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Abstract:  

Background and Objective: 

Respiratory mechanics estimation can be used to guide mechanical ventilation (MV) but is 

severely compromised when asynchronous breathing occurs. In addition, asynchrony during MV 

is often not monitored and little is known about the impact or magnitude of asynchronous breathing 

towards recovery. Thus, it is important to monitor and quantify asynchronous breathing over every 

breath in an automated fashion, enabling the ability to overcome the limitations of model-based 

respiratory mechanics estimation during asynchronous breathing ventilation.  

Methods: 

An iterative airway pressure reconstruction (IPR) method is used to reconstruct asynchronous 

airway pressure waveforms to better match passive breathing airway waveforms using a single 

compartment model. The reconstructed pressure enables estimation of respiratory mechanics of 

airway pressure waveform essentially free from asynchrony. Reconstruction enables real-time 

breath-to-breath monitoring and quantification of the magnitude of the asynchrony (MAsyn).  

Results and Discussion: 

Over 100,000 breathing cycles from MV patients with known asynchronous breathing were 

analyzed. The IPR was able to reconstruct different types of asynchronous breathing. The resulting 

respiratory mechanics estimated using pressure reconstruction were more consistent with smaller 

interquartile range (IQR) compared to respiratory mechanics estimated using asynchronous 

pressure. Comparing reconstructed pressure with asynchronous pressure waveforms quantifies the 

magnitude of asynchronous breathing, which has a median value MAsyn for the entire dataset of 

3.8%. 

Conclusion: 

The iterative pressure reconstruction method is capable of identifying asynchronous breaths and 

improving respiratory mechanics estimation consistency compared to conventional model-based 

methods. It provides an opportunity to automate real-time quantification of asynchronous 

breathing frequency and magnitude that was previously limited to invasively method only. 
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1.0 Introduction 

Model-based estimation of respiratory mechanics has shown increasing potential in intensive care 

mechanical ventilation (MV). Respiratory mechanics information can be used to guide MV 

settings, such as setting positive end-expiratory pressure (PEEP) and fraction of inspired oxygen 

[1, 2]. However, accurate patient-specific respiratory mechanics estimation is a challenging task 

due to the heterogeneous nature of patient disease state, and patient- and breath- specific response 

to MV. In particular, respiratory mechanics estimation depends on the identifiability of the 

mathematical model used, as well as the quality of measured data [3-5]. Inaccurate parameter 

identification can occur due to asynchronous breathing or any spontaneous breath that is not in 

synchrony with the ventilator delivered breathing and ventilation mode. These breaths can occur 

any time, whether the patient is fully or partially ventilated, and significantly alter the breathing 

waveforms, modifying them to unconventional shapes. These asynchronous, patient-specific 

inputs and modified waveforms are not able to be modelled, as they are unpredictable. Hence, 

parameter estimation returns erroneous respiratory mechanics parameters, limiting clinical use of 

respiratory mechanics estimation in the clinical environment [6]. 

 

In addition to parameter estimation failure, asynchronous breathing is often not monitored nor 

modelled due to lack of real-time monitoring tool, although methods for clinical interpretation and 

reading of waveforms at the bedside to detect asynchrony as it happens or is observed are reviewed 

in Georgopoulos et al. [7]. Hence, asynchronous breaths are often analysed retrospectively and 

manually to obtain the asynchronous index (AI) and to assess MV quality. Asynchronous breaths 

are thus hidden threats that can increase MV work of breathing, reduce arterial oxygenation, 

prolong length of MV, increase ventilator dependence, and have other potential adverse outcomes 



[8-10]. Thus, there is a need of a method to monitor asynchronous breathing and it is important to 

account for asynchronous breaths during respiratory mechanics estimation [11]. It is equally 

imperative these methods are not additionally invasive and do not induce further stress to patients.  

 

Different methods have been examined to overcome such issues. Vicario et al. [12], Chiew et al. 

