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“Around here, however, we don’t look backwards for very long. We
keep moving forward, opening up new doors and doing new

things, because we’re curious... and curiosity keeps leading us
down new paths.”

Walt Disney





Abstract

The present doctoral thesis addresses the problem of modal identification of time-
varying dynamical systems. The methodologies proposed in this work cover parametric
and nonparametric approaches and are able to deal with output-only and multiple
degrees-of-freedom measurements. The nonparametric approach is based on source
decomposition methods and the use of the Hilbert transform in order to get the varying
frequencies and mode shapes. Concerning the parametric methods, both autoregressive
moving-average (uni- and multivariate) and state-space models are considered. The
way to introduce the time variation in the models is performed by the basis functions
approach which projects the parameters on a preselected basis of functions.

Each of the proposed methods are presented before being experimentally tested on
a laboratory time-varying structure. The structure is pretty simple and is commonly
found in research works in the domain. It is composed of a supported beam on which
a mass is moving. The mass is chosen sufficiently heavy to have a significant influence
on the dynamics of the primary system. The structure is randomly excited by a shaker
and several sensors record the response of the structure during the traveling of the
moving mass.





Résumé

Le sujet de cette thèse porte sur l’identification modale de systèmes temps-variant.
Les méthodes proposées dans ce travail couvrent à la fois des approches paramétriques
et non paramétriques et sont capables de traiter des problèmes dans des conditions
opérationnelles avec plusieurs canaux de mesures. L’approche non paramétrique est
basée sur les méthodes de séparation de sources pour le traitement des multiples
mesures ainsi que sur la transformée de Hilbert pour l’obtention des fréquences et
modes propres instantanés. Pour les méthodes paramétriques, deux classes de modèles
sont utilisées : des modèles autorégressifs et moyenne mobile (à la fois dans des
modélisations scalaires et vectorielles) ainsi que des modèles d’état. Le traitement
de la variation temporelle des systèmes étudiés se fait par l’approche des fonctions
de base. Ces variations sont représentées par projection sur une base de fonctions
préalablement choisie.

Chacune des méthodes proposées est en premier lieu présentée en détail avant d’être
testée dans des conditions expérimentales sur une structure temps variante en lab-
oratoire. La structure étudiée dans le cadre de cette thèse est assez simple et est
basée sur de multiples exemples utilisés par d’autres chercheurs travaillant sur la même
problématique. La structure utilisée comprend une poutre suspendue par deux ressorts
à ses extrémités sur laquelle se déplace une masse. Le rapport des masses entre la masse
mobile et la poutre est choisi suffisamment important pour que la masse mobile ait un
impact visible sur les propriétés dynamiques du système. Le système entier est alors
excité par une force aléatoire transmise par un pot vibrant et des accéléromètres en-
registrent la réponse du système en différents endroits pendant le déplacement de la
masse sur la poutre.
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Introduction

In many fields of engineering, from civil to aerospace structures, modal analysis has
always played a major role. Its main goal is to provide a good understanding about the
dynamics of the structure of interest. The purpose of the analysis is to obtain a good
model able to represent the structure. The needs of such accurate models is of prior
interest for several reasons. One of the most common application is the validation or
update of numerical models, such as finite elements ones, used for subsequent analyses
without to resort to experimental tests on prototypes. Identifying an experimental
model may also serve as a part of a larger numerical one in a substructuring approach
when the modeling of the piece under study is not an easy task. Another field of
application is the health monitoring of structures. Any change in the dynamics infor-
mation of a structure extracted from experimental data can indicate the appearance
of a damage on a structure or a malfunction of a machine.

Performing a modal analysis may be done in many ways, depending on the needs
of the test engineer or simply on the testing possibilities. The first major distinction
that can be observed is between Experimental Modal Analysis (EMA) and Operational
Modal Analysis (OMA). The former one is generally performed in laboratories and all
the testing conditions, including the applied force, are well controlled. Conversely, the
analysis if often performed in an OMA way when testing the structure in a lab can
not be done or when a lot of excitation sources are impossible to measure. One speak
about output-only identification. This is generally the case for large civil engineering
structures (buildings, bridges, and so on). Other subdifferentiation are more related
to the type and amount of available data. Indeed, the modal identification methods
work either with time or frequency data. Further, they are also differentiated between
Single Degree of Freedom (SDOF) or Multiple Degree of Freedom (MDOF) methods.
MDOF methods are generally preferred when the mode shapes of the structure are
required in the identification. Finally, a last distinction in the type of methods is
between parametric and nonparametric representations.

Besides the all the latter types of modal analysis methods, the system to be iden-
tified may also itself impose some constraints. Modal identification methods are now
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mature with respect to their application in the field of Linear Time Invariant (LTI)
systems. Those systems are characterized by a fixed frequency content. Nowadays, new
challenges target the identification of systems expressing a nonlinear behavior [1, 2] or
a time dependency of their modal parameters [3]. A nice graphical representation of
the actual state-of-the-art of modal identification for MDOF systems is presented by
Garibaldi in [4] and shown in Figure 1.

Nonlinear

Output only

Time variant

Well assessed

Not fully exploited

Under development

Figure 1: Basic illustration of the state-of-the-art of modal identification [4].

The goal of this thesis is to bring some new content in the field of MDOF output-
only identification of time-varying systems. Indeed, only few methods in the literature
are concerned by MDOF measurements and even fewer pay attention to the varying
mode shapes. Further, in many applications employing time-varying structures, the
applied excitation is rarely known.

Time-varying structures

In real life structures, many parameters may bring a sufficient modification of their
structural properties which can have a non negligible effect on their modal properties.
As an example, in civil engineering structures, the traffic or the passing of a train on
a bridge affects the mass repartition of the whole structure which affects the dynamics
of the brige [5, 6]. On a smaller scale, the crowd on a footpath acts in a similar way.
Structures with changing configuration such as robots, cranes or even wind turbines
also show dependencies in time of their modal properties with respect to their instanta-
neous configuration or operational conditions. The wind turbine case may also fall in a
subclass of time-varying problems if the angular position of the rotor is the parameter
that has the highest impact on the dynamics of the blades. The system then becomes
periodically-varying [7]. In the aerospace industry, the decrease in the mass of embed-
ded fuel may also be considered. In airplanes, this decrease rate may be small but this
is not the case for rockets or launchers for example [8, 9]. Another aspect related to
launch vehicle is the rapid change of temperature in some parts of the structure, such
as the nozzle, that may also encounter variations in their properties [10].
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Outline of the dissertation

As stated above, this thesis aims to bring new methodologies for the analysis of time-
varying systems. This means that the proposed methods should be able to track the
varying modal properties of such systems. The attention is put on MDOF systems and
especially on the ability to extract the varying mode shapes as it is not so covered in
the literature. All the proposed methods remain in the time domain.

The following of the thesis is subdivided in four main chapters. The three first
ones described methodologies and their test on a laboratory varying structure. The
last one is a test of the application of the methods on more complex cases and the use
of the obtained varying mode shapes for monitoring purposes. Each of the three first
chapters cover different methods based on nonparametric, semi-parametric and fully
parametric identifications, respectively.

Chapter 1 first analyses time-varying systems by the application of the Hilbert
transform. The proposed method is totally nonparametric. The Hilbert transform is
a useful tool for the extraction of instantaneous properties of signals. Thanks to this
ability, it is tempting to incorporate it in a method dedicated to the identification of
varying modal properties. The use of the Hilbert transform in structural dynamics is
generally applied to nonlinear vibrations applications. The second point of this chapter
is the consideration of multiple measurement channels conversely to the majority of
researches that only consider a single signal at a time. The experimental laboratory
structure is also presented here.

Chapter 2 continues the whole identification by mixing a part of parametric iden-
tification of the varying poles followed by the same nonparametric identification of
the mode shapes as in Chapter 1. This way to proceed improves the identification
capabilities of the method. The parametric part is composed with a scalar parametric
model with a constraint linking all the measurement channels in order to treat multiple
measurements.

Chapter 3 provides two fully multivariate parametric models for the identification of
varying mechanical systems. The multivariate way to model the identification problem
directly consider multiple measurements and the mode shapes are direct parts of the
results.

Chapter 4 applies the methods of Chapter 3 on the same experimental problem
but in extended conditions (more channels, larger frequency band). The aim of this
chapter is first to test the capabilities of the proposed methods. Other objectives are
the application of the identification process for monitoring purposes and the treatment
of additional measured information about the system besides the response channels.

Finally, a conclusion ends the thesis by recalling all the major comments and results
covered in the whole work.
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1
Non-parametric approach

This chapter is dedicated to the modal identification of time-varying vibrating struc-
tures through a non-parametric approach. First, some classical non-parametric meth-
ods are remind before we present a novel original method to deal with the identification
of time-varying dynamical systems.

1.1 Nonstationarity in signal processing and instan-
taneous frequency calculation

In many applications, the main assumption behind common signal processing and sys-
tem identification techniques is that the system response is stationary. The stationarity
is a key assumption required for many of the most commonly used tools in system iden-
tification, including the Fourier Transform (FT), the Correlation Function (CF) or the
Power Spectral Density (PSD). These tools, for example, are the most encountered in
many system identification methods, being in time or frequency domain.

Stationarity is lost when the system exhibits some time-dependent characteristics.
When dealing with the experimental identification of such time-varying systems, the
loss of stationarity is the main complication we first have to face. To account for time
variations, traditional signal processing and identification methods evolved, leading to
the introduction of Time-Frequency Representation (TFR) to capture the evolution in
time of the phase, amplitude and frequency content of a signal.

Many different time-frequency representations exist to model the varying frequency
content of nonstationary signals and we will focus here on how they can identify a
varying resonance frequency of a dynamical system. The simplest method is the Short-
Time Fourier Transform (STFT), also known as the Windowed Fourier Transform,
which assumes that the processed signal can be considered as stationary in a short
time window sliding along the time axis. The classical FT is applied without any
modification and represents the frequency content of the signal at the time set by the
location of the active window. Note that the STFT is only an estimate of the varying
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(a) STFT with high time resolution. (b) STFT with high frequency resolution.

Figure 1.1: Illustration of the trade-off between time and frequency resolution in the
STFT.

frequency content of the signal because it leads to different results depending on the
choice in length and type of the applied moving window.

Due to the FT properties there is a trade-off between time resolution and frequency
resolution. If we want to gain in frequency resolution, the sliding window has to be
enlarged, which decreases the time resolution. Conversely, an increase in time resolu-
tion implies shorter windows and a lower frequency resolution. This is related to the
uncertainty principle stating that it is not possible to refine the time and frequency
resolutions simultaneously. The STFT time-frequency resolution is ruled by the rela-
tion ∆f.∆t = Constant ≥ 1/(4π). Figure 1.1 represents two cases of STFT in which
the time (1.1(a)) or the frequency (1.1(b)) resolution is preferred.

The STFT is computed as follows:

SSTFT (t, ω) =
∫ ∞
−∞

f(τ)w(τ − t) e−i ω τdτ (1.1)

where w is the time window function. Taking the squared complex norm of the STFT
leads to the so-called spectrogram of the signal.

Another useful tool to represent the time-varying frequency content of a signal is
the Wavelet Transform (WT). The idea of the WT was first introduced by Harr in
1910 [11]. He showed that it is possible to represent any continuous function f(x) in
the support [0, 1] by a series of orthogonal piecewise constant functions now known as
the Haar wavelets. Each of the successive Haar functions is built based on a reference
function that is scaled and shifted, as illustrated in Figure 1.2. The wavelet transforms
used in modern signal processing are based on the same principle. Starting from a first
function, called the mother wavelet, a series of other functions, the daughter wavelets,
are built by scaling and shifting to fill a function basis of the desired dimension. In
this way, each wavelet is located in frequency (through its scaling) and time (through
its shifting) domains. The Continous Wavelet Transform is computed as

SCWT (a, b) = 1√
|a|

∫ ∞
−∞

f(x)ψ
(
x− b
a

)
dx (1.2)

where ψ is the mother wavelet and a and b the scaling and shifting factors, respectively.
A very common function used to represent the time-frequency content of a signal is
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Scaling and shifting

Figure 1.2: Illustration of the Haar wavelet functions.

}
Low correlation with 
this scaled wavelet

}

High correlation with 
this scaled wavelet

Figure 1.3: Illustration of the wavelet transform.

the Morlet wavelet. The Morlet wavelet is the product of a complex exponential and a
Gaussian window. The time and frequency content of the Morlet wavelet then depends
on the shifting and scaling of the Gaussian envelope and on the pulsation of the complex
exponential. This is illustrated in Figure 1.3. The squared complex norm of the WT
is named the scalogram and is similar to the spectrogram. Note that conversely to the
STFT, the wavelet spectrum does not have the same time-frequency resolution in the
whole domain, as illustrated in Figure 1.4.

The Wigner-Ville distribution is another method able to represent the time-frequency
content of a signal. Originally, it was first developed in the field of quantum mechanics
by Wigner [12] and then applied in signal processing by Ville [13]. The definition of
the Wigner-Ville spectrum is

Figure 1.4: Illustration of the wavelet transform.

7



(a) Spectrogram with the
STFT.

(b) Scalogram with the WT. (c) Wigner-Ville distribution.

Figure 1.5: Illustration of different time-frequency representations.

SWVD(t, ω) =
∫ +∞

−∞
z
(
t+ τ

2

)
z̄
(
t− τ

2

)
e−iωτdτ (1.3)

where z is the complex analytic form of the real-valued signal x and ¯ denotes the
complex conjugated value. The analytic signal (AS) will be described hereafter together
with the Hilbert Transform (HT).

The Wigner-Ville distribution has some advantages compared to the previously
cited time-frequency representations, but also suffers from some drawbacks. Regarding
Equation (1.3), it appears as the Fourier transform of the local autocorrelation function
with a lag τ . This is equivalent to the power spectral density at time t. The Wigner-
Ville distribution is a part of a greater family of time-frequency distributions, the
Cohen’s class, that differ through the introduction of a multiplicative kernel in (1.3)
[14].

