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The global framework of this research is the modal
identification of structures
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It is a pretty large field of structural analysis

It can be decomposed in:
I Experimental or Operational Modal

Analysis
I Linear or Nonlinear Systems
I Time Invariant or Time-Varying
I Single or Multiple Outputs

I And any of their combinations...



The global framework of this research is the modal
identification of structures

Nonlinear

Output only

Time variant

Well assessed

Not fully exploited

Under development
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Why time-varying behaviour can occur ?
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Several possible origins :
I Structural changes

I Operating conditions

I Damage occurrence



MDOF linear time-varying mechanical
systems are considered
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M(t) ÿ(t) +C(t) ẏ(t) +K(t)y(t) = f(t)

The dynamics of such systems is characterized
by :
I Non-stationary time series
I Instantaneous modal properties

I Frequencies : ωr(t)
I Damping ratio’s : ζr(t)
I Modal deformations : vr(t)



Outline of the presentation
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Several identification methods are proposed in the thesis

The presentation is organized as follows:

Non-parametric approach
I Presentation of the experimental setup

Combined parametric and non-parametric
approach

Fully parametric approaches

Applications to more complex cases



Some classical signal processing techniques
can deal with nonstationary signals

Time-frequency representations:
Short-time Fourier transform

Wavelet analysis

Wigner-Ville distribution

Signal decomposition methods:
Hilbert-Huang Transform (HHT)

Hilbert Vibration Decomposition (HVD)
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The Hilbert Transform
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The Hilbert transform H of a signal x(t) is the convolution product of
this signal with the impulse response h(t) = 1

π t

x̃(t) = H(x(t)) = (h(t) ∗ x(t))

= p.v.
∫ +∞

−∞
x(τ)h(t− τ) dτ

=
1
π
p.v.
∫ +∞

−∞

x(τ)
t− τ

dτ

It is a particular transform that remains in the same
domain as the original signal

It corresponds to a phase shift of π2 of the signal



The Hilbert transform is used to build the
complex analytic form of a signal
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The analytic signal z is built as

z(t) = x(t) + iH(x(t))
= A(t) eiφ(t)

In the frequency domain, the analytic signal
becomes a one-sided signal



The analytic signal can be seen as a rotating
phasor in the complex plane
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It is suitable to find the envelope
of the signal
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The instantaneous envelope of the signal is given by
the absolute value of the analytic signal

A(t) = |z(t)|
x

Time
 

 
x(t)
A(t)



It also gives information about
the instantaneous phase
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The instantaneous phase angle of the signal is
given by the argument of the analytic signal

φ(t) = ∠z(t)

The time derivative of the phase angle gives the
instantaneous frequency

ω(t) = dφ(t)
dt



The Hilbert transform is powerful but only
meaningful for monocomponent signals
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Let us consider a 2-component signal mixture

Time

Time

Time



Signal decomposition methods
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In order to get meaningful instantaneous frequencies, the
signals have to be decomposed.

Two good candidates exist:

The Empirical Mode Decomposition method
I Successive extraction of the highest

instantaneous frequency component

The Hilbert Vibration Decomposition Method
I Successive extraction of the highest

instantaneous amplitude component



The Empirical Mode Decomposition sifting process
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The EMD method iteratively removes the mean of the upper
and lower envelopes computed by spline fitting

Iteration 1

Time

Iteration n  IMF1
 Iterations



The Hilbert Vibration Decomposition sifting process
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x(t)

Analytic signal
z(t) = x(t) + iH(x(t))

Frequency extraction
ω(t) = dφ(t)

dt = d∠z(t)
dt

Lowpass filtering
ω(t) → ωk(t)

Synchronous demodulation
xk(t)

Sifting process
x(t) := x(t) − xk(t)

Main signal

Dominant component

Secondary component



The HVD method in that scheme has some drawbacks
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It is applicable to single channel measurement
The application on multiple channels has to be
done in parallel