[13] and Maes et al. [14] have developed and investigated mathematical models that can capture 

respiratory mechanics during spontaneous breathing MV. Major et al. and Redmond et al. 

investigated on models and signal processing methods to predict and obtain reliable data [15, 16]. 

Similarly, methods have been proposed to automatically monitor asynchronous breathing, but they 

can be invasive [17-20]. All these methods aimed to improve mechanical ventilation respiratory 

mechanics monitoring. However, they are also unable to model the magnitude of asynchronous 

breathing, and thus it is not possible to fully assess the impact of asynchrony on patients and 

outcomes.  

 

This study presents an airway reconstruction method to better estimate respiratory mechanics of 

breaths affected by asynchronous events and to quantify its asynchronous magnitude. This method 

eliminates the effect of asynchrony observed in an asynchronous airway pressure [7] by creating 

a new airway pressure waveform free from asynchrony. This ‘free’ airway pressure enables a more 

consistent respiratory mechanics calculation to be performed. In addition, the ‘free’ airway 

pressure can be compared to the original asynchrony airway pressure to measure the magnitude of 

asynchrony that occurred. This method allows the magnitude of asynchronous breaths to be 

quantified, potentially providing unique insight to the frequency and severity of asynchronous 

breathing that can be used clinically to better manage MV. 



2.0 Methods 

The airway reconstruction method uses a lung mechanics model to simulate a normal breathing 

cycle with the aid of existing breathing data. An iterative airway pressure reconstruction (IPR) 

method attempts to modify the asynchronous breathing cycle to a non-asynchronous cycle using a 

single compartment linear lung model. The IPR algorithm presented here, is also able to monitor 

the magnitude of each asynchronous breaths.  

 

2.1 Iterative Pressure reconstruction (IPR) 

The IPR method consists of a 3-step iterative process to reconstruct the airway pressure of an 

asynchronous breathing cycle. It uses maximum original airway pressure and a model generated 

pressure [21]. Figure 1 shows the sequence of how an asynchronous airway pressure iteratively 

reconstructed to create an unaffected ‘non-asynchronous’ pressure. The main steps are defined: 

 

Step 1: Model fitting to the asynchronous airway pressure: 

The inspiratory airway pressure of an asynchronous breathing cycle is first fit using a single 

compartment linear lung model defined [22, 23]:  

 

Paw(t) = ErsV(t) + RrsQ(t) + P0 (1) 

 

Where Paw is airway pressure, t is time, Ers is the respiratory system elastance, V is the air volume, 

Rrs is the respiratory system airway resistance, Q is the flow and P0 is the offset pressure. Using 

the measured airway pressure and flow, the Ers and Rrs is calculated using linear regression [2]. It 

is important to note that the values of Ers and Rrs are identified individually for every breath, and 



are thus breath-specific and patient-specific. The dotted line in Figure 1a shows the model fit to 

the asynchronous airway pressure, where the constant Ers cannot account for the unmodelled 

asynchronous patient breathing effort, reducing the measure pressure.  

 

Step 2: New maximum airway pressure: 

The reconstruction process of a new airway pressure waveform uses the intersection between the 

maximum of asynchronous airway pressure and model fitted pressure. This reconstructed airway 

pressure begins to ‘fill’ the empty space caused by asynchronous breathing effort, as shown in 

Figure 1b (Blue Line). The reconstructed airway pressure is then used as a new airway pressure 

for model fitting using Equation 1 as shown in Figure 1c, improving the modelled pressure 

waveform towards one typical of a breath unaffected by asynchronous patient effort. 

 

Step 3: Repeat model fitting and pressure reconstruction: 

To provide a better approximation of the ‘non-asynchronous’ airway pressure, this process is 

repeated iteratively, as shown in Figures 1d to 1g for 20 iterations, where the reconstructed airway 

pressure converges. Figure 1g shows all iterations superimposed together, illustrating how the 

pressure waveform becomes ‘normal’ and unaffected by asynchrony. The final reconstructed 

airway pressure is the top-most pressure reconstruction curve of Figure 1g. For comparison, a 

typical normal airway pressure not affected by asynchrony is shown in Figure 1h. 



    
a. b. c. d. 

    
e. f. g. h. 

