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Introduction:

With aging brain structure undergoes substantial changes, which are modulated by many factors and
are aggravated in brain pathology. The relationship between grey matter volume (GMV) patterns and
age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on
structural imaging. In this aim, raw data, voxel-wise GMV and non-sparse factorization (with principal
component analysis, PCA) show good performance, but do not promote spatially localized brain
components for post-hoc examinations[1, 2]. Here we evaluated a non-negative matrix factorization
(NMF) approach[3] to provide a reduced, but also interpretable representation of GMV in age prediction
frameworks. We first investigated whether such data reduction can provide comparable performance
with PCA. We then examined the convergence of the NMF spatial partition schemes with a parcellation
based on functional MRI (fMRI) and the prediction performance of both representations for age
prediction in population-based and clinical frameworks.

Methods:

We used T1 structural images of two healthy datasets (HD): 1000BRAINS Study (unisite: n= 693, age:
55-75)[4] and MIXED (multisite: n = 1084, age: 18-81), as well as in ADNI[5] samples including
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cognitively healthy (HC) participants (n = 244, age: 55-90), patients with Alzheimer's disease (AD, n =
163, age: 56-91) and Mild Cognitive Impairment classified according to their memory performance into
MCI (n = 64; age: 55-87) and lMCI (late/amnestic MCI, n = 184, age: 56-92)[5]. Voxel-wise GMV
modulated for non-linear normalization transformations were computed with VBM8. Orthonormal
projective NMF (OPNMF)[6] and PCA were computed in the HD (scales: 50 to 690). Age prediction was
performed with LASSO. We first evaluated OPNMF's as dimensionality reduction for LASSO prediction
relative to PCA, and to a parcellation derived from resting-state fMRI in previous studies (RS-
parcellation[7, 8]). Then, we examined the performance of both sparse representations (OPNMF and
RS-parcellation) for BrainAGE (predicted minus chronological age, reflecting deviation from normal
range) in ADNI.

Results:

Mean Absolute Error (MAE) for age prediction in HD revealed that OPNMF reached similar
performance as the more conventional but less interpretable PCA, even outperforming it at high scales
(Fig. 1A). The spatial brain partitions from OPNMF in 1000BRAINS and in MIXED showed similar
convergence with the RS-parcellation, but higher similarity among them (Fig. 1B). Comparisons
between OPNMF and RS-parcellation for age prediction in HD revealed comparable performance,
again slightly in favor of OPNMF (Fig. 2A). Examining BrainAGE in ADNI, both types of sparse
representation models were sensitive to brain alterations in clinical populations with increased
BrainAGE in all patients, but more in AD than in MCI groups. However, OPNMF showed less variable
predictions in MCI than RS-parcellation (Fig. 2B).
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   ·Figure 1
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   ·Figure 2
 
Conclusions:
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The use of a brain age prediction framework for better understanding how changes in brain structures
are modulated by various factors raised the need for a sparse, biologically valid representation of GMV
with good prediction performance. We showed here that OPNMF can fulfill this need by achieving
comparable performance to PCA in age prediction frameworks and by providing sparse brain
representations. This spatial partition converges with an independent parcellation based on a different
modality (RS fMRI) confirming its biological validity[9]. Importantly, OPNMF showed slightly better
performance in healthy and clinical frameworks than RS-parcellation, despite both approaches showing
overall good performance. Thus, OPNMF provides an interpretable representation of GMV through
well-localized spatial features that allows for good performance in age prediction in both healthy and
clinical populations. However, parcellations from different modalities could also provide good
performance in some conditions, which should be investigated in the future.
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