A comparison between these methods for the representation of a simple chirp signal
of unit amplitude is illustrated in Figure 1.5. It can be observed that the spectrogram
and scalogram add some spread around the linear increasing frequency, conversely to
the WVD which precisely locates the chirp signal in the time-frequency domain.

However, if the WVD perfectly works for a single component, things become worse
if the signal possesses multiple frequency components. For example, adding a second
component with a fixed frequency at 50 Hz and a constant amplitude of 0.5, the WVD
shows some artifacts polluting the time-frequency spectrum. This is inherent to the
computation of the WVD, which is a quadratic transform. This makes appear these
artefacts as the product of the cross terms between all the components of the signal
in the WVD computation. As shown in Figure 1.6, the auto-terms (from the sub
components) are well represented in Figure 1.6(c) but are polluted by the cross-terms
of the two components. This does not appear with the STFT or the WT as shown in
Figures 1.6(a) and 1.6(b).
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(a) Spectrogram with the
STFT.

(b) Scalogram with the WT. (c) Wigner-Ville distribution.

Figure 1.6: Illustration of different time-frequency representations for a multicompo-
nent signal.

These families of time-frequency representations are useful to represent the fre-
quency content of non-stationary signals. Throughout the present manuscript, many
time-frequency plots are displayed but they are only used for illustration purposes and
not for identification.

The next method presented here is based directly on the Hilbert transform and
the Analytic Signal. In 1946 [15], Gabor wanted to bring useful tools coming from
quantum mechanics to the field of signal processing. The majority of them are based
on complex representations, while usually recorded signals are real-valued. Gabor’s
goal was to expand real-valued signals in the complex space, such as the well-know
Euler’s formula that links real-valued sine and cosine functions to a complex exponential
representation. Let us also mention another contribution by Ville in 1948 about the
analytic signal which is less known due to the fact it is written in French [13]. Starting
from a real-valued signal x(t), the idea is to create a complex signal by adding a signal
in quadrature with respect to x(t) multiplied by the complex unit such that

z(t) = x(t) + ix̃(t) (1.4)

in which z(t) is the complex analytic signal and x̃(t) is the quadrature signal. It
remains now to build the signal in quadrature and the HT is a good candidate method
to build the quadrature signal x̃(t). The HT H is a special linear transformation that
has the particularity, to remain in the same domain as the one of the original signal.
It also means that the output of the Hilbert transform applied to a real signal is also
a real signal. Mathematically, the Hilbert transform of a signal x(t) is obtained by the
convolution product with a function h(t) equal to

h(t) = 1
π t
. (1.5)

9



Figure 1.7: Illustration of h(t) and its Fourier transform.

Figure 1.8: Specra of a signal and its correspondent analytic signal.

Because the convolution product x(t) ∗ h(t) is an improper integral due to the
singularity of h(t) at t = 0, the Hilbert transform is calculated using the Cauchy
principal value of the integral. The integration is done up to an ε value close to the
singularity and the limit for ε→ 0 is calculated.

x̃(t) = H(x(t)) = p.v.
∫ +∞

−∞
x(t)h(t− τ) dτ

= 1
π

p.v.
∫ +∞

−∞

x(t)
t− τ

dτ

= 1
π

limε→0

[∫ t−ε

−∞

x(t)
t− τ

dτ +
∫ +∞

t+ε

x(t)
t− τ

dτ
]
.

(1.6)

It results after the transformation that x̃(t) is a signal with a phase shift of +
and − π

2 with respect to the original x(t) for its negative and positive frequencies,
respectively. The amplitude remains unchanged along the frequency axis. Figure 1.7
represents the HT both in the time and frequency domains. It is interesting to note
some properties of the Hilbert transform. The spectral representation of the analytic
signal is somehow particular. A consequence of the multiplication between the complex
unit and the phase shifts of the Hilbert transform is that the negative frequency content
of the Fourier transform of the analytic signal vanishes. Further, the components on
the positive frequency part are doubled compared to the Fourier spectrum of the initial
signal x(t). Note that this property enables another way of computing of the analytic
signal. It is indeed that property that the hilbert() Matlab function uses for the
computation of the whole analytic signal (not only its Hilbert transform as its name
could suggest). The fact that the amplitude of the positive frequencies is doubled
ensures the conservation of the energy of the signal. Figure 1.8 illustrates the one-
sided feature of the spectrum of the analytic signal.
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Aside from the convolution product (1.6) and its spectral characteristics (Figure
1.8), the Hilbert transform also possesses the following features:

Inverse Hilbert transform. We saw that the Hilbert transform shifts the signal with
a phase lag of π2 . Then, applying twice the transform on a signal results in a phase
opposition:

H [H [x(t)]] = −x(t).

The inverse transform is then easily obtained by:

H−1 = −H. (1.7)

Differentiation. Being a linear operator, the Hilbert transform commutes with the
derivative operator. This implies that the Hilbert transform of the derivative of
a signal is equal to the derivative of its Hilbert transform:

H
[

dx(t)
dt

]
= d

dtH [x(t)] . (1.8)

More generally, if we consider higher-order derivatives, it follows that:

H
[

dk x(t)
dtk

]
= dk

dtk H [x(t)] . (1.9)

This property will be helpful when dealing with dynamical systems ruled by
second-order equations of motion.

The Bedrosian product theorem. This theorem was demonstrated by Bedrosian
in [16] and concerns the transformation of a product of functions. It states that
if f(t) and g(t) are two functions characterized by a low and a high (but non
overlapping) spectrum respectively, the low frequency signal can be pulled out
from the transformation such that:

H [f(t) g(t)] = f(t)H [g(t)] . (1.10)

The complex analytic signal now gains in interpretation if we write it in polar
coordinates. Its modulus corresponds to the instantaneous amplitude a(t), and its
argument to the phase angle φ(t), such that

z(t) = x(t) + i x̃(t)
= a(t) ei φ(t). (1.11)

According to this form, the signal can be represented as a rotating phasor in the
complex plane and it is possible to define its instantaneous amplitude as its complex
modulus, and its instantaneous frequency as the time derivative of its instantaneous
phase angle [13]:

a(t) = |z(t)| (1.12)
ω(t) = φ̇(t) (1.13)
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Figure 1.9: Signal composed of two different monocomponents.

Note also that from (1.11), the instantaneous frequency may alternatively be computed
as:

ω(t) = x(t) ˙̃x(t)− ẋ(t) x̃(t)
a2(t) (1.14)

= Im
[
ż(t)
z(t)

]
(1.15)

It is now possible to draw the amplitude with respect to time and frequency. Such
a plot is called the Hilbert spectrum.

The definitions of a(t) and ω(t) are pretty straightforward in the simple case of
a simple oscillation signal with amplitude and/or frequency modulation, but what
happens if the signal is composed of two or several components, each one with its own
amplitude and frequency? Let us consider now an example with a compound signal x(t)
with two components: one of high amplitude and low frequency x1(t), and one of low
amplitude and high frequency x2(t), as illustrated in Figure 1.9. The time signals are
illustrated on the left side of the figure and the polar representation of their respective
analytic signals on the right side. Note that for the sake of simplicity, the signal and
its two components are taken stationary, but the following explanations remain valid
for time-varying amplitudes and frequencies.

This simple example directly highlights that the definition of the instantaneous
frequency when more than one component are present in the signal may loose its
physical meaning. One may observe in Figure 1.10 that the instantaneous frequency
of the composed signal does not correspond to any of the initial frequencies ω1 or ω2
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Figure 1.10: Instantaneous frequency calculated as the time derivative of the phase
angle.

or a combination of them. Further, one may also see that the instantaneous frequency
may be negative at some instants. These negative frequencies occur when the phasor
representing the complex analytic signal rotates clockwise as shown in the last polar
plot in Figure 1.9, the phasor drawing the small inside loops.

The fact that the instantaneous frequency looses its physical meaning when several
oscillating components are present in the signal is an issue for the analysis of structural
vibrations. Indeed, vibration data will usually contain more than one component.
The use of the instantaneous frequency for modal analysis of time-varying systems
will then need a preprocessing of the data to isolate each of the components before
computing their own instantaneous frequency. This justifies the application of signal
decomposition techniques, explained in the next section.

1.2 Signal decomposition methods

1.2.1 The Empirical Mode Decomposition (EMD) method and
the Hilbert-Huang Transform (HHT)

As previously pointed out, the estimation of instantaneous frequencies is only valid
for monocomponent signals. Some techniques were then developed to overcome this
limitation. In 1998, Huang et al. [17] addressed that problem and developed the
Empirical Mode Decomposition (EMD) method which is now commonly used in various
fields of engineering, from mechanical monitoring [18] to the analysis of brain signals
in bio-engineering [19]. The EMD method is data-driven and completely adaptive.
It is able to decompose any nonlinear or nonstationary signal into a sum of basic
monocomponents called Intrinsic Mode Functions (IMF). These mono-components are
better suited for the application of the Hilbert transform and valuable information,
such as the instantaneous frequency and amplitude, can be extracted. The whole
process, i.e. EMD followed by the spectral analysis with the application of the Hilbert
transform on each IMF, is named the Hilbert-Huang Transform (HHT).

The EMD method is based on a sifting process of the signal by an iterative extrac-
tion of each of its IMF component. According to Huang, an extracted component is
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an IMF if it meets two conditions:

• when counting the number of extrema and zero-crossing of an IMF candidate,
their difference must be at most equal to one. This simple condition will ensure
that the candidate is a monocomponent.

• the mean value between the upper and lower envelopes of the IMF candidate
must be zero. This condition preserves the IMF candidate to be asymmetric,
which could deteriorate the further computation of its instantaneous frequency
by the Hilbert transform.

The whole sifting process works as follows:

1. All the local maxima of the signal are located.

2. An empirical upper envelope is built by the cubic spline interpolation of all the
maxima.

3. The same operation is performed to construct the lower envelope using the same
approach with the local minima.

4. With the upper and lower envelopes, a mean envelope is calculated and subtracted
from the signal. The mean envelope represents a slow oscillation signal.

5. Operation from 1. to 4. are repeated until the remaining signal corresponds
to the definition of an IMF. Once it is the case the IMF, corresponding to the
fastest oscillating component, is subtracted from the signal and the sifting process
continues for the extraction of the other IMFs.

The process is illustrated in Figure 1.11. The minima and maxima are located and
represented on the two-component signal by upper and lower triangles, respectively.
The upper and lower envelopes constructed by spline interpolations are represented by
the dashed red lines and the mean envelope by a solid black line.

1.2.2 The Hilbert Vibration Decomposition (HVD) Method

More recently, Feldman developed an alternative method to EMD to perform signal
decomposition [20, 21]. His method, named Hilbert Vibration Decomposition (HVD),
is designed to achieve the same goal: decompose nonlinear and/or nonstationary time
series into its intrinsic monocomponents. However, the way to process the decompo-
sition is quite different from the EMD method. The HVD method directly focuses on
the analytic form of a given signal and especially on its frequency variation.

To illustrate the method, let us take again the two-component signal used to illus-
trate the EMD method in Figure 1.9. We have:

x(t) = x1(t) + x2(t) (1.16)
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Figure 1.11: Illustration of the slow oscillation removal from the initial signal until
only the fast oscillation component remains.

with x1(t) and x2(t) being the two components of the signal x(t). Each of these
components is defined by its amplitude and frequency a1(t), ω1(t) and a2(t), ω2(t),
respectively. In the present case, we have a1(t) > a2(t) and ω2(t) > ω1(t). Remember
that the amplitude and frequency of each monocomponent are kept constant for the
illustrative example.

Let us compute the analytic signal corresponding to (1.16):

z(t) = z1(t) + z2(t). (1.17)

The latter complex analytic signal writes in terms of amplitudes and complex expo-
nentials:

z(t) = z1(t) + z2(t) (1.18)
= a1 e

iφ1(t) + a2 e
iφ2(t) (1.19)

= a1 e
iω1t + a2 e

iω2t (1.20)

by expressing the instantaneous phase angle φ(t) by the time integration of the corre-
sponding frequency ω. Computing the instantaneous amplitude and frequency of this
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Figure 1.12: Trajectory in the phase plane (real versus imaginary part) of the analytic
signal with two components. The gray track represents the trajectory of the combined
signal and the green and red vectors represent the phasors of the two monocomponent
signals.

compound signal gives:

a(t) =
[
a2

1 + a2
2 + a1a2e

i(φ1(t)−φ2(t)) + a1a2e
i(φ2(t)−φ1(t))

]1
2 (1.21)

=
[
a2

1 + a2
2 + 2 a1a2 cos (φ2(t)− φ1(t))

]1
2 (1.22)

=
[
a2

1 + a2
2 + 2 a1a2 cos ((ω2 − ω1)t)

]1
2 (1.23)

ω(t) = ω1 + (ω2 − ω1) [a2
2 + a1a2 cos ((ω2 − ω1)t)]

a2(t) (1.24)

Note that (1.23) corresponds to the modulated amplitude in the beating phe-
nomenon when a signal is composed of a couple of component with close frequencies.
One may also remark that the instantaneous frequency (1.24) is dominated by the
frequency of the largest component, ω1, and also features a variation due to the second
term in (1.24) which depends on the difference between ω1 and ω2. Graphically, Figure
1.12 represents this signal in the complex plane, where the larger amplitude of the
first component is clearly visible. The second component adds only smaller oscillations
around the main trajectory. This behaviour was previously illustrated in Figure 1.10.

It can be shown that if the instantaneous frequency (1.24) is averaged over a well-
chosen time window T , the second oscillating term of the instantaneous frequency

16



vanishes [21]: ∫ T

0

(ω2 − ω1) [a2
2 + a1a2 cos ((ω2 − ω1)t)]

a2(t) dt = 0 (1.25)

for
T = 2π

ω2 − ω1
.