Figure 1:  Iterative pressure reconstruction sequence (From (a) to (f)). (g) is the combination of 

20 iteration of pressure reconstruction and (h) is the likely airway pressure curve not influenced 

by asynchronous breathing within 2 minutes. 

 

 

2.2 Quantifying Respiratory Mechanics and Asynchronous Breathing Magnitudes 

The IPR reconstructed airway pressure and original airway pressure are used to estimate 

respiratory mechanics elastance and resistance. ErsRe and RrsRe are elastance and resistance 

estimated from the reconstructed airway pressure whereas the ErsOri and RrsOri are estimated from 

original airway pressure. A student t-test is used to assess difference in the elastance and resistance 

parameter distributions to determine if the IPR method provides a measureable change in identified 

values. A p-value of <0.05 is considered significant.  

 

After pressure reconstruction, computing the difference in the areas under the final reconstructed 



and original airway pressure waveforms quantifies the magnitude of the patient-specific 

asynchronous breath input, yielding: 

 

MAsyn = 
𝐴𝑈𝐶𝑅𝑒𝑐  – 𝐴𝑈𝐶𝑂𝑟𝑖  

 𝐴𝑈𝐶𝑅𝑒𝑐
× 100%  (2) 

 

where MAsyn is the magnitude of the asynchrony for each breathing cycle, AUCRec is the area under 

the curve for the reconstructed airway pressure and AUCOri is the area under the curve of the 

original airway pressure.  

 

This metric quantifies the extent to which the MV controlled breath is affected by patient-specific 

asynchronous breathing effort. It thus quantifies the work of this asynchronous breathing input and 

the severity the asynchrony in the specific breathing cycle. Hence, magnitude and frequency of 

asynchrony are assessed automatically using this algorithm and computations, enabling a more 

complete assessment of the impact of asynchrony on patients and outcomes. 

 

2.3 Patient Data 

Retrospective data from mechanically ventilated acute respiratory failure patients were used [24]. 

The patients were ventilated using a Puritan Bennet 840 ventilator with synchronous intermittent 

mandatory ventilation (SIMV) volume controlled mode using decreasing ramp flow profile (tidal 

volume = 6-8 ml/kg). The clinical protocol and other details of the patient data used in this study 

can be found in the studies conducted by Szlavecs et al. [25] and Major et al. [15]. Table 1 shows 

the details of the subset of patient data used here focusing on the large number of breathing cycles 

to demonstrate the concept, preparatory to clinical validation over large patient numbers. A total 



of >100,000 breathing cycles (over 5 patient days) were analysed. These datasets provide a wide 

range of asynchronous breaths in shape and size of asynchrony for testing, which thus covers a 

wide range of observed asynchrony types and shapes. As the ventilation is set under volume 

controlled mode, it is likely that the asynchronies observed in breaths are ventilation reverse-

triggering [26]. All data were sampled at 50 Hz and processed using MATLAB (R2014b, The 

Mathworks, Natick, MA, USA). 

 

Table 1: Patient data and their cause of respiratory failure  

Data 
No. 

Cause of Respiratory Failure Age and Sex Number of 
Breathing Cycles 

1  Faecal peritonitis 53 F 52030 

2 Cardiac surgery and contracted hospital acquired 
pneumonia 

71 M 33959 

3 Pneumonia 60 M 30585 

 



3.0 Results 

3.1 Shapes and sizes of asynchronous airway pressure  

Asynchronous airway pressure waveforms can have different shapes and magnitudes, as shown in 

Figures 1-4. However, if effective, the reconstruction through IPR should yield similar unaffected 

pressure waveform results. Figure 2 shows a second typical airway pressure, where successful 

pressure reconstruction occurs, in addition to the example of Figure 1. 

 

    
a. b. c. d. 