In a multivariate case, all the modes have to be
excited at each time instant on all the channels

The method will always follow the instantaneous
dominant mode



Example: a simple 2–DoF time–variant system
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System properties:
I m1 = 3 [kg]
I m2 = 1 [kg]
I k1 = 20000 [N/m]
I c1 = 3 [N.s/m]
I k2 = 25000↘ 5000 [N/m]
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Application of the HVD method on each channel
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A simple application of the HVD method on each
channel leads to mode mixing
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In the case of multiple channel measurements, a source
separation step is introduced in the algorithm
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
φ(k)(t) → x(k)(t), vk(t)

Sifting process
x(t) := x(t) − x(k)(t)

The sources are used as references to get
the instantaneous frequencies

A trend extraction method computes the
phase of the dominant mode
A Vold-Kalman filter (VKF) is used for
component extraction



Introducing a source separation method
can help to avoid the mode mixing phenomenon
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A Blind Source Separation method (BSS) separates a
set of signals in a set of uncorrelated or independent
sources
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The experimental setup
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The experimental setup is an aluminum beam with a
moving mass.

The whole system is supported by springs and excited
by a shaker.

I 2.1 meter long and 8× 2 cm for the cross
section

I 9 kg for the beam and ≈ 3.5 kg for the
moving mass (ratio of 38.6 %)

I The excitation and measurements are
performed with a Siemens LMS system



Time invariant modal identification
of the beam subsystem
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Time-varying dynamics of the system
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The sifting process and the benefit of the
source separation
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
φ(k)(t) → x(k)(t), vk(t)

Sifting process
x(t) := x(t) − x(k)(t)



All the modes are extracted after few iterations
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x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s1(t) + iH(s1(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
φ(k)(t) → x(k)(t), vk(t)

Sifting process
x(t) := x(t) − x(k)(t)



Finally the mode shapes can be retrieved
in the VKF process
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As an example the fifth mode is represented

The inertia effect of the mass is visible when it passes
at the nodes of vibration

(a) t = 0 s. (b) t = 5 s. (c) t = 10 s.

(d) t = 15 s. (e) t = 20 s. (f) t = 25 s.

(g) t = 30 s. (h) t = 35 s. (i) t = 40 s.



Finally the mode shapes can be recovered
in the VKF process
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The modal assurance Criterion can be calculated
with respect to the LTI mode shapes



Outline of the presentation
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Several identification methods are proposed in the thesis

The presentation is organized as follows:

Non parametric approach
I Presentation of the experimental setup

Combined parametric and non-parametric
approach

Fully parametric approaches

Applications to more complex cases



Let us introduce some parametric modelling
in our identification process

Input signals
x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s(t) + iH(s(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), vk(t)

Sifting process
x(t) := x(t) − x(k)(t)

Input signals
x(t)

Combined parametric
identification of all the

varying parameters at once
fr(t), ζr(t)

VKF
xr(t), vr(t)
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A parametric model is applied to our measurements
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It is chosen here to work with AutoRegressive Moving-Average
(ARMA) models

y[t]+a1y[t−1]+· · ·+anay[t−na] = e[t]+b1e[t−1]+· · ·+bnb
e[t−na]

In which:
I y[t] is the data sequence
I e[t] is the innovation sequence

In the z-domain, one has

Y [z] = B(z,θ)
A(z,θ) E[z] = H(z,θ)E[z]

with the polynomials

A(z,θ) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na

B(z,θ) = 1 + b1z
−1 + b2z

−2 + · · ·+ bnb
z−nb



The model identification is performed by the
Prediction Error Method (PEM)

Defining the predictor ŷ[t, θ] with the model parameters, the
prediction error is given by

e[t, θ] = y[t]− ŷ[t, θ]

A common way to identify the model parameters is to rely on the
minimization of a scalar cost function. A usual choice is to
minimize the sum of squared errors

V (θ) = 1
2N

N∑
t=1

(e[t,θ])2

= 1
2N

N∑
t=1

(y[t]− ŷ[t,θ])2
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The model identification is performed by the
Prediction Error Method (PEM)
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The minimization is straightforward in a pure AR case
I Linear least square problem

The minimization is more complex once a MA part is
considered
I Nonlinear least square problem
I 2 Stages Least Squares or iterative optimization



How to adapt the previous model to our case?
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The previously described identification process identifies scalar
time invariant systems
I How to take the time dependence into account?
I How to adapt it to multiple measurements at once?