From that observation, the averaging of the instantaneous frequency is a way to
recover the frequency of the dominant component of the signal:∫ T

0
ω(t)dt = ω1 + 0. (1.26)

This observation is also valid for monocomponents with varying amplitudes and fre-
quencies, but provided that the time averaging on a period T is replaced by a low-pass
filtering of the instantaneous frequency with an appropriate cutoff frequency. The
identification of the instantaneous frequency of the largest component is a key step in
Feldman’s algorithm and is used for the subsequent operation, namely the extraction
of the dominant component from the compound signal. This extraction in the HVD
method is performed by a synchronous demodulation of the signal based on the iden-
tified varying frequency in order to obtain its corresponding envelope. In practice, if a
signal is a mixture of several components such as :

x(t) =
∑
l

xl(t) (1.27)

=
∑
l

al(t) cos
(∫

ωl(t)dt+ φl

)
(1.28)

the aim of the synchronous detection is to recover the envelope ar(t) corresponding to
the rth component with a reference frequency ωr(t). In the case of the HVD method,
the reference frequency used for the demodulation of the frequency of the dominant
component previously identified. To recover the amplitude ar(t), the signal is multiplied
by two reference signals, in quadrature, and oscillating at the reference frequency. The
two signal cos (

∫
ωr(t)dt) and sin (

∫
ωr(t)dt) may be used for that purpose. We have,

for the component l:

xcos
l (t) = al(t) cos

(∫
ωl(t)dt+ φl

)
cos

(∫
ωr(t)dt

)
(1.29)

= al(t)
2

[
cos

(∫
ωl(t)− ωr(t)dt+ φl

)
+ cos

(∫
ωl(t) + ωr(t)dt+ φl

)]
(1.30)

Similarly, we have

xsin
l (t) = al(t) cos

(∫
ωl(t)dt+ φl

)
sin

(∫
ωr(t)dt

)
(1.31)

= al(t)
2

[
− sin

(∫
ωl(t)− ωr(t)dt+ φl

)
+ sin

(∫
ωl(t) + ωr(t)dt+ φl

)]
(1.32)
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In the case where the component l equals the reference frequency ωr, we have

xcos
l=r(t) = al=r(t)

2

[
cos (φl=r) + cos

(∫
ωl=r(t) + ωr(t)dt+ φl=r

)]
(1.33)

xsin
l=r(t) = al=r(t)

2

[
− sin (φl=r) + sin

(∫
ωl=r(t) + ωr(t)dt+ φl=r

)]
(1.34)

By an averaging operation (or equivalently lowpass filtering) on the two latter
signals, the slow envelope corresponding to the reference frequency can be isolated:

〈xcos
l=r(t)〉 =


al=r(t)

2 cos (φl=r) if ωl(t) = ωr(t)

0 if ωl(t) 6= ωr(t)
(1.35)

〈
xsin
l=r(t)

〉
=

 −
al=r(t)

2 sin (φl=r) if ωl(t) = ωr(t)

0 if ωl(t) 6= ωr(t)
(1.36)

The amplitude and phase of the rth component can finally be calculated as

al=r(t) = 2
√
〈xcos

l=r(t)〉
2 + 〈xsin

l=r(t)〉
2 (1.37)

φl=r = − arctan 〈x
sin
l=r(t)〉
〈xcos

l=r(t)〉
(1.38)

The rth component can now be fully computed and extracted from the initial signal
following the same sifting process as in the EMD method. The process is iterated on the
residual for the extraction of the next dominant component until no more oscillating
component can be extracted from the signal.

1.2.3 Comparison between the EMD and HVD methods

In Sections 1.2.1 and 1.2.2, the processes of the EMD and HVD methods are explained
to decompose a multicomponent signal in a sum of monocomponent ones. Even if they
are similar (non-parametric, adaptive, iterative sifting), the result of the decomposition
is not the same. First, it was shown that, from its construction, the EMD method
decomposes a signal starting by its highest instantaneous frequency by the successive
subtraction of the slow mean envelope. Conversely, the HVD method first extracts the
component having the highest amplitude which drives the mean motion of the analytic
signal in the complex plane. Both methods can be subject to some mode-mixing in
the decomposition, meaning that each of the decomposed component, always being
a monocomponent, could switch between different time scales. Let us mention some
attempts to overcome this limitation such as the noise-assisted Ensemble Empirical
Mode Decomposition (EEMD) method [22]. To summarize the main idea underlying
this method, the decomposition is performed several times on a signal to which some
noise is added. The envelopes are then computed as the average of all the computed
envelopes. This is justified by the fact that the average of all the noise contributions
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should be zero if a sufficient number of realizations is performed. The signal to added
noise ratio has to be properly chosen to avoid the mode mixing.

In [23, 21], Feldman proposes an analysis and comparison of both the EMD and
HVD methods. He first developed his analysis by classifying nonstationary signals into
3 different types.

Type I: This represents the simplest case. All the monocomponents of the signal are
well separated (there is no crossing in amplitude and/or frequency) and smooth
(their instantaneous characteristics vary slowly).

Type II: This is an intermediate case. The monocomponents remain well separated
but can encounter fast variations of their envelope or instantaneous frequency.

Type III: This is the most complicated case. The monocomponents may have their
envelopes or instantaneous frequency that cross each other.

Clearly, for type III signals, both methods fail because they will follow a dominant
feature: the instantaneous frequency for the EMD method, and the instantaneous am-
plitude for the HVD method. In this case, the decomposition is not unique. Boashash
suggests that the choice of the trajectory to follow depends on the application [24]. For
types II and III, Feldman also recommends that a combination of the two methods can
be used.

Figure 1.13 represents in a block diagram the two previous algorithms.

Feldman highlighted two other properties for which the HVD lightly outperforms
the EMD method. He shows that HVD has a better frequency resolution than EMD.
This means that HVD is able to separate components with closer frequencies than
EMD. In the EMD method, the ability to separate two components essentially de-
pends on their amplitude and frequency ratios. Conversely, in the HVD method, it is
the cutoff frequency of the lowpass filter that defines the frequency resolution of the
decomposition. Figure 1.14 shows the decomposition capabilities of the two methods
[25]. He also estimates the number of oscillating components that could be extracted
from a signal with the two methods. This number depends on their amplitude and fre-
quency ratios but Feldman’s conclusion is that the HVD method is able to extract a few
more components than the EMD method. But in any case, this number of extractable
components is rather limited.

1.3 Applications in mechanical vibration analysis

The previously introduced methods have been applied for the study of nonstationary
time series, mainly in the field of nonlinear vibration identification, which increasingly
has gained interest over the years. A non exhaustive review of their application is given
in what follows. The Gabor transform, which is a particular STFT using a Gaussian
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x(t) := x(t) − xk(t)
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Input signal
x(t)
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z(t) = x(t) + iH(x(t))
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ω(t) = dφ(t)
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= d∠z(t)
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ω(t) → ωk(t)
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xk(t)

Sifting process
x(t) := x(t) − xk(t)

Figure 1.13: Comparative block diagram representations of the EMD (left) and HVD
(right) methods.

(a) EMD method. 1: Impossible decomposition.
2: Decomposition with several iterations. 3: De-
composition in one iteration.

(b) HVD method. 1: Impossible decomposition.
2: Possible decomposition.

Figure 1.14: Illustration of the frequency resolution of both EMD and HVD methods
[25].
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window in (1.1), together with the HT were used in [26]. The Gabor transform is
used first to separate quasi-harmonic component for a further analysis by the Hilbert
transform to compute damping and restoring forces curves. The WT is also widely used
in this topic. In [27], Staszewski used the WT to extract the instantaneous frequencies
and amplitudes from impulse responses of single- and multi-degree-of-freedom systems.
The amplitude-frequency relation estimates the backbone of the nonlinear mode which
draws the locus of the nonlinear resonance peaks. Argoul and Le also used the WT for
the study of the transient response of a nonlinear beam in [28]. The EMD, and more
generally the complete HHT method, has also been used to consider the nonstationarity,
such as the amplitude-dependent resonance frequency, of nonlinear vibration responses.
In [29] and [30], Kerschen et al. and Vakakis et al. used the HHT method for the
identification of the slow-flow dynamics of nonlinear systems. The HVD method is
also used by Feldman in nonlinear identification. In [31, 32, 21], two methods named
FREEVIB and FORCEVIB were developped for the nonparametric identification of
nonlinear systems based on the Hilbert transform. As their names suggest, they work
with free and forced responses and are able to draw the backbones and stiffness and
damping curves. A comparison of STFT and WVD is also present in [33]. In [21], the
FREEVIB and FORCEVIB methods were illustrated on various numerical problems
but were also tested on an experimental structure [34, 21]. However, because the two
latter methods require the knowledge of displacements, velocities and accelerations, the
author warned the user of these techniques about the quality of his measurements to
not drastically increase the inherent noise present in the experimental measurements
by numerical derivative/integration.

In [35, 36], Staszewski explores the concept of time-varying FRFs through the use of
the wavelet transform for time-varying systems. The concept is a generalization of the
classical FRF (ratio between spectra) in which the wavelet transforms of the input and
output data are used instead of the classical Fourier spectra to keep the time variation
into account.

1.4 How to manage multiple output responses?

In most of the research works dealing with the analysis of time-varying systems, often
only SDOF systems are considered or, if MDOF systems are studied, identification
is performed on a single channel at a time. Further, the varying mode shapes are
generally ignored in the studies. However, let us cite [37] in which Dziedziech et al.
compute the mode shapes by the amplitude and phase on a series of wavelet-based
time-varying FRFs. The first contribution of the present thesis is to go further in
the analysis of time-varying system with nonparametric methods. The objective is to
be able to deal with several measurement channels monitoring a time-varying system
having multiple modes excited in the considered frequency band. As seen earlier, many
of the previously mentioned methods deal with single channel measurements. In the
case of a multichannel setup, one could apply these methods to all channels separately,
but nothing ensures that the results will be close from one to another. Because of the
spatial distribution of the experimental setup, all the channels are not submitted to the
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Figure 1.15: Simple 2 DOFs system submitted to an impulse.

same amplitude of vibration and it is also mode-dependent. A sensor close to a nodal
point of a mode will not efficiently record its response because of its low amplitude at
its location. Trying to identify this mode using only this channel would not be a good
choice.

Further, we have also seen that the EMD and HVD methods are proned to mode
mixing if the instantaneous frequencies or amplitudes of the constitutive monocompo-
nents cross. For illustrative purpose, let us consider the simple 2 DoF system given in
Figure 1.15. The system simply varies through its stiffness k2(t) that decreases linearly
with time. The properties of the system are listed hereafter and the time-frequency
free response of each DOF is shown on the right side of Figrure 1.15:

• m1 = 3 kg;

• m2 = 1 kg;

• k1 = 20000 N/m;

• k2 = 25000↘ 5000 N/m (linear decrease over the time span);

• c1 = 3 Ns/m.

The system in its initial configuration has resonance frequencies of 10.9 and 29.9
Hz and damping ratios of 0.48 and 0.09 % for each of its modes, respectively. The
system is submitted to a unit impulse at DoF x2 and the response of the whole system
is simulated during 15 seconds. A classical Newmark integration scheme is used for
the time integration in which the stiffness matrix is updated at each time step to take
into account the dependence of k2 on time.

Applying the standard HVD method to the two channels separately leads to some
undesirable behavior. On both channels, the first mode is the best excited and re-
sponds with the highest amplitude. But because of the difference in damping ratio,
the amplitude of the first mode decreases faster and the response of the second mode
becomes dominant at some time instants. Each time an intrinsic component becomes
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dominant in the signal, the method targets it and a mode switching phenomenon oc-
curs during the extraction process. Moreover, as it can be seen in Figure 1.16, the
mode switching does not occur at the same time on each measurement channel, which
makes the correction of these switches more difficult. When the frequency curve jumps
from one mode to the other, the corresponding demodulated component also follows
the jump.

In Figure 1.17, the extraction of each monocomponent with its instantaneous fre-
quency and amplitude enable us to draw the Hilbert spectra of the responses. The
figure well illustrates that the crossings occur at equivalent amplitudes between com-
ponents.

This undesirable behavior is the first issue tackled in this work. The following
sections present a method able to manage several sensor measurements and produce
a single set of identified parameters. The idea is to upgrade the HVD algorithm by a
preprossessing step based on Blind Source Separation (BSS) techniques.

1.4.1 Blind source separation techniques

In signal processing, source separation methods are used to recover initial signals, the
sources, from a set of recorded signals assumed to be mixtures of the initial sources.
They are usually nonparametric methods. A large variety of methods exists trying to
separate them as much as possible based on decorrelation or independence. One can
cite, among others, the Principal Component Analysis (PCA) (also known as Proper
Orthogonal Decomposition (POD) or Karhunen-Loève transform (KLT)), the Smooth
Orthogonal Decomposition (SOD), the Independent Component Analysis (ICA) and
the Second-Order Blind Source Identification (SOBI). Some of these techniques have
been already used in the field of structural dynamics. For example, the POD method
was studied in [38] by Kerschen or in [39] by Han with an interest in the relation
between the proper orthogonal modes and the mode shapes of the system. In a similar
way, Chelidze applied the SOD to dynamical systems for modal analysis purposes [40].
The ICA and SOBI methods were also employed in modal analysis by Poncelet [41, 42]
with a validation with the Stochastic Subspace Identification (SSI) method. The main
properties of the latter blind source identification methods are recalled hereafter.