Figure 2: Pressure reconstruction performed iteratively, resulting in a non-asynchronous airway 

pressure 

 

 

Figure 3 shows a sample of failed pressure reconstruction due to late asynchrony and how the IPR 

algorithm overcomes this limitation by incorporating a pressure filling algorithm (Figures 3e-h). 

Last, Figure 4 shows an early patient triggered breathing cycle and how IPR reconstructs the 

airway pressure waveform to a passive airway pressure waveform.  

 

 

 

 

 

 

 



 

 

 

    
a. b. c. d. 

    
e. f. g. h. 

Figure 3:  a-d) Fail pressure reconstruction due to missing of end of inspiratory pressure data. e-

h) Successful pressure reconstruction with pressure filling. 
 

    
a. b. c. d. 

Figure 4:  Early asynchrony pressure reconstruction. a) The airway pressure does not show 

pressure increase as start of breathing cycle due to early asynchrony. b) Pressure reconstruction 

for the first iteration. c) New model fit using reconstructed pressure. d) Complete pressure 

reconstruction. 



3.2 Asynchrony Level and Respiratory Mechanics 

Figure 5 (left) shows the cumulative distribution plot for all MAsyn found in this dataset and Figure 

5 (Right) shows the overall MAsyn for the five different patient days. MAsyn for the overall dataset is 

median 3.8% [IQR: 2.0-10.4].  

 
Figure 5:  Empirical cumulative distribution plot (CDF) of MAsyn. (Left: all patient data, Right: 

different patient MV days) 

 

The respiratory elastance and resistance mechanics parameters estimated from the original airway 

pressure (ErsOri and RrsOri) for each individual breath and for each patient are median 24.9 cmH2O/l 

[Interquartile range (IQR): 20.5-29.8] and 7.9 cmH2Os/l [IQR: 5.3-11.3] over 100,000 breaths. 

Estimated elastance and resistance after pressure reconstruction (ErsRe and RrsRe) are 27.8 cmH2O/l 

[IQR: 24.5-31.1] and 9.5 cmH2Os/l [IQR: 7.4-11.4].  

 

For the breathing cycles with > 5 % of MAsyn, which comprises of 42 % of the breathing cycle, the 

ErsOri and RrsOri is 20.8 cmH2O/l [IQR: 5.7-33.6] and 3.4 cmH2Os/l [IQR: -2.4-14.2]. After pressure 

reconstruction, the ErsRe and RrsRe are 29.8 cmH2O/l [IQR: 25.1-34.5] and 10.6 cmH2Os/l [IQR: 

6.9-12.1].  



 



4.0 Discussion 

4.1 Performance of IPR in different Asynchronies 

Case 1: Typical Asynchronies 

Figures 1 and 2 show two typical successful airway pressure reconstructions. At each iteration, 

IPR creates an intersection between old and new pressure, and then overlaying the model fit and 

the original airway pressure (solid line) to generate a new airway pressure waveform for model 

identification. As it reconstructs iteratively, the error between the model fit and reconstructed 

pressure waveform decreases, resulting in a non-asynchronous airway pressure waveform. In this 

dataset, every typical asynchronous breathing cycle follows these steps during IPR, resulting in a 

pressure waveform ‘free’ from asynchronous efforts. 

 

Case 2: Late Asynchronies 

In some cases, as shown in an example in Figure 3a, asynchronous breathing occurs right at the 

end of a MV supported breath. This late asynchrony cannot be accurately reconstructed using the 

typical pressure reconstruction method due to high amount of ‘missing data’ at the end of 

inspiration, as shown in Figures 3a-d. The reconstruction process depends on the quality of model 

fit using linear regression, where it attempts a best fit a passive breathing model to the data. 

However, if most data at the end of a breath are ‘incorrect’ or altered, the first step of pressure 

reconstruction will not provide a ‘correct trend’ for the iterative reconstruction process. Late 

asynchronies, detected when the peak pressure is not located at the end of a breathing cycle, are 

cases when most data are incorrect at the end of the breath requiring this adapted approach. 

