEN.SG	PTC	time:NOM.SG.F

'that when we have poured libations to Poseidon and the other immortals, we may bethink us of sleep; for it is the time thereto' (Homer, Odyssey 3.333-334)

The semantic extension of time-related lexemes

- Ancient Greek: hóra 'season/time/moment' \Rightarrow 'hour'

Approx.
$5^{\text {th }} \mathbf{c} . \mathrm{BC}$
(3) anastàs
raise.up:PTCP.AOR.NOM.SG.M
tês hórras $\begin{array}{lll}\text { dè } & \text { prò̀i } & \text { pseustheìs } \\ \text { PTC } & \text { early } & \text { deceive:PTCP.AOR.PASS.NOM.SG.M }\end{array}$

ART.GEN.SG.F time:GEN.SG.F
badízein
walk:PRS.INF
'He arose early, mistaking the time/hour, and started off on his walk'
(Andocides, On the Mysteries 1.38)

Approx.
$\mathbf{1}^{\text {st }} \mathbf{c} . \mathrm{AD}$
(4) oukhì

oukhì	dódeka	hôraì	eisin	tês	hēméras;
NEG	twelve	hour:NOM.PL.F	be.PRS.3PL	ART.GEN.SG.F	day:GEN.SG.F

'Aren't there twelve hours of daylight?' (New Testament, John 11.9.2)

The semantic extension of time-related lexemes

Add diachronic information

Metonymy: due to the correlation between the canonical time periods and the time these take to unfold

The semantic extension of time-related lexemes

'Dynamicizing' the map

- The diachronic material allows us to add diachronic information (graphically, oriented edges) between frequent colexification patterns
- TIME?

The semantic extension of time-related lexemes

'Dynamicizing' the map

A recurring issue: English as metalanguage and the lack of (contextualized) definitions for the meanings in the typological literature and resources

	Stage A	Stage B	Stage C
Duration	\checkmark	\checkmark	\checkmark
Moment	-	\checkmark	\checkmark
Event	-	\checkmark	\checkmark
Matrix	-	\checkmark	-
Agentive	-	\checkmark	\checkmark
Commodity	-	\checkmark	\checkmark
Measurement- system	-	-	-
Grammatical	-	-	\checkmark

1: The Duration Sense 2: Matrix Sense 2.1: Agent Sense

3: Moment Sense 3.1: Event Sense 4: Commodity Sense 5: Grammatical Sense

The radial structure of khrónos in AG (Georgakopoulos \& Piata 2012)

The senses of kbrónos in the diachrony of AG

The semantic extension of time-related lexemes

'Dynamicizing' the map

A recurring issue: English as metalanguage and the lack of (contextualized) definitions for the meanings in the typological literature and resources

	Stage A	Stage B	Stage C
Duration	\checkmark	\checkmark	\checkmark
Moment	-	\checkmark	\checkmark
Event	-	\checkmark	\checkmark
Matrix	-	\checkmark	-
Agentive	-	\checkmark	\checkmark
Commodity	-	\checkmark	\checkmark
Measurement- system	-	-	-
Grammatical	-	-	\checkmark

Ekaterina Rakhilina and Tatiana Reznikova
4. A Frame-based methodology for lexical typology

[^5](Georgakopoulos \& Piata 2012

The semantic extension of time-related lexemes

Enriching the map

- The material allows us to add new polysemy patterns, and to provide a diachronic account
- SUMMER?

The semantic extension of time-related lexemes

Enriching the map

- Summer?
There are 17 links involving the concept "summer": ?

Concept	IDS-Key	Occurrences	Families	Languages	Network		Forms
year	14.73	233	10	16	COM	SUB	FORMS
age	14.12	257	2	3	COM	SUB	FORMS
bow	20.24	231	2	2	COM	SUB	FORMS
spring	14.75	174	2	3	COM	SUB	FORMS
autumn	14.77	167	1	1	COM	SUB	FORMS
cave	1.28	256	1	1	COM	SUB	FORMS
cousin	2.55	346	1	1	COM	SUB	FORMS
hang up	9.341	280	1	1	COM	SUB	FORMS
hot	15.85	303	1	1	COM	SUB	FORMS
put	12.12	306	1	1	COM	SUB	FORMS
rain (noun)	1.75	257	1	1	COM	SUB	FORMS
reach, arrive	10.55	329	1	,	COM	SUB	FORMS
rise	10.21	334	1	1	COM	SUB	FORMS
season	14.78	193	1	1	COM	SUB	FORMS
sun	1.52	245	1	1	COM	SUB	FORMS
wall	7.27	239	1	1	COM	SUB	FORMS
wine	5.92	162	1	1	COM	SUB	FORMS