Further
I How is a good model structure chosen?

(Principle of parcimony)
I How are the physical poles selected in an

overparameterized case?



Modelling of time-dependent processes
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To take the time variation into account, the model parameters
are let free to vary

H(z,θ[t]) = B(z,θ[t])
A(z,θ[t])

= 1 + b1[t]z + b2[t]z−2 + · · ·+ bnb
[t]z−nb

1 + a1[t]z + a2[t]z−2 + · · ·+ ana [t]z−na

This is the frozen-time approach
The frozen-poles are computed as the roots of the
denominator

To model the variation of the parameters, the
basis functions approach is chosen

θi[t] =
k∑
j=1

θijfj [t]



Multiple measurements are managed by a common
denominator modelling

Because the poles of a dynamic system are global properties,
they are common on each channel
Conversely, the zeros are local to each channel

x1[t] + · · ·+ ana [t]x1[t− na] = e1[t] + · · ·+ b1
nb

[t] e1[t− nb]
x2[t] + · · ·+ ana [t]x2[t− na] = e2[t] + · · ·+ b2

nb
[t] e2[t− nb]

...
xno [t] + · · ·+ ana [t]xno [t− na]︸ ︷︷ ︸

Common AR modelling

= eno [t] + · · ·+ bno
nb

[t] eno [t− nb]︸ ︷︷ ︸
Individual MA modelling

The cost function is adapted to all the prediction errors

V (θ) =
∑
o

1
2N

∑
t

eo[t,θ]2
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The model structure is chosen based
on information criteria

Commonly used criteria are
The Akaike’s Final Prediction Error (FPE):

FPE =
1 + dM

N

1− dM
N

V (θ∗M)

The Akaike’s Information Criterion (AIC):

AIC = lnV (θ∗M) + 2 dM
N

.

The Bayesian Information Criterion (BIC):

BIC = lnV (θ∗M) + dM
lnN
N

.
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Selection of the physical poles
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Because some overparameterization may be required, some
spurious poles can appear

The selection process is pretty simple and relies on the fact
that the physical poles have usually a low damping ratio when
compared to the spurious ones

The idea is to retain the p poles having the
closest trajectories to the unit circle



Application to the experimental setup

The procedure followed for the identification is the following one
I A large batch of fast 2SLS identifications to determine good

model structure candidates
I A refined identification using the nonlinear optimization

process
I The selection of the best model and extraction of the mode

shapes with the non-parametric VKF

For all the identifications, Chebyshev polynomials are used as basis
functions
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Batch of fast preliminary identifications
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The batch of 2SLS analyses sweeps a large number of model
orders and sizes of the bases of functions

Usually, the BIC is more severe on the model complexity than
the other two criteria
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Accurate identification of the time-varying beam
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Finally, the ARMA[22,21](9,9) is chosen

Five physical poles are selected



Comparison between the frozen and the
instantaneous frequencies
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The two sets of results are in agreement

This also validates the frozen-time assumption



Outline of the presentation
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Several identification methods are proposed in the thesis

The presentation is organized as follows:

Non parametric approach
I Presentation of the experimental setup

Combined parametric and non-parametric
approach

Fully parametric approaches

Applications to more complex cases



Fully parametric approaches
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In this part, the system is identified with
parametric modelling only

We deal with multivariate modelling
I Multivariate ARMA models
I Multivariate State-Space modal models