 

In late asynchrony cases, the IPR algorithm initiates a pressure filling method [21] to fill up the 



asynchronous airway pressure to obtain a peak pressure value. The peak pressure value end of 

inspiratory pressure is assumed to be at least similar to the maximum observed airway pressure as 

shown in Figure 3f. Any airway pressure points between the end of inspiratory pressure and the 

observed peak will be ‘filled’ with an estimated maximum airway pressure, as shown in Figures 

3f-g. Using the airway pressure generated through pressure filling method, the standard IPR 

method has enough data to create and better reconstruction of the final, unaffected airway pressure, 

as summarised in Figure 3h. 

 

Case 3: Early Asynchronies 

Early breathing asynchrony is shown in Figure 4a. This anomaly occurs when the initial pressure 

step increase due to a step or ramp airway flow increase is not observed. The missing initial airway 

pressure causes model fitting to fail as the increase in airway pressure is an important feature 

during parameter identification. During model fitting of the original airway pressure, this lack of 

an expected increase in pressure results in non-physiological respiratory mechanics parameters, 

such as negative elastance or resistance [13]. This issue is addressed by enforcing positive 

minimum parameter values of Ers = 5cmH2O/l and Rrs = 5cmH2Os/l in the model identification. 

These parameter values give a baseline feature of the model airway pressure, resulting in better 

reconstruction. Figures 4a-d show example of this early asynchrony and its corresponding pressure 

reconstruction. 

 

4.2 Respiratory Mechanics Estimation and Asynchrony Magnitude through Pressure 

Reconstruction 

In this study, we presented a method to reconstruct asynchrony affected airway pressure into an 



airway pressure free from asynchronies. These reconstructed airway pressure can be used to 

calculate more consistent respiratory mechanics of the patient during MV as they are not 

influenced by asynchrony. The IQR for ErsRe and RrsRe of the reconstructed airway pressure is 

smaller compared to original airway pressure. This result implies a more consistent parameter 

estimation occurred, as the reconstructed airway pressures are ‘free’ from variable and patient-

specific asynchronies. ErsRe and RrsRe estimated from reconstructed airway pressure are also found 

significantly higher than the original unreconstructed values (p<0.05). This result is as expected, 

where the IPR reconstructs the asynchronous airway pressure to a higher value, resulting in 

consistent higher respiratory mechanics values. The changes in respiratory mechanics were more 

apparent, when breathing cycles with 5% or more of asynchrony magnitude were included in the 

comparison. The ErsRe5% and RrsRe5% were also significantly different from ErsOri5% and RrsOri5% with 

p< 0.05.” 

 

The reconstruction of the asynchronous affected airway pressure to a ‘free’ airway pressure also 

enables the quantification of the asynchrony magnitude, MAsyn. This can be done by comparing the 

reconstructed pressure with original asynchronous airway pressure to estimate the magnitude of 

asynchrony that occurred during that breathing cycle.  From the cumulative distribution plot in 

Figure 5, it is clear that MAsyn is variable and can differ between patients and patient day. It was 

found that every breathing cycle has some level of asynchrony using this metric. The magnitudes 

of each asynchronous breath can range from as low as <1% or as high as >25% of the breath. 

However, it is important to note that low values of MAsyn (<5%) can be due to small reconstruction 

errors or natural breathing variability, and they may not contribute to actual asynchronous 

breathing. They constitute approximately 58% of the 100,000 breaths. Larger and more frequent 



occurrence of MAsyn may be harmful to patient recovery and thus, it is important to have a metric 

that can quantify the frequency, as well as the magnitude, of asynchrony for every breathing cycle 

continuously, which in turn requires an automated or algorithmic approach. 

 

4.3 General 

In this study, the patients were fully sedated and ventilated using the Puritan Bennett 840 on SIMV 

mode as per hospital practice and clinical protocol. Mandatory breaths triggered by the patient will 

follow the shape of the flow as set in the mechanical ventilator. The key difference is that 

spontaneous breaths will appear normal and be supported by the ventilator in the same fashion as 

a partial support mode. The waveforms will thus not be affected with, for example, falling and 

then rising pressure during the middle of inspiration, as seen for example in Figure 1. In this mode 

of ventilation (SIMV volume controlled), the shape of the pressure waveform in Figure 1h rises 

sharply at first, similar to pressure support modes [13, 27-29] due to the linear flow delivered in 

this volume control mode. Note that the steep section comprises very few points and is due to this 

controlled flow waveform shape and is thus not a form of pressure support or control mode of 

ventilation. 