(http:/ /clics.lingpy.org/all.php?gloss=summer)

The semantic extension of time-related lexemes

Language-specific colexification patterns

- Ancient Greek: théros 'summer' \Rightarrow 'harvest'
(5)

| autàr | epè̀n | élthēisi |
| :--- | :--- | :--- |\quad théros \quad| PTC | when |
| :--- | :--- |
| come:AOR.SUBJ.3SG | summer:NOM.SG.M |

tethaluîa
thrive:PART.PERF.NOM.SG.F
'But when summer comes and rich autumn' (Homer, Odyssey 11.192)
(6)

kâit'	anè̀r ADV man:NOM.SG.M	édoksen seem:AOR.3SG	eînai, be.INF	tallótrion another:GEN.SG
amôn	théros			

'he has only made himself a name by reaping another's harvest'
 (Aristophanes, Knights 392)

The semantic extension of time-related lexemes

Language-specific colexification patterns

smo belegt seit M.R.
 Na. mit Cartikel niz.
 die Erente, der Eenteertrag. 1.

The semantic extension of time-related lexemes

Language-specific colexification patterns

- The material allows us to add new polysemy patterns, and to provide a diachronic account
- SUMMER?

Metonymy

HARVEST

year

The semantic extension of time-related lexemes

Language-specific colexification patterns

- The material allows us to highlight unexpected pathways of change:
- From temporal proximity to spatial proximity
- What about the TIME IS SPACE Metaphor?
- (Cross-linguistically Time to Space transfers are extremely rare; cf. French depuis; Haspelmath 1997)

The semantic extension of time-related lexemes

Ancient Egyptian

Approx.

 1400 BC'(Now, the peasant spoke these word) during the time of his Majesty, the King of Upper and Lower Egypt, Nebkaure (the justified)' (= Parkinson 1991: 19)

sbty	$\underline{d r}$	m	$r k$
rampart	strong	in	proximity

$$
m \check{s}^{c}-f \quad(=\mathrm{K} R I \mathrm{II}, 6,8)
$$

army-3SG.M
(speaking of the King who is)
'A strong rampart around his army, (their shield in the day of fighting)'

The semantic extension of time-related lexemes

Ancient Egyptian

(Stage II)
(Stage I)

The semantic extension of time-related lexemes

Ancient Egyptian

Biography of Abmose, 5

Approx. 1350 BC
(And then I became a soldier (...),
'during the time of the lord of the Two Lands, Nebpehtire (justified, when I was a young man, not having a wife yet)' (= Urk. IV, 2,13)

(10)

m	$h_{3} W$	$n h . t$
in	prox-space	Sycamor

'(I crossed the place called The Two Truths,) in the vicinity of The

Approx.
1500 BC Sycamore" (and I landed at The Island of Snefru)' (= Koch 1990: 14)

The semantic extension of time-related lexemes

Ancient Egyptian

(Stage II)
(Stage I)

The semantic extension of time-related lexemes

Ancient Egyptian

(Stage II)
(Stage I)

The semantic extension of time-related lexemes

Ancient Egyptian

(Stage II)
(Stage I)

The semantic extension of time-related lexemes

Language-specific colexification patterns

From undirected

The semantic extension of time-related lexemes

Language-specific colexification patterns

From undirected $>$ to directed

The semantic extension of time-related lexemes

Language-specific colexification patterns

From undirected $>$ to directed $>$ to mixed graphs

Case-study 2
 Semantic maps for areal lexical typology?

The verbs of perception and cognition

Perception and Cognition

Choice of concepts

- Perception and cognition are among the basic concepts that are lexicalized in the languages of the world (e.g. Swadesh 1952)
- The domain is well studied: our results can be compared (e.g. Sweetser 1990; Evans \& Wilkins 2000; Vanhove 2008)
- The literature has revealed both universal and culture-specific patterns

Perception and Cognition

Verbs of perception \& cognition

Semantic extensions

Intrafield (= Intradomain)
(senses: same semantic field)

Interfield (= Interdomain/ Transfield) (senses: different semantic field)
(based on Wilkins 1996: 274; cf. Matisoff 1978)