The mode shapes are now identified together
with the poles

The consequence is that we have now to
identify matrix coefficients



Time-varying multivariate AutoRegressive
Moving-Average (ARMAV) model

Multivariate models are more complete than univariate ones

The time-varying ARMAV model is simply the vector counterpart
of the scalar ARMA model

M(t) ÿ(t) +C(t) ẏ(t) +K(t)y(t) = f(t)

The same basis function approach applies to the matrix coefficients

y[t] +
na∑
i=1

rA∑
k=1

Ai,k fk[t]y[t− i] = e[t] +
nb∑
j=1

rB∑
k=1

Bj,k fk[t] e[t− j].
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The time-varying ARMAV model may be equivalently
cast in a State-Space form

The model can be written in an innovation state-space model

x[t+ 1] = F [t]x[t] +K[t] e[t]
y[t] = C x[t] + e[t]

With

F [t] =



−A1[t] I 0 · · · 0
−A2[t] 0 I · · · 0

...
...

... . . . ...
−Ana−1[t]

...
... I

−Ana [t] 0 0 · · · 0


K[t] =


B1[t]−A1[t]
B2[t]−A2[t]

...
Bn[t]−An[t]


and

C =
[
I 0 0 · · · 0

]
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Computation of the frozen-modal parameters
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The matrix

F [t] =



−A1[t] I 0 · · · 0
−A2[t] 0 I · · · 0

...
...

... . . . ...
−Ana−1[t]

...
... I

−Ana [t] 0 0 · · · 0


is the state-transition matrix of the SS model.

It is also the companion matrix of the AR matrix
polynomial. Its eigenvalues/vectors decomposition
at time t provides the frozen-poles and mode
shapes



Experimental identification of the time-varying beam
The identification process is similar to the univariate case
I Large batch of fast 2SLS identifications
I Refined identification by nonlinear optimization
I The same least squares cost function is used

V (θ) = 1
2N

N∑
t=1

e[t,θ]T e[t,θ]

I The selection of the physical modes now also uses the mean
phase deviation of the mode shapes
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The batch of 2SLS indentifications gives some clue
on the potentially good model structures
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The families of ARMAV(3,2) or ARMAV(3,3) seem to contain
good model candidates
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Refined identification with the nonlinear
optimization process
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A more precise identification with the iterative optimization
scheme reveals that the ARMAV(3,3)[9,1] is the best one



Example of obtained mode shapes

At t = 10 s, the physical mode shapes are the following ones

f1[10] = 8.95 Hz f2[10] = 27.39 Hz f3[10] = 39.42 Hz f4[10] = 48.60 Hz f5[10] = 93.87 Hz
ζ1[10] = 5.32 % ζ2[10] = 1.35 % ζ3[10] = 0.037 % ζ4[10] = 2.25 % ζ5[10] = −0.21 %
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Example of obtained mode shapes
At the same time the identified spurious modes show either a
higher dispersion in the complex plane or they are simply purely
real.

f [10] = 2.87 Hz f [10] = 21.10 Hz f [10] = 84.05 Hz f [10] = 142.12 Hz
ζ[10] = 100 % ζ[10] = 97.83 % ζ[10] = 18.35 % ζ[10] = 42.55 %

f [10] = 146.54 Hz f [10] = 160.01 Hz f [10] = 160.35 Hz
ζ[10] = 24.86 % ζ[10] = −0.94 % ζ[10] = 6.56 %
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Alternative modelling for the identification
Parameterization in the modal domain

Starting with the following innovation state-space model:{
x[t+ 1] = F [t]x[t] +K[t] e[t]

y[t] = C[t]x[t] + e[t]

we can transform it into a modal form{
η[t+ 1] = A[t]η[t] + Ψ[t] e[t]

y[t] = Φ[t]η[t] + e[t]

with

A[t] = V [t]−1 F [t]V [t],
η[t] = V [t]−1 x[t],
Φ[t] = C[t]V [t],
Ψ[t] = V [t]−1K[t].
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Alternative modelling for the identification
Parameterization in the modal domain

To avoid treating complex values, all the parameters are separated
into their real and imaginary parts.