The principle of blind source separation methods is to assume that the recorded
signals are composed of a mixture of original source signals. A mathematical description
of this mixture is as:

x(t) = As(t) (1.39)
where A is the p × q mixing matrix and s(t) the q-variate source signals. One will
assume in a first time that the A matrix is square (p = q). Equation (1.39) recalls the
well-known principle of modal expansion in modal analysis theory in which the mixing
matrix would represent the mode shape matrix and the sources the normal coordinates.
All the BSS methods differ in the way to compute the latter mixing matrix, which also
impacts the properties owned by the computed sources. Note two indeterminations in
the methods. Looking to Equation (1.39), it is straightforward that the scaling of the
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Figure 1.16: Time responses and extracted instantaneous frequencies and components.
First row: time response of each DoF. Second row: Wavelet plots of each response.
Third row: identified instantaneous frequencies for each DoF by the HVD method.
Fourth and fifth rows : monocomponents corresponding to the each identified instan-
taneous frequencies.
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Figure 1.17: Hilbert spectra of each components after the decomposition by the HVD
method.

modes in the mixing matrix and the sources is unknown because both A and s(t) are
to be determined. Scaling a mode by a factor α and a source by a factor 1/α gives the
same result. Second, the decomposition is also not sensitive to the permutation of the
modes and sources in the decomposition (permutation of the columns in A and rows
in s(t). We will later see that those indeterminations do not have importance in the
way the sources will be used. More details about blind source separation methods are
given in Appendix A.

Of course, all the these source separation methods are based on the assumption that
the mixing matrix in Equation (1.39) is independent of time. In case of time-varying
systems this property is not met anymore but the targeted goal here is not to perform
a perfect nonstationary source separation but an approximated one in which each
source is dominated by the response of one mode and completed by lower amplitude
subcomponents from the other modes. Such kind of signals (dominant component plus
other dominated components) are well convenient for the identification of instantaneous
frequency using the HVD method. Moreover, each source gathers information from all
the measurement channels. This is also useful in the case when a mode is absent
or weakly present in one measurement channel, as it could be the case if the sensor
is located close to a node of vibration. Performing the identification on this single
channel would miss that mode.

As an illustrative example, let us take again the 2-DoF system of Figure 1.15. By
applying source separation to the two responses, the separated sources meet the con-
ditions for a good instantaneous frequency estimation by the HVD method. Even the
simple PCA method gives here sources continuously dominated by a single mode and
the mode mixing previously observed is not present anymore. Figure 1.18 represents
the decomposition with the BSS preprocessing. On the left column of Figure 1.18, the
first source s1(t) from the PCA decomposition is dominated by the lower frequency
mode. The extraction of its frequency is then performed and the corresponding com-
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ponent is extracted from the two channels. The same operation is performed on the
source s2(t) dominated by the second mode and here again, the second component is
properly extracted. As previously, the Hilbert spectra can be represented for the two
channels without the mode mixing. This is shown in Figure 1.19, to be compared with
Figure 1.17.

This illustrative example shows how the BSS preprocessing works on a simple ex-
ample. In more complicated problems, the philosophy remains the same but the BSS
is applied at each iteration step of the HVD algorithm, after each component extrac-
tion. This facilitates the extraction of all the modes if their number is higher than the
number of measurement channels.

1.4.2 Additional improvements to the HVD work flow

Besides the previously described preprocessing step based on blind source separation,
two other improvements are brought to the initial algorithm. First, because the goal of
the research is to deal with experimental data, the pollution of the experimental mea-
surements by noise is unavoidable. In the original HVD algorithm (Figure 1.13), the
phase of the analytic signal is extracted, derived to get the instantaneous frequency and
then lowpass filtered to extract the instantaneous frequency of the dominant compo-
nent. The later instantaneous frequency is finally integrated in the step of synchronous
detection (Equations (1.35) and (1.36)). This is not a problem when dealing with
numerical data but in the presence of noise, this causes noise amplification. Feldman
warn the users of its FREEVIB and FORCEVIB methods about the measurment noise
because these methods also require first and second derivative of the response signals
[21]. It is decided here to only work with the phase signal. Looking back to Figure
1.12, the phase angle of the analysis signal is dominated by the phase angle of the
dominant component (green arrow). The other subcomponent(s) of lower amplitude
add(s) some oscillations around the dominant phase angle. This is also shown in Fig-
ure 1.20. Following the same idea as for the instantaneous frequency, lowpass filtering
the phase angle makes vanish the oscillations due to the subcomponents and retains
only the main trend corresponding to the dominant component. Besides the lowpass
filtering procedure one also may use methods specifically designed in that way. In the
econometric field, the problem of separating cycle oscillations from a global trend is
a pretty common task. Two techniques are implemented here for this purpose: the
Hodrick-Prescott filter (HPF) and the Singular Spectrum Analysis (SSA).

The Hodrick-Prescott filter: The HPF was proposed by Hodrick and Prescott in
[43] for the analysis of economics time series. The basic assumption behind this
filter is that a given signal, here the phase φ(t), is made up of a global trend,
τ(t), some oscillating component, the cycle c(t) and some noise n(t):

φ(t) = τ(t) + c(t) + n(t) (1.40)

This behavior of signal is exactly what we are faced if looking the the growing
phase of a multicomponent signal, it is why it can be a substitute to the simple
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Figure 1.18: Application of the PCA blind source decomposition and extraction of the
instantaneous frequency of their dominant component. First row: time evolution of
each source. Second row: Wavelet plots of each source. Third row: identified instanta-
neous frequency of the dominant component. Fourth and fifth rows : monocomponents
corresponding to the identified instantaneous frequencies in each channel.
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Figure 1.19: Hilbert spectra of each components after the decomposition by the HVD
method preceeded by the source decomposition.

Time

0

Phase angle

(t)

1
(t)

Residual

Figure 1.20: The phase angle of a multicomponent analytic signal dominated by the
phase of the dominant component.
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lowpass filter. In the Hodrick-Prescott method, the trend, τ(t), is found by
solving an optimization problem :

min
τ

[
T∑
t=1

(φ(t)− τ(t))2 + λ
T−1∑
t=2

[(τ(t+ 1)− τ(t))− (τ(t)− τ(t− 1))]2
]
. (1.41)

The first term penalizes strong deviations from the trend and the second penalizes
fast variations of the trend. Indeed, the second term represents the square of the
discrete second derivative of the trend. Finally, the smoothing parameter λ tunes
the smoothness of the trend and replaces the cut-off frequency of the lowpass
filter. The larger the λ value, the smoother the trend. The limit case is λ→∞
which gives as solution the least square linear fit of the curve.

The Singular Spectrum Analysis (SSA): The SSA method is another nonpara-
metric decomposition method able to decompose a signal between a global trend,
oscillating components and structureless components. It is used here in the same
goal as the HP filter to extract the trend of the phase signal as the phase of
the dominant component plus oscillating components. It was initially used by
Broomhead and King for the analysis of nonlinear physical systems [44] but is
also widely used in economics for its separation capabilities. The algorithm of the
method is based on four steps: embedding delayed data in a trajectory matrix,
the decomposition of the trajectory matrix, a grouping step and the reconstruc-
tion of the desired part of the signal. Let us illustrate the method on the phase
signal represented in Figure 1.20:

1. First, the phase data φ(t) are embedded in a so called trajectory matrix by
choosing a window length L and considering time lagged parts of the signal:

T =



φ(1) φ(2) φ(3) · · · φ(L)
φ(2) φ(3) φ(4) · · · φ(L+ 1)
φ(3) φ(4) φ(5) · · · φ(L+ 2)

... ... ... . . . ...
φ(N − L) φ(N − L+ 1) φ(N − L+ 2) · · · φ(N)


(1.42)

2. The decomposition step is performed by a SVD decomposition of the trajec-
tory matrix T in the same way as the PCA method for source separation:

T = U ΣV T . (1.43)

3. The grouping procedure gather a subset of n < L decomposed singular
values and left and right vectors as

T gp = T 1 + T 2 + · · ·+ T n (1.44)

in which each T i is a rank one matrix of the same size as the trajectory
matrix and is computed with the ith singular triplet

T i = ui σi v
T
i . (1.45)
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4. The final reconstruction step is to recover a signal from the grouped matrix
T gp. This is done by a diagonal averaging the recombined trajectory matrix.
Looking to the Hankel form of (1.42), the reconstructed signal is obtained
computing the average value on each ascending diagonal of T gp.

Note also that in the decomposition, the oscillating components are represented
by pairs of equal magnitude singular values. It is then also possible to use the
SSA method in the source decomposition preprocessing part. A special utility
is in the case where only one channel of measurements is provided. The SSA
method then acts as a single channel source decomposition method and can also
prevent mode mixing into the following HVD processing.

The second improvement concerns the extraction of the monocomponents based on
their instantaneous frequency. In the previously described HVD algorithm, the extrac-
tion of each component is performed through synchronous detection. We choose here
to perform the extraction with another method, the Vold-Kalman Filter (VKF). The
VKF was initially presented in [45] by Vold and Leuridan for order tracking purposes
in rotating devices. The goal of the method is to extract components based on prior
knowledge. For example, in order tracking applications, the input information is the
rotation speed, in rounds per minute (RPM), that can be measured using a tachometer.
It is essentially a bandpass filter able to extract a component with a varying frequency.
Further, it is also able to extract multiple components at once if several inputs are
provided. In order tracking, it is possible to extract the main component at the rota-
tion speed but also its harmonics (higher orders) which are of great importance too.
This property is interesting in our case. In the proposed modified version of the HVD
method, the monocomponents are jointly extracted at each iteration based on all the
previously identified instantaneous frequencies. This is a great advantage in the case
of the extraction of closely spaced or, event worst, crossing frequencies.

The Vold-Kalman filter is made up with a couple of equations, namely the data
equation and the structural equation. Firstly, the data equation models the signal
similarly to what is obtained by the Hilbert transform. Indeed, the signal x(t) is
assumed to be composed of a sum of oscillating phasors modulated by a time-varying
complex amplitude:

x(t) =
∑
k

ak(t) ei φk(t) + n(t) (1.46)

The aim of the method is to recover the complex amplitude of each component based
on their phase information. Secondly, the structural equation brings some structure in
the identification process by imposing a smoothness constraint. This is done through
the minimization of the rate of variation of the extracted amplitudes. The result of
the extraction is the solution that minimizes quantities from the data and structural
equations:

x(t)−
∑
k

ak(t) ei φk(t) = ε(t) (1.47)

∇pak(t) = εk(t) (1.48)
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The first equation obviously minimizes the distance between the actual signal and
its reconstruction by the sum of all the extracted components. In the second equation,
the ∇p operator represents the difference operator of order p such as

∇1ak(t) = ak(t)− ak(t+ 1) (1.49)
∇2ak(t) = ak(t)− 2ak(t+ 1) + ak(t+ 2) (1.50)
∇3ak(t) = ak(t)− 3ak(t+ 1) + 3ak(t+ 2)− ak(t+ 3) (1.51)

...

for the operators up to the third order. The practical implementation details of the
VKF algorithm can be found in [46] or [47] for example, together with the introduction
of a regularizing parameter. The latter regularizing parameter, that can also be time-
dependent, is closely related the the -3dB bandwidth around the provided time-varying
frequency of the component to extract. Note that because of the introduction of
complex numbers in Equation (1.46), the obtained amplitudes ak(t) are in fact the
complex envelope of each component xk(t). Because the recorded signals are real-
valued ones, the kth component xk(t) is simply obtained as the real part of ak(t)eiφk(t).

The first benefit of the combined extraction of the monocomponents is illustrated
in Figure 1.21. The illustrative signal is the same as the one previously used in Figure
1.6, i.e. a combination of a sine sweep and a constant frequency component. In Figure
1.21(a), each component is extracted separately based on the knowledge of its (time-
dependent) frequency. In the vicinity of the crossing between the two frequencies,
the two components interfere and their instantaneous amplitudes are not accurate.
Conversely, if the two components are jointly extracted, the separation can be done
properly and the extracted amplitudes are good as illustrated in Figure 1.21(b).

The second advantage of the extracted amplitudes with the VKF algorithm is that
they are complex-valued envelopes. This means that they have a real amplitude and a
phase shift with respect to the complex exponential used for the extraction in Equation
(1.46). This valuable couple of information, amplitude and phase, can be used for
the approximation of the varying mode shapes of the system by combining all the
complex envelopes extracted from all the measurement channels based on the same
instantaneous frequency information. The similarity with the modal expansion of linear
systems is evident and the complex envelopes obtained in that way may be assimilated
to “time-varying unscaled mode-shapes”:

Vold-Kalman filter: x(t) = ∑
k ak(t) ei φk(t)

l l
Modal expansion: x(t) = ∑

k vk(t) ηk(t)
(1.52)

in which ηk(t) is the modal coordinate of the kth mode in the modal expansion.

Strictly speaking, it would be better not to speak of mode shapes but rather
to “modal deflection shapes” by analogy with the concept of Operational Deflection
Shapes (ODS) [48]. The mode shapes of a structure are only defined in the case of
linearity and time-invariant assumptions and are the spatial solution of the differential

31



-1

0

1

0 1 2 3 4 5 6 7 8 9 10
Time [s]

-1

0

1

(a) Separated extraction of the components with respect to each instantaneous fre-
quency.
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(b) Combined extraction of the components with respect to each instantaneous fre-
quency.

Figure 1.21: Comparison between separated and combined extraction of components.
The combined extraction is not perturbed by the interaction between the two compo-
nents in the vicinity of the crossing of their frequency.

32



Input signals
x(t)

Source separation
x(t) → s(t)

Analytic signal
z(t) = s(t) + iH(s(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)

VKF
x(k)(t), vk(t)

Sifting process
x(t) := x(t) − x(k)(t)

Figure 1.22: Flowchart of the modified HVD method.

motion equation. Conversely, the ODS can be computed in non stationary conditions.
By definition, they represent the spatial deformation of the structure under some load-
ing in contrast to the mode shapes that are inherent properties of the structure. If
the ODS is computed at (or very close to) a resonance frequency, the ODS is highly
dominated by the corresponding mode shape and it is a good approximation of it
[48, 49].

The new modified algorithm of the HVD method is represented in the flowchart
shown in Figure 1.22.

1.5 Application to a laboratory test structure

In order to test the performance of the presented method, it is tested on experimen-
tal measurements from the laboratory structure. The experimental setup studied in
this work is a mass-varying system shown in Figure 1.23. It is made up of a doubly
supported beam on which a mass is moving, just like a bridge with a varying traffic
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Figure 1.23: Picture of the experimental time-varying laboratory structure.

load [50, 5]. The beam is a 2.1-meter long aluminum beam weighting approximately 9
kilograms. The moving mass is a 3.5-kilograms block of steel mounted on small wheels.
The ratio between the masses of the two parts is high enough (38.6%) to observe a
significant change in the dynamic properties of the system depending on the position
of the mass. The whole system is supported by springs in order to put the excitation
and monitoring system.