Perception and Cognition

Verbs of perception \& cognition

Intrafield extensions

$$
\text { sight }>\text { hearing }>\text { touch }>\left\{\begin{array}{l}
\text { smell } \\
\text { taste }
\end{array}\right.
$$

Figure. Vibergs sense modality hierarchy for semantic extensions and polysemies of perception verbs

Table. Inventories of the verbs of

Walbiri (West Australia) Source: Hale 1971: 478		Djaru (West Australia) Tasaku 1981: 418		Lesghian (East Caucasus) Dixon 1979: note 54	
nja- pựa-nja- paṇti-nja-	'to see'	nyang.	'see/	akun	'see/look'
	'to hear,		look'	van akun	'hear/listen'
	to feel'	pura-nyang-	'hear/		
	'to smell'		listen'		

Perception and Cognition

Interfield extensions

Mind-as-bodyMetaphor:

The internal self is understood in terms of the bodily external self (Sweetser 1990: 45)

- Common cross-linguistically (if not
universal): the connection between VISION and
KNOWLEDGE

Figure. The structure of our metaphors of perception
(Sweetser 1990: 38)

Perception and Cognition

- Convenience sample: Central, East and North European languages
- Case study: Auditory and visual perception
- Opportunistic perception verbs = non-controlled experience (e.g., hear)
- Explorative perception verbs $=$ controlled activity (e.g., listen)
- Goal: how the encoding of a specificity distinction may differ cross-linguistically.
- (Probably a) typological rarum
- But particular areal feature for Baltic languages
- Method: probabilistic semantic maps based on parallel corpora

```
Non-specific, specific and obscured perception verbs in Baltic languages
```

Bernhard Wälchli
Stockholm University

Perception and Cognition

$\square=$ specific 'hear', $\boldsymbol{\Delta}=$ non-specific 'hear', $O=$ 'listen'

Figure. Probabilistic semantic map of 44 auditory contexts in Mark based on 64 doculects in English (leb), Lithuanian (1998), Latgalian and Latvian (2012) (Wälchli 2016: 77)

OPPORTUNISTIC
EXPLORATIVE
specific
opportunistic

contexts \quad ability | contexts |
| :---: |

baltic linguistics

15SN 2081-7533
$7(2016), 53-135$

Non-specific, specific and obscured perception verbs in Baltic languages

Bernhard Wälchli
Stockholm University

Perception and Cognition

- N of lgs: 221
- N of \lg families: 64
- N of concepts: 1280

CLICS

Database of Cross-Linguistic Colexifications

Meaning 1	Meaning 2	N of language	N of forms	language: 0 orm
see	know	5	6	aro_std:[ba]//ayo_std:[i' mo?]//haw_std:[?ike]/ / mcq_std: [banahe]//mri_std:[kitea]//tel_std:[aarayu]//tel_std:[arayu]
see	find	15	23	agr_std:[wainat]//arn_std:[pe]//con_std:['atheye]//cwg_std: [yow]//emp_std:[u'nu]//kgp_std:[we]//kpv_std:[addzını]// kyh_std:[mah]//mca_std:[wen]//mri_std:[kitea]//oym_std:[esa]// pbb_std:[uy]//plt_std:[mahìta]// pui_std:[duk]/ /ray_std:[tikeRa]// rtm_std:[ræe]// sap_Enlhet:[nenwetay']/ / sei_std:[aPo]/ / shb_std: [taa]//sja_std:[unu]//swh_std:[ona]//tbc_std:[le]//yag_std:[tiki]
see	get, obtain	6	6	kgp_std:[we]/ /mbc_std:[eraPma]/ /pbb_std:[uy]//sap_Standard: [akwitayi]//srq_std:[tea]//udi_std:[акъсун]

Polysemy data from CLiCs (http:/ /clics.lingpy.org/download.php)

Perception and Cognition

Figure. Complete subnetwork in CLICS of which SEE is part

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain, visualized with modularity analysis* (Blondel et al. 2008) in Gephi

green, unripe
Le Diasema

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE) and cognitive verbs (e.g., UNDERSTAND)

, SE

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE) and cognitive verbs (e.g., UNDERSTAND)
- There is no intrafield extension from SEE to HEAR

Perception and Cognition

Figure. Weighted semantic map for the cognition-
perception domain (polysemy patterns in more than 1
language)
Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE) and cognitive verbs (e.g., UNDERSTAND)
- There is no intrafield extension from SEE to HEAR without going through interfield meanings