 

Volume controlled modes and SIMV are universally employed with a wealth of options available 

depending on clinical choice and preference. The reconstructed method presented here is limited 

to any volume controlled mode where the airway pressure waveforms are deranged by 

asynchronies. This method does not work on pressure control or support modes where the shape 

of the airway pressure is largely fixed and dependent on the ventilator output. In the case of 

pressure control or support mode with asynchronous flow waveform, a similar volume and flow 



reconstruction exists for pressure controlled modes where the opposite holds true [30]. Thus, the 

method presented is generalizable across volume control modes, and the overall approach is 

generalizable with a different reconstruction algorithm to pressure support modes. Similarly, the 

method presented in this study is currently limited to asynchrony that occur during the inspiratory 

process. Asynchronies that occurred during expiration were not considered as the method only 

reconstruct inspiratory airway pressure. It is however, this method can be expanded to include 

reconstruction of the expiratory cycle particularly flow using an expiratory time constant model 

[31] to monitor expiratory asynchrony [17].   

 

In the literature, the quality of patient-ventilator interaction can assessed directly or indirectly by 

various metrics such as neural index [32], matching [29], correlation and variation analysis and 

asynchrony index (AI) [33]. Each index can be computed if certain data and measurements are 

available. The asynchrony index (AI) is one often-used metric, where it is determined in prior uses 

through laborious manual inspection of the airway pressure and flow [17]. AI, when it was 

introduced, focused only on quantifying phase triggering and flow asynchrony and did not include 

reverse triggering asynchrony until later work of Akoumianaki et al and Major et al. [24, 26]. 

However, the use of ‘asynchrony index (AI)’ is not necessarily or definitively limited to phase 

triggering and can be generalised for all kinds of asynchrony quantification. Equally, the concept 

is readily generalised to counting all kinds of asynchrony types, where each type could have its 

own specific index averaged into a greater whole, where this study defined asynchrony for more 

broadly as any airway pressure altered into nonconventional shape by any type of asynchrony, 

including but not limited to reverser triggering.  

 



This simulated airway pressure generated from the IPR algorithm follows the single compartment 

lung model, and is able to model the passive patient airway pressure waveform as if there is no 

asynchronous effort. However, it is possible that this method may not necessarily reconstruct the 

airway pressure waveform to an original, true unaffected state. This limitation is due to the fact 

that the asynchronous affected pressure may have its underlying pressure waveform altered. As 

seen in Figures 1g and 1h, the reconstructed pressure can have lower peak airway pressure 

compared to a ‘normal’ breathing cycle that could be expected to be the same. Thus, it may not 

necessarily be perfect. However, there is no way to be certain, and the reconstructions shown are 

very similar to surrounding normal breaths, indicating that the reconstruction is likely quite close 

to the truth. 

 

In particular, there is no means to obtain a direct measurement to compare the reconstructed 

pressure, and there is no way of knowing the exact airway pressure waveform without a time 

machine. Invasive measuring tools or specific clinical protocols that require sedation and paralysis 

may provide an insight to the original airway pressure. As noted in Redmond et al. [34] and 

Bibiano et al. [35], patient-specific respiratory mechanics are protocol dependent. Thus, only a 

general trend can be derived from these values and there may be no ‘absolute value’ to be 

compared with.  

 

The proposed MAsyn in this study is a unique metric that can be used to quantify mechanical 

ventilation asynchrony automatically and in real time. However, this metric has not been tested 

and, its impact and clinical relevance requires further investigation. The MAsyn proposed in this 

study can be monitored at any rate or level desired. The actual use would depend on how it worked 



best in the clinical environment it was employed and thus local clinical preference. This 

information can be used to better manage MV. Clinically, the calculation MAsyn in a breath alone 

may not be useful, except perhaps as a measure of their effort against the ventilator, but the 

frequency of asynchrony over a period of time is currently more clinically useful in managing care. 