1.5.1 Time invariant identification of the beam subsystem

To start the identification of the system, the supporting beam is first tested in lin-
ear time invariant conditions. This preliminary identification is performed to get a
reference solution.

In this identification, we focus on the first five bending modes of the beam. To
this purpose the structure is instrumented with seven accelerometers located on the
neutral axis of the beam. A shaker is also mounted beneath the structure in order to
excite it with a random force. The random excitation is chosen to have all the modes
continuously excited during the measurement. The measurement sensors are located
at coordinate x = {0, 0.4, 0.7, 1.05, 1.4, 1.7, 2.1} m, the reference frame being located at
the left hand side of the beam. The shaker is located under the second position, at 0.4
m. The excitation and the structural responses are measured using a LMS SCADAS
Mobile [51] data aquisition system and all the signal processing and the identification
are performed in the LMS Test.Lab software [52]. The modal identification is performed
using the PolyMAX frequency domain method [53]. The result is summarized in the
stabilization diagram of Figure 1.24. The five first modes are given in Table 1.1 with
their frequency, damping ratio and mode shape.

1.5.2 Identification of the system with the moving mass

In this section, the dynamics of the beam loaded by the traveling mass is examined. To
this end, the mass is slowly pulled by hand with a string attached to it. It moves along
the beam while the latter is excited by a random force. In order to have a first idea of
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Figure 1.24: Scheme of the excitation-measurement setup.
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Figure 1.25: Stabilization diagram obtained using the PolyMAX identification on the
reference beam.
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Mode # Frequency fr
[Hz] Damping ratio ζr [%] Mode shape

1 9.80 0.22

2 30.43 0.10

3 39.23 0.20

4 53.32 0.08

5 99.22 0.07

Table 1.1: Modal parameters of the reference structure.

the time-varying dynamics of the system, the wavelet spectra of the second sensor (at
0.4 m) is given in Figure 1.26.

In Figure 1.26, several properties can be observed. First, it appears that the first
mode (close to 10 Hz) is not significantly excited in the response. The modes that
are most excited are the second, forth and fifth modes due to the location of the
shaker. Second, the frequency variation due to the motion of the mass is clearly visible.
It appears as variations with top values very close to the natural frequencies of the
unloaded beam. In the measurement process, the mass was pulled at an approximately
constant speed so that the time axis can be broadly assimilated to the longitudinal axis
of the beam. For each mode in Figure 1.26 the frequency oscillates between minimum
and maximum values and if we compare with the mode-shapes shown in Table 1.1,
we can easily see that the time instants at which the frequency comes back to the
natural frequency of the unloaded beam correspond to the time instants when the
mass is located to a node of vibration of the structure. In that configuration, the mass
does not participate anymore to the mode so that it has the same properties as the
initial one. On the contrary, when the mass is located at an anti-node of vibration,
its participation to the system inertia forces is maximum and the frequency decay is
maximum. The last thing that can be observed is that the higher the frequency is, the
more important the perturbation due to the mass is.

Extraction of instantaneous frequencies and components

The modified version of the HVD method presented earlier is then applied on all the
measurement data to perform the identification.The first step is to apply the source
separation technique (the SOBI method is considered here) on all the channels. In
Section A, it was highlighted that the separation of the sources with the SOBI method
(as for the ICA method) owns an indeterminacy about the extraction order of the mode-
source pairs. Due to this indeterminacy, a choice has to be done at each iteration of the
method to select the source to consider. The choice we do here is based on the analysis
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Figure 1.26: Wavelet spectra of the response of the second sensor. The dashed lines
represent the natural frequencies without considering the additional mass (Table 1.1).

of the amplitude of each source (through the Hilbert transform) and more precisely,
their rate of variation. The selected source is the one with the lowest average rate of
variation of its amplitude. This selection is motivated by the fact that a signal owning
several components has an amplitude with more variations than a monocomponent
signal. Further, even between monocomponents choosing the signal with the lowest
rate of variation of its amplitude reduces the risk to violate the Bedrosian theorem
and thus the risk of polluting the instantaneous frequency by too fast variations of the
amplitude of the signal.

In this experiment, the first selected source is illustrated in Figure 1.27. In this
source, the fifth mode is dominant but some traces of the other modes are also visible
because of the static behavior of the separation method. However, this kind of behavior
is well convenient for the calculation of its instantaneous frequency with the HVD
method.

Once the instantaneous frequency of the fifth mode is identified, the Vold-Kalman
filter is used to perform the extractions of its monocomponent in each measurement
channel. The residual after its extraction on the second channel is illustrated in Figure
1.28 which has to be compared with Figure 1.26. The algorithm is repeated for the
extraction of the next modes based on the successively sifted signals.

After three more iteration steps, the modes from two to five are extracted from the
response of all accelerometers. The first mode encounters some difficulties to be directly
identified by the proposed method. The reason is that this mode is not enough excited
to be well extracted by the method. The amplitude of its response on the measurement
channel is similar to the amplitude of some remaining parts of the residual, especially
at higher frequencies. This can be viewed in Figure 1.30 by comparing the color map
at low and high frequencies.
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Figure 1.27: Wavelet spectra of the first selected source computed by the SOBI method.
The dark line corresponds to the computed instantaneous frequency of its dominant
component.

Figure 1.28: Residual after the first extraction of the fifth time-varying mode on the
second sensor measurement.
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Figure 1.29: Instantaneous frequencies identified by the method after four iterations.
The lowest frequency mode has a comparable amplitude with the remaining noise at
higher frequencies.

Figure 1.30: Residual after the extraction of the extraction of four identified modes.
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Figure 1.31: Identification of the lowest time-varying frequency by processing raw
or filtered residual. The the wavelet decomposition of the raw residual is used as
background support.

In order to complete the identification of the time-varying vibration modes, some
signal processing is required to be able to catch the first mode. Such an operation is
performed using a Butterworth low pass filter with a cutting frequency placed at 20 Hz.
Processing these filtered residuals as new input in the modified HVD method renders
possible the extraction of the first mode. This is shown in Figure 1.31 together with
its identification without the filtering operation to illustrate the failure of the direct
identification on the raw residual.

The identified instantaneous frequencies of the system are shown in Figure 1.32
with the wavelet spectra of the channel 2 as background support and the final residual
of this channel is shown in Figure 1.33.

Correlation of instantaneous modal deformations

As described in Section 1.4.2, the Vold-Kalman filter is able to calculate the complex
amplitude corresponding to a phase signal. With equation (1.52), we have seen than
the complex amplitudes can be considered as modal deflection shapes similar to time-
varying mode shapes.

In the case of linear time-varying systems, the natural frequency and mode-shapes
associated to a specific complex amplitude and phase signal vary with time. To have
an idea of the correlation between the reference mode-shapes (those calculated on the
LTI unloaded beam) and the identified time-varying mode shapes (taking into account
the moving mass), the Modal Assurance Criterion (MAC) is used instantaneously. It
means that, at each time instant, the MAC matrix is computed between the reference
modes and the time-varying mode shapes. Because of the additional time variable, the
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Figure 1.32: Final set of instantaneous freuquencies. All the modes are identified in
the frequency band.

Figure 1.33: Residual signal in the second channel after the extraction of each mono-
component related to the identified instantaneous frequencies.
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MAC layout has to be modified for graphical representation. To do so, at each time
instant, the calculated MAC matrix is reshaped in a column vector. Then all the MAC
vectors corresponding to one time instant are concatenated in a global time-varying
MAC (TV-MAC) matrix as illustrated in Figure 1.34. Whereas in LTI modal analysis
a unitary diagonal corresponds to perfect matching, here a perfect matching will be
given by unitary rows facing the right couples of similar modes.

On that TV-MAC matrix, some characteristics of the system may be seen. First,
the global shape of the matrix shows that the time-varying mode-shapes remain more
or less well correlated with their respective reference mode-shape. Second, looking to
one specific correlated row, some small drops of correlation appear periodically, espe-
cially on the highest frequency modes. These drops are due to mode shape distortions
caused by the presence of the moving mass. This is exactly the same phenomenon
as explained in Section 1.5.2 where the instantaneous frequencies are compared to the
natural frequencies of the time invariant subsystem (Figure 1.26). To have a better
view of the modal correlation, the correlation values of each pair of correlated modes
are plotted in Figure 1.35 where the cross correlations are omitted. This figure clearly
shows the time instants when the moving mass crosses the vibration nodes of each
mode. Similarly to the resonance frequencies, the modal correlation comes very close
to the unit correlation when the mass does not perturb a mode.

Finally, one can note that the correlation curves are not very smooth and that
occasional large drops may occur. This is a consequence of the way the varying mode
shapes are calculated. Because they are approximated by the modal deflection shapes,
themselves extracted as the complex amplitude of each modal component, their ac-
curacy highly depends on the instantaneous modal amplitudes. At low instantaneous
amplitudes, a small error may cause large discrepancies in the deformation shape.

To illustrate the influence of the moving mass on the varying mode shapes, let
us take for example the fifth identified mode and let us consider the particular time
instants from 0 to 40 s by steps of 5 s. Its evolution at these time instants is illustrated
in Figure 1.36.

Looking to that few discrete snapshots of the deformation, the influence of the
moving mass is visible and it is also possible to imagine its motion. The additional
inertia added in the structure influence the deflection shape by locally decreasing its
amplitude at its instantaneous position with respect to the amplitude of the other
parts of the structure. The effect is the most visible when the mass is located to
the antinodes of the vibration mode, where the maximum decreases in amplitudes are
observed compared to the amplitude of the other antinodes.

1.6 Concluding remarks

In this chapter, the identification of time-varying dynamical systems was addressed by
the mean of non-parametric methods. Based on the existing Hilbert Vibration De-
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Figure 1.34: Time-varying modal assurance criterion (TV-MAC). The y-axis label
indicates the couples of modes which are compared and the time dependency appears
along the x-axis.
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Figure 1.35: TV-MAC for each couple of correlated modes.

(a) t = 0 s. (b) t = 5 s. (c) t = 10 s.

(d) t = 15 s. (e) t = 20 s. (f) t = 25 s.

(g) t = 30 s. (h) t = 35 s. (i) t = 40 s.

Figure 1.36: Fifth time-varying mode shape at equally spaced time spots. The starting
position of the mass is on the left hand side of the beam and travels to the right. The
background grey shape represents the mode shape of the LTI structure.
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composition method usually used with single measurement as input, the method was
extended in order to manage multiple simultaneous measurements of the response of
the system. The introduction of blind source separation methods as preprocessing for
the decomposition shown several advantages. First, it gathers all the information of
the measurement sensors in the sources. Next, even if the source separation methods
considered here are static decomposition methods, the extracted sources are well con-
venient for the decomposition by the HVD method i.e. that one mode dominates the
signal and the other components can be eliminated.

The proposed method was successfully applied on the laboratory structure but some
weaknesses remain. The first one is related to the measurement noise that should not
be excessive. Even if we minimize the use of discrete derivation of the experimental
data, the treatment of more noisy data could be difficult. Second, all the modes of
the structure have to be sufficiently excited by the external loading. In the proposed
experiment, we saw that the first mode was difficult to track because of its weaker
presence in the signal around the center of the time span. We had to apply a lowpass
filter on the residual after the extraction of the four higher frequency modes in order
to properly extract it. This additional signal processing step may introduce some
complexity for an easy use of the method.

Based on the identified time-varying instantaneous frequencies, we saw that the
extraction of their relative monocomponent was successfully performed by the Vold-
Kalman filter. The advantages of the latter filter, such as the combined extraction
of components (especially useful for close and crossing frequencies) and their complex
envelope were presented. The complex envelopes of the components corresponding to
the varying resonance frequencies of the system were finally used as approximates of
the time-varying mode shapes in a pretty good way. The only lack of accuracy occur
at low amplitude of the modal responses.

The identified weak point of the proposed method is the identification of the in-
stantaneous frequencies. A defect in their identification may cause the failure of the
whole identification algorithm because of the risk of deteriorating all the signal by a
bad component extraction in the sifting process. It is why this crucial step is consid-
ered in the next chapter of the thesis by introducing parametric identification for the
instantaneous frequencies.
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2
Semi-parametric approach. Scalar parametric

modeling.

The aim of this chapter is to improve the time-varying identification scheme of dy-
namical structures presented earlier. In the preceding chapter, it is shown that a key
point of the method, the identification of instantaneous frequencies, may be prone to
failure. Such a failure may cause the whole process to miss the extraction of the cur-
rent but also the future components due to the iterative sifting. In order to make the
whole method more robust, it is chosen to rely on parametric estimates of the time-
varying frequencies instead of the iterative process of the HVD algorithm. Figure 2.1
graphically represents the scheme of the new method. The step of the estimation of
the frequencies by smoothing and differentiating the phase is replaced by a parametric
estimation step. The extraction of the modal deflection shapes is kept unchanged but
is based on the newly estimated frequencies.

Parametric methods are first presented and the way they are used for the identi-
fication of the instantaneous frequencies follows. The method is then tested on the
same data as in the preceding chapter and the results obtained by both approaches are
finally compared.