Perception and Cognition

Figure. Weighted semantic map for the cognition-
perception domain (polysemy patterns in more than 1
language)
Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE) and cognitive verbs (e.g., UNDERSTAND)
- There is no intrafield extension from SEE to HEAR without going through interfield meanings

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE) and cognitive verbs (e.g., UNDERSTAND)
- There is no intrafield extension from SEE to HEAR without going through interfield meanings
- Implicational hierarchies:
- If THINK and SEE, then KNOW
- If HEAR and LEARN, then KNOW

(Vanhove 2008)

Renember

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE) and cognitive verbs (e.g., UNDERSTAND)
- There is no intrafield extension from SEE to HEAR without going through interfield meanings
- Implicational hierarchies:
- If THINK and SEE, then KNOW
- If HEAR and LEARN, then KNOW

(Vanhove 2008)

Renember

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE)

Global WordNet

 AssociationAfree, putlic and non-commercial organization
that provides a platiom for discussing, shaing and connnecting wortenets torall languiages in tho vord. and cognitive verbs (e.g., UNDERSTAND)

- There is no intrafield extension from SEE to HEAR without going through interfield meanings

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE)

Global WordNet

- There is no intrafield extension from SEE to HEAR without going through interfield meanings

```
2 \ 1 < 8 > learn listen ==> hear;
    2<4> learn read ==> hear
    3<4> listen read ==> hear:
    4<2> listen spot ==> hear learn read hark listen_in heed;
    5<3> read spot ==> hear;
    6<2 > hear learn read spot ==> listen hark listen_in heed;
    7<14> learn understand ==> see visualize examine
    8<3> listen understand ==> hear.
    9<5> spot understand ==> perceive see visualize watch;
    10<9> learn perceive ==> see;
    11<1> read perceive ==> hear spot;
    12<1> hear spot perceive ==> read;
    13<8> understand perceive ==> see visualize watch;
    14<3> hear interpret ==> understand;
    15<32 > learn interpret ==> see meet;
    16 < 1 > listen interpret ==> hear understand intend
    17<3> spot interpret ==> learn see meet watch visit;
    18<5> perceive interpret ==> learn see meet watch visit;
    19<1> hear see ==> learn understand perceive interpret determine get catch visualize realize meet experience examine wa
```


Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE)

Global WordNet

 and cognitive verbs (e.g., UNDERSTAND)- There is no intrafield extension from SEE to HEAR without going through interfield meanings

```
2 \ 1 < 8 > learn listen ==> hear;
    <- i - inarnicaui--- inar,
```

 \(3<4>\) listen read \(==>\) hear;
 \(4<2>\) listen spot \(==>\) hear learn read hark listen_in heed;
 \(5<3>\) read spot \(==>\) hear;
 \(6<2>\) hear learn read spot \(==>\) listen hark listen_in heed;
 7 - 14 - loarn undorctand - - coo visualize examine
 \(8<3>\) listen understand \(==>\) hear;
 \(y<3>\) spot unuerstanu = = > perceive see visualize watch;
 \(10<9>\) learn perceive \(==>\) see;
 \(11<1>\) read perceive \(==>\) hear spot;
 \(12<1>\) hear spot perceive \(==>\) read;
 \(13<8>\) understand perceive \(==>\) see visualize watch;
 \(14<3>\) hear interpret \(==>\) understand;
 \(15<32>\) learn interpret \(==>\) see meet;
 \(16<1>\) listen interpret \(==>\) hear understand intend
 \(17<3>\) spot interpret \(==>\) learn see meet watch visit;
 \(18<5>\) perceive interpret \(==>\) learn see meet watch visit;
 \(19<1>\) hear see \(==>\) learn understand perceive interpret determine get catch visualize realize meet experience examine wa

Perception and Cognition

Figure. Weighted semantic map for the cognitionperception domain (polysemy patterns in more than 1 language)

Some 'universal' observations

- Direct connection between perception verbs denoting non-controlled experience (e.g., HEAR, SEE)

Global WordNet

 and cognitive verbs (e.g., UNDERSTAND)- There is no intrafield extension from SEE to HEAR without going through interfield meanings

```
2\downarrow 1<8> learn listen ==> hear;
    2 - i - inarnivau -- incar,
    3<4> listen read ==> hear;
```