The modal decoupling is still valid.

A =


A1

A2
. . .

An


Φ =

[
ΦR

1 ΦI
1 ΦR

2 ΦI
2 · · ·

]
ΨT =

[
ΨR

1 ΨI
1 ΨR

2 ΨI
2 · · ·

]
with

Ai =
[
ai bi
−bi ai

]
All the coefficients of these matrices are stacked in a parameters
vector θ
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Alternative modelling for the identification
Parameterization in the modal domain
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In theory, the ARMAV model is more parsimonious

But this kind of modelling offers some
advantages
I The model parameters have now a physical

meaning
I No more eigenvalue decompositions
I The model order is easily fixed
I It can be initialized by approximate LTI

modal results
I The optimization process can be guided by

the modal decoupling (graduated
optimization)



Identification of the time-varying beam
with the modal SS model
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Only the size of the basis of functions needs to be determined
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Identification of the time-varying beam
with the modal SS model
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The model with 9 Chebyshev polynomials gives the best results
No spurious mode is introduced



Comparison with the results obtained
with the ARMAV model
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The modal correlation is quite good between the two sets of
varying mode shapes



Outline of the presentation
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Several identification methods are proposed in the thesis

The presentation is organized as follows:

Non parametric approach
I Presentation of the experimental setup

Combined parametric and non-parametric
approach

Fully parametric approaches

Applications to more complex cases



Extended applications
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The purpose of this section is to test the proposed
method on more complex problems

The time-varying beam is kept as example but
extended with
I An increased frequency range
I More acquisition channels
I Knowledge of additional information

(position of the mass)

Application for monitoring purposes



Extended experimental setup
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fr [Hz] ζr [%]
1 9.86 0.32
2 30.12 0.52
3 38.6 0.65
4 53.14 0.28
5 62.17 1.57
6 99.70 0.28
7 131.57 2.039
8 168.60 0.99



Extended experimental setup

We have to deal with one additional bending mode and two
rotation/torsion modes
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Identification with the ARMAV and SS models
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First, the mass is pulled with an approximately constant speed



Identification with the time-varying ARMAV model
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ARMAV(2,2)[8,1]



Identification with the time-varying ARMAV model
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The full identification is then performed by mixing the results of
several model structures



Identification with the time-varying ARMAV model
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Some general observations :
I The number of model parameters

drastically increased
I Idem for the complexity of the

optimization process
I The selection of a good model structure is

difficult
I No single model structure was able to

identify all the modes



Identification with the time-varying State-Space
modal model
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12 Chebyshev polynomials
are used



Application for monitoring purposes
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The goal of this part is to locate the modification of the system
based on the identification results

The COMAC is first used



Application for monitoring purposes

Mathieu BERTHA (ULg) Multiple outputs operational modal identification of time-varying systems 68

The attempt of this part is to locate the modification of the
system based on the identification results

The COMAC is first used



Application for monitoring purposes
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Another possibility is to rely on a reference finite element
model and reduction/expansion methods

Discrepancies in elementary potential or kinematic energies are
considered as criteria

EMj =
Nm∑
i=1

(
X(j) −Z(j)

)T
M (j)

(
X(j) −Z(j)

)



Application for monitoring purrposes
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Another possibility is to rely on a reference finite element
model and reduction/expansion methods

Discrepancies in elementary potential or kinematic energies are
considered as criteria



Application with additional information
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We considered general time-varying systems

But how can we manage some knowledge about a varying
parameter?



Application with additional information
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Identification with the modal State-Space model
12 position-based Chebychev polynomials



Application with additional information
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The mass tracking remains pretty accurate



Concluding remarks
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Time-varying mechanical systems were
considered

Focus on MDOF methods and operational
conditions

Several methods were proposed
I Non parametric
I Univariate parametric model
I Multivariate parametric models

All the methods were experimentally tested
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Thank you for your
attention