2.1 Parametric modeling of processes

2.1.1 Modeling and estimation in the stationary case

Modeling the system

In parametric identification methods, a model represented by a set of parameters is
assumed to be representative of the system under study. The goal is then to identify all
its constitutive parameters based on the available recorded data. Proceeding in that
way brings some advantages compared to non-parametric methods such as the Fourier-
based ones used for spectral estimation. First, provided that the model structure to
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Input signals
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Source separation
x(t) → s(t)
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z(t) = s(t) + iH(s(t))

Phase extraction
φ(t) = ∠z(t)

Trend extraction
φ(t) → φ(k)(t)
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VKF
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Figure 2.1: Graphical representation of the methodology for the identification of time-
varying systems.

represent the system is good (this is a strong requirement) the parametric representa-
tion of the system is well suited because it is closer to its underlying physical laws, being
in mechanical, electrical or from any other engineering applications. Such representa-
tions are also of higher quality (precision, resolution) than non-parametric ones and
are also more parsimonious, a small number of parameters describes the whole system
[54]. However, as stated above, this is true if the chosen model structure is adequate to
represent the actual system. Violating this assumption may lead to completely wrong
or non physical estimates of the model parameters.

Most of accurate modal analysis methods are based on parametric methods. Non-
parametric methods are rather used to have a fast rough idea of the dynamics of the
structure. Natural frequencies may be obtained by picking the peaks on Fourier-based
spectra and the damping ratio’s may computed with simple methods such as the peak-
picking or circle-fitting methods [48] which are geometrical interpretations of the FRF
data.

The parametric approaches work differently. They superimpose a mathematical
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model on measured experimental data and the goal is to tune the internal parameters
of the model to best fit the data. This may be performed in various ways and using
different quantities (in time or frequency domain, using impulse or random responses).
For example, the Least Square Complex Exponential (LSCE) methods [48] models the
impulse response of a system of a priori chosen order. The impulse response of the
structure is measured by impacting the structure with an impact hammer and the
method identifies the parameters of a series of exponential functions [48]. The fre-
quency domain counterpart of the latter method is the (poly-reference) Least Squares
Complex Frequency domain estimator (also known under its commercial name Poly-
MAX [55, 56]) which fits a parametric model of the FRFs of the system in the frequency
domain. Some other methods model the system in a state-space form and may be used
in a variety of conditions (forced response, operational analysis, in time or frequency
domains, etc...). The Stochastic Subspace Identification (SSI) method [57] is largely
used in modal analysis too. Finally, one may also rely on the family of polynomial mod-
els owning the well known general ARMAX models (AutoRegressive Moving-Average
with eXogenous input) to model the input-output relationship of a system. It is a very
convenient approach in the present application in time-varying systems.

The ARMAX model is written in a general way as follows between the input u of
the system and its output, the observed measurements, y:

y[t] + a1y[t− 1] + · · ·+ anay[t− na] = e[t] + b1e[t− 1] + · · ·+ bnb
e[t− na]

+ c1u[t− 1] + · · ·+ cncu[t− nc]
(2.1)

The autoregressive (AR) part is consituted with the lagged data from the output
response. The signal e represents the innovation sequence. The innovation constitutes
the part of the observed output which cannot be predicted with the past data [58] and
is assumed to be a zero-mean normally-distributed random sequence. The part of the
model dealing with the innovation sequence represents the moving-average (MA) part.
It is modeled in the same way as the AR part i.e. that means by a combination of
time lagged values of the innovation sequence. The exogenous part is treated similarly
if the input of the system is known.

Introducing the lag operator q such as q y[t] = y[t + 1] and q−1 y[t] = y[t − 1], the
previous ARMAX model in (2.1) can be shortly written as

A(q,θ) y[t] = B(q,θ) e[t] + C(q,θ)u[t] (2.2)

with A(q,θ); , B(q,θ) and C(q,θ) being polynomials in the q−1 operator and the
vector of parameters θ gathering all the a, b and c parameters:

A(q,θ) = 1 + a1q
−1 + a2q

−2 + · · ·+ anaq
−na

B(q,θ) = 1 + b1q
−1 + b2q

−2 + · · ·+ bnb
q−nb

C(q,θ) = c1q
−1 + c2q

−2 + · · ·+ cncq
−nc

(2.3)

Taking the z-transform of Equation (2.2) and isolating the output response term,
it comes:

Y [z] = B(z,θ)
A(z,θ) E[z] + C(z,θ)

A(z,θ) U [z]. (2.4)
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The polynomial ratio’s

H(z,θ) = B(z,θ)
A(z,θ) and G(z,θ) = C(z,θ)

A(z,θ) (2.5)

represent the parametric innovation and system discrete transfer functions, respectively.
The goal of parametric identification is to find suitable parameters able to represent
at best the true transfer function which is representative of the system. The quantities
of first interest are the parameters designing the polynomial A(z,θ). Being at the
denominator of H(z,θ) and G(z,θ), its roots represent the poles of the system. The
resonance frequencies and damping ratio’s can directly be extracted from the pole’s
value.

It is possible to represent the model in a convenient way as a relationship between
the vector of parameters θ and a regression vector φ that contains all the lagged values
of y, u and e:

y[t] = φT [t]θ + e[t] (2.6)
= ŷ[t,θ] + e[t] (2.7)

in which ŷ[t,θ] represents the output estimate (the predictor) based on the model
parameters.

The ARMAX model (2.1) is quite general but some other common sub models are
largely used depending on the system assumptions or available data. Considering a
representation with only a single polynomial in (2.1) leads to three simple models:

The finite Impulse Response (FIR) filters: By only considering the regression of
the available input, a simple filter is obtained as a model for the output. In such
a model the output response is simply a linear combination of the past data of
the input signal:

y[t] = c1u[t− 1] + · · ·+ cncu[t− nc] + e[t] (2.8)

In the shorthand notation (2.7), the φ and θ vectors are equal to

φFIR = [u[t− 1], u[t− 2], · · · , u[t− nc]]T ,
θFIR = [c1, c2, · · · , cnc ]

T ,
(2.9)

respectively.

The autoregressive (AR) and moving-average (MA) models: Similarly to the
FIR filter, the AR and MA models are built up with a regressive sequence of the
past output data and the innovation sequence, respectively:

φAR = [−y[t− 1], −y[t− 2], · · · , −y[t− na]]T ,
θAR = [a1, a2, · · · , ana ]T ,

(2.10)

and
φMA = [e[t− 1], e[t− 2], · · · , e[t− nb]]T ,
θMA = [b1, b2, · · · , bnb

]T ,
(2.11)
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Considering a pair of polynomials, two usual models are largely used:

The autoregressive model with exogenous input (ARX): In this model, only
the known output and input data are considered in the regression vector:

φARX = [−y[t− 1], −y[t− 2], · · · , −y[t− na] |u[t− 1], u[t− 2], · · · , u[t− nc]]T ,
θARX = [a1, a2, · · · , ana | c1, c2, · · · , cnc ]T ,

(2.12)

The autoregressive moving-average (ARMA) model: In this model, the param-
eters and lagged values of the output data and innovation sequences populate the
regression and parameters vectors:

φARMA = [−y[t− 1], −y[t− 2], · · · , −y[t− na] | e[t− 1], e[t− 2], · · · , e[t− nb]]T ,
θARMA = [a1, a2, · · · , ana | b1, b2, · · · , cnb

]T ,
(2.13)

The previous models represent commonly used models but note that the family of
polynomial models is far larger. For example, looking at (2.5), it can be seen that G and
H share the same denominator. This constraint could be relaxed by choosing different
polynomials for the two transfer functions. By adding more and more complexity in
the modeling of the system based on the input, output data and the innovation, there
are up to 32 possible model combinations [58].

Identification of the model parameters

Once a model type is chosen for the identification, it remains to proceed to the iden-
tification of its constitutive parameters. The Prediction Error Method (PEM) is a
common way to obtain good estimates of the model parameters. The method is based
on the minimization of a function error between the model and the actual recorded
data [58]. Defining the prediction error e[t,θ] as the difference between the output
data and the predictor

e[t,θ] = y[t]− ŷ[t,θ], (2.14)

the prediction error method computes a scalar valued function of this prediction error
which is minimal for the optimum set of model parameters. This cost function V (θ)
is typically defined as

V (θ) = 1
N

N∑
t=1

` (e[t,θ]) (2.15)

where ` represents a function of the prediction error. A standard choice for this function
is the quadratic norm

`(e) = 1
2 e

2 (2.16)

51



which is scalar-valued and positive. With this choice of function for the computation
of the cost function (2.15), it comes

V (θ) = 1
2N

N∑
t=1

(e[t,θ])2 (2.17)

= 1
2N

N∑
t=1

(y[t]− ŷ[t,θ])2 (2.18)

= 1
2N

N∑
t=1

(
y[t]− φT [t]θ]

)2
(2.19)

Depending on the chosen model structure, different strategies are possible to solve
the minimization problem. One first have to make a distinction between two categories
of models depending of the presence of a moving-average part or not. If the model
does not contain a MA, the prediction error in (2.14) is linear in the parameters of the
model. The minimization of the cost function then consist in imposing its derivative
with respect to the vector of parameters θ to be zero. Considering the choice of
the quadratic norm, the derivation of the cost function with respect to the vector of
parameters gives:

dV (θ)
dθ = 1

N

N∑
t=1

(
φ[t]y[t]− φ[t]φT [t]θ

)
= 0. (2.20)

This relation provides a direct solution for the parameters θ in an ordinary least
squares sense:

θ =
(

N∑
t=1
φ[t]φT [t]

)−1 ( N∑
t=1
φ[t]y[t]

)
. (2.21)

When the model structure involves a moving-average part, the prediction error in
(2.14) is not linear anymore in the θ parameters because of the dependence of the
regression vector φ in the innovation sequence. Therefore, the minimization of the
quadratic cost function cannot be solved in a least squares sense anymore. In such a
case, a nonlinear optimization scheme has to be performed. Optimization schemes such
as Gauss-Newton (GN) or Levenberg-Marquardt (LM) may be used for that purpose
[59].

Once the model parameters are properly identified, the analysis of its transfer func-
tion provides useful information about the underlying system. In this study, we are
concerned with output only modal identification. In such configuration, no known in-
put is given to feed the estimation algorithm, only the recorded response signals are
available. The possible types of models are then the AR, MA or ARMA models. In
each of these models, the transfer function is defined in a different manner:

• The AR model provides a rational transfer function based only on a denominator

HAR(z,θ) = 1
A(z,θ) . (2.22)
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It is then an all-pole model and is able to well describe the peaks of the transfer
function.

• Conversely, the transfer function of a MA model consists in a polynomial

HMA(z,θ) = B(z,θ). (2.23)

It is then an all-zero transfer function and it is able to well describe valleys.

• The ARMA transfer function is more complete as it is described by a ratio of
polynomials

HARMA(z,θ) = B(z,θ)
A(z,θ) . (2.24)

In such a way, it is able to well model the peaks and valleys of the transfer
functions. It is a pole-zero modeling of the transfer function.

2.1.2 Modeling of time-dependent processes

Once the system to study exhibits a dependency with respect to time, the modeling
strategy implied in order to identify its properties has to handle this time variation and
time-varying models have to be chosen. Besides a direct application on time-varying
systems, time-varying models are also used for the identification of other systems such
as time invariant systems with unequal sampling rate or for the identification of nonlin-
ear systems linearized around a certain trajectory [58]. Their identification is performed
by letting the model parameters vary with time and tracking this variation. In this
way, the parametric model equation (2.6) now shows a time dependency in its vector
of parameters and becomes

y[t] = φT [t]θ[t] + e[t]. (2.25)

With such a time-dependent vector of parameters, it is still possible to form ratio’s
between polynomials to compute the transfer function of the system depending on the
chosen model. For example, considering an ARMA model such as in Equation (2.24)
with time dependent parameters, leads to

HARMA(z,θ[t]) = B(z,θ[t])
A(z,θ[t])

= 1 + b1[t]z + b2[t]z−2 + · · ·+ bnb
[t]z−nb

1 + a1[t]z + a2[t]z−2 + · · ·+ ana [t]z−na
. (2.26)

Such a straightforward introduction of the time-dependent parameters in the com-
putation of the transfer function may seem a naive way to proceed but it can lead
to good approximate of the real time-dependent transfer function of the underlying
time-varying system. Spectra of transfer functions constructed as in Equation (2.26)
are reffered to frozen-time spectra or frozen-time transfer functions. In [60], Zadeh
demonstrates the applicability of the frozen models for the study of time-varying sys-
tems. His developments are performed for continuous time parameters but the result
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is valid for discrete time models from sampled data. He shows that for a time-varying
system described by differential polynomials

A(p, t) y(t) = B(p, t) e(t) (2.27)

with

A(p, t) = 1 + a1(t) p+ a2(t) p2 + · · ·+ ana(t) pna (2.28)
B(p, t) = 1 + b1(t) p+ b2(t) p2 + · · ·+ bnb

(t) pnb , (2.29)

p being the differential operator pn = dn/dtn, its time-varying transfer functionH(iω, t)
in the frequency domain is the solution of the following differential equation[ 1
na!A(iω, t)

∂naA(iω, t)
∂(iω)na

] dnaH(iω, t)
dtna

+ · · ·+
[ 1
A(iω, t)

∂A(iω, t)
∂(iω)

] dH(iω, t)
dt +H(iω, t)

= B(iω, t)
A(iω, t) .

(2.30)

In the latter equation, it can be seen that the first na terms exhibit a time derivative
of the transfer function. In the case of slowly varying systems, these terms become
negligible as the rate of variation of H(iω, t) decreases and it comes for such systems
that the transfer function may be approximate by its frozen transfer function

H(iω, t) = 1 + b1(t) (iω) + b2(t) (iω)2 + · · ·+ bnb
(t) (iω)nb

1 + a1(t) (iω) + a2(t) (iω)2 + · · ·+ ana(t) (iω)na
. (2.31)

For a time-varying system, the poles and zeros are not a simple extension of the ones
in time invariant condition but by computing the roots of both the denominator and
numerator of the frozen transfer function for any time instant t, one can compute their
frozen-time equivalent. From the frozen-poles, the frozen- frequencies and damping
ratio’s are finally obtained.

2.2 Estimation of the model parameters

Once a model type is chosen, it remains to proceed to the identification of its parameters
in the vector θ[t] in (2.25). Several methods exist to perform this task. In applications
implying time-varying processes, Niedźwiecky [61] provides a series of different possible
methods for the identification of the time-dependent parameters. Some of them are
presented hereafter.