 \(4<2>\) listen spot \(==>\) hear learn read hark listen_in heed;
 \(5<3>\) read spot \(==>\) hear;
 \(6<2>\) hear learn read spot \(==>\) listen hark listen_in heed;
 7 - 14 - loarn undorctand - - coo visualize examine
 \(8<3>\) listen understand \(==>\) hear;
 \(y<3>\) spot unuerstanu = = > perceive see visualize watch;
 \(10<9>\) learn perceive \(==>\) see;
 \(11<1>\) read perceive ==> hear spot;
 \(12<1>\) hear spot perceive \(==>\) read;
 \(13<8>\) understand perceive \(==>\) see visualize watch
 \(14<3>\) hear interpret \(==>\) understand;
 \(15<32>\) learn interpret \(==>\) see meet;
 \(16<1>\) listen interpret \(==>\) hear understand intend;
 \(17<3>\) spot interpret \(==>\) learn see meet watch visit;
 \(19<1>\) hear see \(==>\) learn understand perceive interpret determine get catch visualize realize meet experience examine wa

Perception and Cognition

Areal patterns (Vanhove 2008)

Perception and Cognition

Areal patterns

- A general approach: scatter plot of the CLICS data (2D t-SNE)

Figure. A 2D t-SNE projection of the polysemy patterns of verbs with meanings HEAR or LISTEN and SEE or LOOK from the CLICS dataset

Perception and Cognition

Areal patterns

- Corrplot: Eurasia vs South America

South America

Perception and Cognition

Areal patterns

- Corrplot: Eurasia vs South America

South America

Perception and Cognition

Areal patterns

- Corrplot: Eurasia vs South America

South America

Perception and Cognition

Areal patterns

- Corrplot: Eurasia vs South America

South America

Perception and Cognition

Areal patterns

- Corrplot: Eurasia vs South America

South America

Perception and Cognition

Areal patterns

- Corrplot: Papua

Papua

Perception and Cognition

Areal patterns

- Corrplot: Papua

Papua

Perception and Cognition

Areal patterns

- Corrplot: Papua

Papua

Perception and Cognition

Areal patterns

- 2D t-SNE of the Wordnet data

Perception and Cognition

Areal patterns

- 2D t-SNE of the Wordnet data

Perception and Cognition

Areal patterns

- FCA of the Wordnet data

Perception and Cognition

Areal patterns

- FCA of the Wordnet data

Perception and Cognition

Areal patterns

- FCA of the Wordnet data (Arabic)

Perception and Cognition

Areal patterns

- FCA of the Wordnet data (Arabic)

Perception and Cognition

Areal patterns

- FCA of the Wordnet data (Arabic)

Perception and Cognition

Areal patterns

- FCA of the Wordnet data (Arabic)

Perception and Cognition

Areal patterns

- FCA of the Wordnet data (Arabic)

Perception and Cognition

Areal patterns

- Corpus
- Statistical significance is difficult to reach with the 'small' samples at our disposal
- A sample of areally related, but genetically diverse languages (with enough languages in each family in order to reach statistical significance) would be the way to go in order to investigate further these questions (i.e., beyond semantic factors)

Perception and Cognition

Areal patterns

- Corpus
- Statistical significance is difficult to reach with the 'small' samples at our disposal
- A sample of areally related, but genetically diverse languages (with enough languages in each family in order to reach statistical significance) would be the way to go in order to investigate further these questions (i.e., beyond semantic factors)
- Methodology
- We used 2D t-SNE, correlation plot, and FCA, but did not take properly advantage of the graph model of the classical semantic maps.
- We could compare minimal path distances and number of different paths between nodes in semantic maps for different domains in different areas. This would give us an estimate of the degree of connectedness of different verb senses in different regions, giving rise to different colexification networks.

Conclusions

More tomorrow (9AM)

Thanks!
s.polis@uliege.be

[^0]: (CLICs; http:/ /clics.lingpy.org/direct.php; List et al. 2014)

[^1]: (CLICs; http:/ /clics.lingpy.org/direct.php; List et al. 2014)

[^2]: <25 > Specific Known Irrealis Non-specific ==> Specific Unknown:
 $2<25>$ Specific Known Question ==> Specific Unknown Irrealis Non-specific Conditional;
 $3<32>$ Specific Unknown Question $==>$ Irrealis Non-specific Conditional;
 $4<46>$ Irrealis Non-specific Question

[^3]: $1<27>$ Specific Known Irrealis Non-specific $=\gg$ Specific Unknown;
 $3<32>$ specicic

[^4]: $1<27>$ Specific Known Irrealis Non-specific $=\gg$ Specific Unknown;
 $3<32>$ spenic Known Question

[^5]: The senses of kbrónos in the diachrony of AG