This metric can be a useful indicator if it can alert the clinicians that reverse triggering or similar 

asynchronies are occurring. For example, it provides a warning to the clinicians when continuous 

MV breaths (10 breaths out of 100) have significant asynchrony magnitude of more than 5%. 

Figure 6 shows the number of breaths which have >5% MAsyn at every 100 breaths for the datasets 

used in this study. For every 100 breath period, each dataset has a different distribution of MAsyn. 

Dataset 1 shows a consistent trend of high number of >5% MAsyn breaths. Dataset 2 shows gradual 

increase of MAsyn whereas Dataset 3 fluctuations between none and high throughout the data 

collection period. This information is limited to the low patient numbers used in this computational 

and algorithm proof of concept. However, it shows potential for use by clinicians to manage care 

at a patient level, but needs to be validated or shown across a larger, more diverse cohort in a 

clinical validation. 

 

 
Figure 6: Number of breaths with >5% MAsyn for every 100 breaths throughout the data collection 

period. (Left) Dataset 1, (Middle) Dataset 2 and (Right) Dataset 3. The Y –axis shows the number 

of breaths with >5% MAsyn where a value of 100 indicates all breaths were affected, and the X-axis 

shows the normalised time for the whole data collection period. 



 

Currently, there is limited research in automated methods to quantify the magnitude and frequency 

of asynchronous breathing and thus, it is difficult to assess its true clinical impact. Sinderby et al. 

[32] have proposed a system to quantify the patient-ventilator interaction, and it can potentially 

help clinicians to extend knowledge on patient-ventilator interaction [29, 36]. However, this 

method can only be used with one type of ventilator and it requires an invasive measuring tool. 

Thus, the IPR method proposed in this study is more generalizable, fully automated in software 

and can thus be used to automatically monitor mechanical ventilation asynchrony frequency and 

magnitude independent of any human input or additional devices. 

 

Clinical application of this automated method would be via software with the ventilator or using 

ventilator signals. Clinically, the ability to monitor the true frequency of asynchrony would be 

valuable as it is only available via retrospective analysis over shorter periods. Thus, the frequency 

of occurrence may be much larger than expected. Automated monitoring would enable this value 

to be monitored and tracked, providing better input as to when to change ventilator settings and 

care, as well as providing data to assess its true impact on patient condition and recovery. The 

automated monitoring of asynchrony magnitude enables similar clinical outcomes. Small 

magnitude events might be ignored, but regular larger events would likely trigger a clinical change 

in ventilator settings or mode. Equally, the data could also be used to assess the clinical impact on 

patient condition and outcome. Thus, it is a further means to improve patient care without added 

clinical effort, or the addition of invasive devices or cost. 

 

A final clinical application note would include that given automated monitoring and management 



of asynchrony, as presented here, and other ventilator inputs using model-based identification of 

the underlying respiratory mechanics [12, 15, 16], there is a significant emerging opportunity for 

personalized MV management. In particular, the control loop on MV management includes 

significant clinical input and time, an increasing amount of which could be automated, in essence 

closing the loop much further, while leaving in clinical oversight. These elements have come 

together in glycemic control [37] and offer to do so in MV and other major areas of ICU cost, 

morbidity, and mortality [38]. 

 

  



5.0 Conclusion 

An iterative pressure reconstruction (IPR) method is presented and shown to be effective and 

robust in reconstructing asynchrony affected breaths to enable identification of underlying 

respiratory mechanics. The resulting estimated respiratory mechanics parameters are more 

consistent and enable the magnitude of the asynchronous effect to be quantified. Thus, this 

algorithm offers potential improvements for real-time respiratory mechanics estimation, MV 

monitoring and insight into patient condition and ventilator interaction. 
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