2.2.1 Short-time stationarity and process segmentation

As previously described in Section 1.1 in which the short-time Fourier transform and
the spectrogram are presented, the assumption of local stationarity may be considered
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in parametric estimation for slowly-varying processes. The assumption is exactly the
same here, stating that on short time windows the system does not encounter important
modifications. In such a way, any identification procedure for the identification of time-
invariant processes can be applied on a short time window about the whole time axis
to follow the whole variation of the system properties. Of course, the same trade-off
between accuracy and tracking rate abilities is also present in the case of parametric
identification. A system with a slow nonstationarity can be identified by considering
large time windows with a lot of data points and conversely, a system with a higher
variation rate enforced the use of shorter windows, which can impact the identification
accuracy.

2.2.2 Recursive weighted least-squares

Another strategy employed to perform the identification of processes is to rely on
recursive estimation algorithm. Often, their use is required in on-line applications for
which the estimation is updated with each new measurements. Recursive estimation
is widely used in a variety of engineering fields such as control, telecommunications,
or for health monitoring purposes [58]. In the latter case, the properties of the system
are monitored to seek for sufficient variations that could indicate the occurrence of a
default or damage in the system. It is this ability to track variations that brings some
attractiveness to this type of methods. In the recursive Weighted Least Squares (WLS)
method, a decreasing exponential weighting function is introduced in the algorithm in
order to bring higher importance to the measurements newly acquired and to forget
the older ones. The algorithm may be summarized as follows [58, 61]:

θ[t] = θ[t− 1] +L[t] e [t,θ[t− 1]] (2.32)
e[t,θ] = y[t]− φT [t]θ[t− 1] (2.33)

L[t] = P [t− 1]φ[t]
λ+ φT [t]P [t− 1]φ[t]

(2.34)

P [t] = 1
λ

[
P [t− 1]− P [t− 1]φ[t]φT [t]P [t− 1]

λ+ φT [t]P [t− 1]φ[t]

]
(2.35)

In the latter equations, the forgetting factor of the method is represented by the λ
parameter. L and P matrices represent the gain and the covariance matrices, respec-
tively. Another similar approach is to estimate the vector of the model parameters as
the state vector of state-space model by the Kalman filter algorithm.

Generally, recursive methods well behave when the rate of variation of the param-
eters is low.
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2.2.3 The basis function approach

In the above recursive methods, no structure is assumed for the evolution of the model
parameters. The present basis function approach is rather different. It assumes that
the model parameters can be represented with a basis of a priori chosen functions.
Mathematically, it comes that each of the model parameters can be expressed in a
deterministic way as

θi[t] =
k∑
j=1

θijfj[t]. (2.36)

In the latter equation, the new parameters θij are the projection coefficients of the
time evolution of the ith model parameter on the jth basis function. Such a param-
eterization provides several advantages. First, it drastically decreases the number of
parameters implied in the model estimation, which improves the parsimonious feature
of the method. Second, the rate of variation of the parameters is not limited any-
more to slow variations required by the short-time or recursive methods. The rate of
variation of the parameters in the basis function approach is driven by the choice of
the functions in the basis. If the model parameters encounter fast variations, choosing
a basis of functions able to represent the same rate of variation will be suitable for
their identification. Finally, a modeling of the parameters following Equation (2.36)
transforms the time-varying identification problem into a time-invariant one because
the new model parameters θij do not depend on t anymore.

The application of the basis functions approach for the study of time-varying pro-
cesses goes back to the 1970’s. In [62], Liporace uses a polynomial basis to model the
time variation of its parameters to model a nonstationary speech signal. Later and al-
ways in speech analysis, Hall et al. model the speech with all poles filters (AR models)
using both powers of time and Fourier functions as a basis to catch the time variation
of the parameters [63]. In the 1980’s, Grenier applied the basis function approach for
the identification of ARMA models [64, 65, 66]. In the latter references, he uses Leg-
endre polynomials and Fourier functions but also suggests the use of discrete prolate
spheroidal wave functions. Many other function bases are possible (Chebyshev poly-
nomials, splines, etc.) and they are not necessary required to be orthogonal even if the
orthogonality may improve the conditioning of some estimation problems. If additional
information about the process is available, it is also possible to create a suitable basis
based on this knowledge. For example if a system is periodically-varying a Fourier
series tuned on its fundamental period and an increasing number of harmonics is a
good candidate for the tracking of the variation of its parameters.

In what follows, the basis function approach is considered, mainly for its parsimo-
nious and accurate characteristics.
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2.3 Application in time-varying modal analysis and
consideration of multiple measurements chan-
nels.

In the field of the identification of mechanical systems with time-varying properties,
Petsounis and Fassois [67] and Poulimenos and Fassois [50] applied the method of the
basis functions (also named functional series) approach for their identification with
varying ARMA models. Spiridonakos et al. [68] provide surveys about the identifi-
cation of time-varying ARMA models with several approaches, included the recursive
and basis functions ones. Spiridonakos and Fassois also provide a survey specifically
focused on the basis functions approach [69]. In the latter references, even if the re-
sponse of the structure is recorded at multiple locations, only a single sensor is chosen
for the identification of the time-varying behavior of the system.

The objective of this section is to perform the identification of time-varying me-
chanical systems using simultaneous multiple measurements. Scalar valued models are
considered first and the next chapter will cope with vector model parameterizations.

2.3.1 Model parameters estimation considering multiple mea-
surements channels

If more than one sensor monitor the structure, it is interesting to take advantage of the
information from multiple channels. In practice, parametric identification of the frozen-
poles is performed on each channel with scalar models but a constraint is introduced
in order to couple all the channels. To deal with output only identification, the used
type of model is chosen to be a time-varying ARMA model. For each measurement
channel xo[t] the following time-varying model is adopted:

xo[t]+ao1[t]xo[t−1]+ · · ·+aona
[t]xo[t−na] = eo[t]+bo1[t] eo[t−1]+ · · ·+bonb

[t] eo[t−nb] (2.37)

with the assumption of the basis functions concerning the time evolution of the model
parameters:  aoi [t] = ∑

k a
o
i,k fk[t]

boj [t] = ∑
l b

o
j,l fl[t]

. (2.38)

The constraint introduced in order to link the parameter identification in each
channel is to consider the physical interpretation between the model parameters and the
structure and the measurement process. Indeed, the information about the dynamics
of the structure under study is located in the autoregressive part of the parametric
model. The moving-average part in all the channels, however, may not be linked
because they are related to their measurement location and the noise present in each
channel separately. A simple interpretation of that relationship can be understood by
looking to a set of frequency response functions of a LTI system. The peaks of the FRFs
are all located at the same resonance frequencies whatever the FRF is considered. The
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resonance peaks are related to the poles (roots of the AR polynomial) and are global
quantities. However, the valleys are different in each FRF. They are related to the zeros
of the transfer functions (roots of the MA polynomial). They are local quantities. In
order to introduce this property in the parametric identification, the simple constraint
to take into account is to enforce the AR polynomial to be the same in each channel
such as aoi [t] = ai[t]:

xo[t]+a1[t]xo[t−1]+ · · ·+ana [t]xo[t−na] = eo[t]+bo1[t] eo[t−1]+ · · ·+bonb
[t] eo[t−nb]. (2.39)

With the latter equation, the estimation model is then a set of no equations, one
for each output measurement channel and the coupling between all the equations is
provided by the equality constraint of the autoregressive part:

x1[t] + a1[t]x1[t− 1] + · · ·+ ana [t]x1[t− na] = e1[t] + · · ·+ b1
nb

[t] e1[t− nb]
x2[t] + a1[t]x2[t− 1] + · · ·+ ana [t]x2[t− na] = e2[t] + · · ·+ b2

nb
[t] e2[t− nb]

...
xno [t] + a1[t]xno [t− 1] + · · ·+ ana [t]xno [t− na]︸ ︷︷ ︸

Common AR modeling

= eno [t] + · · ·+ bno
nb

[t] eno [t− nb]︸ ︷︷ ︸
Individual MA modeling

This property of a common autoregressive part of the model leads to a common
denominator modeling of the parametric transfer functions related to all the measure-
ment channels. This way to model the system is the way followed by the frequency
domain PolyMax methods in LTI modal analysis. Note also that this common de-
nominator approach is also used by Zhou et al. [70] for the modeling of time-varying
systems based on time-varying PSD in the time-frequency domain.

In order to perform the identification of the model parameters, the prediction
method is employed to minimize the sum of squared errors (SSE) for all the measure-
ment channels. To this end, the estimate of each signal based on the model parameters
is defined as follows:

x̂o[t,θ] = −
∑
i

∑
k

ai,k fk[t]xo[t− i] +
∑
j

∑
l

boi,k fl[t] eo[t− j]

= −
[
φo[t]T ψo[t]T

] a
bo

 (2.40)

in which the extended regressions vectors for the oth channel are computed by the
kronecker products between the signal and the innovation sequence with the functions
from the selected basis:

φo[t]T =
[
f1[t]xo[t− 1] f2[t]xo[t− 1] · · · fk[t]xo[t− na]

]
, (2.41)

ψo[t]T = −
[
f1[t]eo[t− 1] f2[t]eo[t− 1] · · · fk[t]eo[t− nb]

]
. (2.42)

The vectors of parameters a and bo gather the ai,k and boi,k parameters, respectively:

a =
[
a1,1 a1,2 · · · ap,rA

]T
, (2.43)

bo =
[
bo1,1 bo1,2 · · · boq,rB

]T
. (2.44)
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From the estimate in (2.40), the prediction error for the oth channel is simply
calculated as the difference between the oth measurement and its predictor:

eo[t,θ] = xo[t]− x̂o[t,θ]
= xo[t] +

∑
i

∑
k

ai,k fk[t]xo[t− i]−
∑
j

∑
l

boi,k fl[t] eo[t− j]

= xo[t] +
[
φo[t]T ψo[t]T

] a
bo

 . (2.45)

The minimization of the SSE has to take all the channels into account in a least
squares sense. To this end, the squared errors are summed over all the time samples
but also over all the channels:

V (θ) =
∑
o

1
2N

∑
t

eo[t,θ]2 (2.46)

with N the number of data points in each channel and θ the vector of all the parameters
of the model:

θ =



a

b1

b2

...
bno


. (2.47)

As pointed out earlier in Section 2.1.1, because of the presence of the residual
sequence in the moving-average part of the model, the minimization of (2.46) cannot
exactly be solved using an ordinary linear least squares. It is however the case for pure
AR or ARX models, even in time-varying conditions if the basis functions approach is
employed. Two methods are used in order to solve that problem: the Two Stages Least
Squares (2SLS) and the family of nonlinear optimization schemes.

The Two Stages Least Squares method [58]

The main idea of the 2SLS method is to replace the solving of a nonlinear problem by
a sequence of linear subproblems. In the present case, the ARMA model is estimated
in two steps using only ordinary linear least squares.

Step 1: The first stage of the method relies on the property that an ARMA (or even
a MA) model can be expressed as an AR model of infinite order. The first stage
is then to identify an AR model “equivalent” to the ARMA model by increasing
its order. As shown earlier, this high-order AR model, ARho, may be identified
by the least squares method because of the linearity of its prediction error in the
model parameters.
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Step 2: The second step is based on the result of the first one. Once the ARho model
is identified, its corresponding residual may be computed. The past values of the
estimate of the residual sequence is then used as an exogenous input for an ARX
model. It was also shown that ARX models may be solved using ordinary least
squares because their external input is known. The coefficient of the eXogenous
part are then estimates of the MA coefficients.

The second step of the algorithm can be repeated in order to iteratively update the
prediction error used as input for the next iteration. The advantage of this method is
its rather fast computation time. The drawback is that it is a rather rough estimation
method and there is no guarantee that the next estimate decreases the sum of squared
errors. In other words, the convergence is not ensured.

The processing of the 2SLS method is as follows for our combined modeling. Com-
bining Equations (2.45) and (2.46), it comes:

V (θ) =
∑
o

1
2N

∑
t

eo[t,θ]2

=
∑
o

1
2N

∑
t

xo[t] +
[
φo[t]Tψo[t]T

] a
bo

2

=
∑
o

1
2N

∑
t

(
xo[t]2

+xo[t]
[
φo[t]T ψo[t]T

] a
bo


+xo[t]

[
aT boT

] φo[t]
ψo[t]


+
[
aT boT

] φo[t]
ψo[t]

 [φo[t]T ψo[t]T
] a
bo

 (2.48)

In order to shorten the notations, lets introduce the following products:

Ro =
∑
t

φo[t]φo[t]T , (2.49)

So =
∑
t

φo[t]ψo[t]T , (2.50)

T o =
∑
t

ψo[t]ψo[t]T , (2.51)

Xo =
∑
t

xo[t]φo[t]T , (2.52)

Y o =
∑
t

xo[t]ψo[t]T . (2.53)
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With the latter notations, (2.48) becomes

V (θ) =
∑
o

1
2N

∑
t

xo[t]2 +Xoa+ Y ob
o + aTXT

o + boTY T
o + aTRoa

+ aTSobo + boTSTo a+ boTT ob
o

 (2.54)

The cost function V (θ) for the whole set of parameters in θ is minimized by taking
its derivative with respect to each of the a and all bo vectors and put them to zero.
From (2.54), the gradient of V (θ) can be computed with respect to the vectors of
parameters a and each bo:

∂V (θ)
∂aT

=
∑
o

XT
o +Roa+ Sobo = 0 (2.55)

∂V (θ)
∂boT

= Y T
o + STo a+ T ob

o = 0 (2.56)

Now, stacking Equation (2.55) and Equations (2.56) for each no outputs in a matrix
form gives

∂V (θ)
∂θ

=



∑
oX

T
o

Y T
1

Y T
2

...
Y T

no


︸ ︷︷ ︸

g

+



∑
oRo S1 S2 · · · Sno
ST1 T 1

ST2 T 2
... . . .
STno T no


︸ ︷︷ ︸

H



a

b1

b2

...
bno


︸ ︷︷ ︸

θ

= 0 (2.57)

which can be easily solved by
θ = −H−1g. (2.58)

Nonlinear optimization

Various fields of engineering make use of nonlinear optimization including signal pro-
cessing and system identification [58]. In the present context, the optimization is used
to minimize an error function such as (2.15) in order to get the best fit between the
chosen model and the observed data. As long as the minimization of the latter equation
does not have a direct solution, iterative techniques are required. In such methods, the
vector of parameters is iteratively updated to a new value leading to a decrease in the
cost function

θ(k+1) = θ(k) + αd (2.59)
where θ(k+1) and θk are the values of to subsequent iterates. d represents the search
direction to pass from one iterate to another and the α parameter tunes the step length.
The complexity of the optimization algorithms is very scattered, from very simple to
very costly in computation operations. They can be characterized by [58]:
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• the knowledge of only the function’s value,

• the knowledge of the function’s value and its gradient,

• the knowledge of the function’s value, its gradient and its Hessian matrix.

In the first case, the computations at each iteration are very simple but a lot of itera-
tions are required and the convergence of the algorithm may be of poor quality in some
cases. The second kind of methods use the gradient information to find the direction of
the locally steepest way to decrease the cost function. A line search is then required to
select the best length about that direction. The third kind is classified as the Newton
method and is based on a Taylor approximation of the cost function at each iteration.
This approximate draws the direction and the length of the step to the next one. In
the vicinity of θ(k), a second order model of the cost function is built as

V(θ) = V
(
θ(k)

)
+
(
θ − θ(k)

)T dV (θ)
dθ

∣∣∣∣∣
θ=θ(k)

+ 1
2
(
θ − θ(k)

)T d2V (θ)
dθ2

∣∣∣∣∣
θ=θ(k)

(
θ − θ(k)

)
(2.60)

The new value of the vector of parameters θ is the one that minimizes the Taylor
approximation V(θ). This is computed by taking the derivative of V(θ) with respect
to θ and putting it to zero:

dV(θ)
dθ = dV (θ)

dθ

∣∣∣∣∣
θ=θ(k)

+ d2V (θ)
dθ2

∣∣∣∣∣
θ=θ(k)

(
θ(k+1) − θ(k)

)
= 0 (2.61)

with the iteration step
d = θ(k+1) − θ(k). (2.62)

At the iteration k, the step is then

d = −
(

d2V (θ)
dθ2

∣∣∣∣∣
θ=θ(k)

)
︸ ︷︷ ︸

H

−1 dV (θ)
dθ

∣∣∣∣∣
θ=θ(k)︸ ︷︷ ︸

g

(2.63)

in which H is the Hessian matrix of the cost function and g is its gradient.The Newton
method is illustrated with a scalar parameter in Figure 2.2.

It remains to compute the derivatives of the cost function. In our case remember
that we defined the cost function (2.46) as

V (θ) =
∑
o

1
2N

∑
t

eo[t,θ]2

=
∑
o

1
2N

∑
t

(xo[t]− x̂o[t,θ])2

The computation of the gradient and the Hessian of the cost function with respect to
θ is then obtained by differentiating our prediction errors eo[t,θ] with respect to θ:

dV (θ)
dθ =

∑
o

1
N

∑
t

eo[t,θ] deo[t,θ]
dθ , (2.64)

d2V (θ)
dθ2 =

∑
o

1
N

∑
t

(deo[t,θ]
dθ

) (deo[t,θ]
dθ

)T
+
∑
o

1
N

∑
t

eo[t,θ] d2eo[t,θ]
dθ2 . (2.65)
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Figure 2.2: Illustration of the Newton approach. At iteration k, a quadratic model
of the function is built based on the gradient and Hessian information. It is then
minimized to give the next set of parameters.

In Equation (2.65), the second term is generally neglected and only an approximate
of the Hessian matrix is computed. This is known as the quasi-Newton method. There
are some reasons to neglect it. Close to the optimum, this part is negligible compared to
the first term of (2.65). It also reduces the calculation cost, because of the complexity
of the computation of the second derivatives. There is also another advantage to
keep only the first term: the positive (semi)definiteness of the approximate of the
Hessian matrix. This ensures that the iteration step of the algorithm always follows a
descending direction in the cost function. This would not be the case if the Hessian
would be negative definite due to the second term. A last potential risk subsists in
the computation of the current step. When the approximate of the Hessian matrix
has a rank deficiency, the computation of the iteration step (2.63) cannot be uniquely
computed. In order to tackle this rank deficiency, Levenberg [71] and Marquardt [72]
introduced in this operation a regularization parameter λ. This method is known as the
Levenberg-Marquardt algorithm and is one of the widely used method to solve nonlinear
problems:

d = − (H + λ I)−1 g (2.66)

in which I is an identity matrix of adequate dimension. The regularization λ parameter
drives the iterations of the method by increasing its value when the current iteration
encounters some difficulties or by decreasing its value when the cost function is better
suited for a quadratic approximation. When the λ parameter tends to zero or to
the infinity, the method tends to the quasi-Newton or to the gradient descend with a
decreased step length, respectively.

Another way to proceed to iteratively tune the iteration step is the trust region
approach [73]. The idea is, as in the Newton method, to create a model of the cost
function just as in Equation (2.60) and to minimize it with an additional constraint.
This constraint is a limitation of the length of the iteration step as ||d||2 ≤ ∆. The
iteration is then solved by a constrained minimization of a quadratic problem:

d = arg min
d
V (θ) such that ||d||2 ≤ ∆. (2.67)
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It is now the ∆ parameter that tunes the algorithm convergence of the method by
increasing or decreasing its value. Note that the direction of the iteration step is not
necessary aligned with the minimum of the quadratic model if the size of the trust-
region is lower than the position of the minimum of the model because of the nonlinear
norm constraint.

Either the Levenberg-Marquardt or the trust region approach make use of a quadratic
model based on the gradient of the objective function. It is then advantageous if it
can be computed analytically in order to avoid the use of finite differences to approx-
imate it. The gradient computation (2.64) requires the computation of the derivative
of the prediction errors with respect to the model parameters in the θ vector. This
is equivalent to perform the derivative of minus the corresponding predictors of the
model:

d eo[t,θ]
dθ = d (xo[t]− x̂o[t,θ])

= −d x̂o[t,θ]
dθ . (2.68)

Going back to the modeling with time dependent autoregressive and moving-average
polynomials (such as in Equation (2.26)), one has the time-varying relation

A(z,θ,f [t])xo[t] = C(z,θ,f [t]) eo[t] (2.69)

with the time-varying polynomial A(z,θ,f [t]) and C(z,θ,f [t]) being constructed by
the projection of the time invariant coefficient in θ on their respective basis function in
f [t]. In [58], Ljung shows how to compute the gradient by filtering the recorded time
data. When computing the gradient with respect to the parameter θi, two cases are
possible. If θi belongs to the autoregressive part of the model, all the prediction errors
have to be taken into account in the sum because the AR coefficients are constrained
to be the same for all the channels. The predictor related to the model (2.69) is given
by

C(z,θ,f [t]) x̂o[t,θ] =
(
C(z,θ,f [t])− A(z,θ,f [t])

)
xo[t]. (2.70)

The derivatives to be performed on the x̂o[t,θ] predictor are those concerned by the oth

channel, that is the global ai,k autoregressive coefficients in a and the local (channel-
dependent) boi,k moving average coefficients in bo. We then have the two following
cases:

1. Differentiating Equation (2.70) with respect to the projection coefficients ai, k of
the autoregressive part, one has:

C(z,θ,f [t]) d x̂o[t,θ]
dai,k

=
(
−z−i fk[t]

)
xo[t] (2.71)

This result gives:
d x̂o[t,θ]

dai,k
=
(
−z−i fk[t]
C(z,θ,f [t])

)
xo[t]. (2.72)
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2. Similarly, differentiating Equation (2.70) with respect to the projection coeffi-
cients boi, kof the moving-average part, one has:

z−i fk[t] x̂o[t,θ] + C(z,θ,f [t]) d x̂o[t,θ]
dboi,k

= z−i fk[t]xo[t]. (2.73)

Passing the first term to the other side of the equation, one gets the derivative
of the predictor with respect to the moving-average parameters:

d x̂o[t,θ]
dboi,k

= z−i fk[t]xo[t]− z−i fk[t] x̂o[t,θ]
C(z,θ,f [t]) . (2.74)

As it can be seen in Equations (2.72) and (2.74), both the derivatives of the predictor
of the model are outputs of filters taking xo[t] and xo[t] and x̂o[t,θ] as input signals,
respectively.

Let us also remark that a large part of the computation may be avoided in the
computation of the gradient. By keeping in mind our modeling of the system, the
derivative of V (θ) with respect to a parameter θi in θ belonging to one of the coefficients
of the moving-average part of the rth channel, only the rth term in (2.64) is to be
considered because of its local dependence.

2.3.2 Model structure selection

Up to now, we are able to identify a prescribed model to fit the data. But a question
still remains unanswered: what model structure do we have to apply on the data?
Parametric identification methods are very powerful and accurate tools but only under
the assumption that the model used to fit the data is an adequate one. The choice of the
model structure is thus of great importance. Otherwise, the use of a badly chosen model
may lead to inaccurate and/or non physical results. In LTI modal analysis, usually one
degree of freedom drives the complexity of the model structure: the order of the model
which in general is a single parameter in the classical modal identification methods
(LSCE, LSCF, SSI, etc...), or a couple of orders for the identification with ARMA
models. In order to choose a good model, test engineers are familiar with the concept
of stabilization diagram such as the one shown in Figure 1.25. The identification is
performed with models of increasing complexity and the identified poles are stacked
in a graph with a dedicated symbol giving an information about if they are close or
not to their equivalent in neighboring models. In the present case, the quantity of
tunable values driving the model structure (AR and MA orders, size of each basis of
functions) makes it less practical. Further, the fact that the model properties are time-
varying adds an additional dimension to take into account which renders the extension
of the concept of stabilization diagram in the context of time-varying identification
completely impractical. We then have to look for other alternatives to select a good
model structure.

In order to perform a good selection, a series of models are put in competition
and the best candidate is chosen based on some discriminating criterion. Of course, a
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good candidate should be able to properly fit the input data, so the prediction errors
it provides should be minimum. However, increasing the complexity of the model will
tend to diminish the prediction error. Indeed, passing the optimal model structure,
any additional increase in its complexity begins to “fit” the noise present in the data
which are proper to the realization of the experiment and not to the actual system in
itself. According to Ljung [58], the choice of a good model is a balance between the the
ability to well describe the system and the parsimony of the model to not introduce
unnecessary model parameters leading to an overfitting. To this goal, he advises the
use of some criteria able to reproduce this balance. The three criteria he proposed are:

The Akaike’s Final Prediction Error (FPE): Akaike first used this criteria in
[74] as a merit function to discriminate several models in a trying set in order to
get the one which is best suited to represent the system. Putting in competition a
series of autoregressive models described by their respective order M , he defined
the FPE criteria as

FPE = N +M + 1
N −M − 1 RM (2.75)

in which RM is the mean square of the residual sequence and M + 1 being the
number of parameters in each model of order M (the +1 is simply due to an
additional constant term in addition to the M auto regressive parameters). In
our case, for each model, the number of parameters for each model will depend on
the autoregressive order, but also on the moving-average one and the dimensions
of the function bases used to represent them. One will generally denotes by dM
the dimension of the vector of parameters of the model structure M. According
to this notation, the FPE criterion is computed as follows after our identification
processes:

FPE =
1 + dM

N

1− dM
N

V (θ∗M) (2.76)

where V (θ∗M) is the value of the mean squares of the residuals which is minimized
for the optimal set of parameter θ∗M. Looking at the two factors of Equation
(2.76), one can observe that the first factor is an increasing function of the com-
plexity of the model. It thus penalizes an overfitting of the model. The second is
obviously a decreasing function as the model better fit the data. This expression
then translates the trade-off between accuracy and parsimony in a mathematical
way.

The Akaike’s Information Criterion (AIC): Akaike defined the AIC criteria in
an extension of the maximu-likelihood estimation procedure in [75]. The mathe-
matical description of the criterion also computes a balance between the precision
of the fitting of the model and its complexity. It is given as follows for the iden-
tification of models in the maximum-likelihood framework:

AIC = −2 lnL (θ∗M) + 2 dM (2.77)

where L (θ∗M) is the likelihood function of the model. The criterion can also be
used in least-squares estimates under the assumption of Gaussian distribution of
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the innovation sequence [58]. It is given by using the mean square errors criterion
used in the optimization instead of the likelihood function:

AIC = lnV (θ∗M) + 2 dM
N

. (2.78)

It is the latter equation that will be used in the following.

The Bayesian Information Criterion (BIC): This criterion was proposed by Ris-
sanen in [76] under the name of Minimum Length Description (MLD) criterion.
The BIC criterion can be written as follows (again with the assumption of Gaus-
sian innovations):

BIC = lnV (θ∗M) + dM
lnN
N

. (2.79)

The first term of both the AIC and BIC is similar, the difference comes from the
penalization of the model complexity. It appears that the BIC criterion has a
stronger penalization of the overparameterization than the AIC.

2.3.3 Physical poles selection

The stabilization diagram in LTI modal analysis helps to choose a good model order
but is also useful for the discrimination between physical and spurious poles coming
with the overparameterization of the problem. Ideally, in perfect conditions, a good
model order in a modal analysis method should be equal to twice the number (because
of the complex conjugated pairs) active modes in the recorded data set. But generally,
restricting the model to this structure does not give satisfactory results and model
structures with a higher complexity have to be considered.

Once a good model is selected, if its order enables it to identify more time-varying
pole trajectories than the actual number of active modes in the system, one has to
choose whose are physical and whose are spurious for the extraction of the modal
deflection shapes. This discrimination between physical/spurious poles in time-varying
conditions was tackled by Beex and Shan for the identification of frequency-modulated
(FM) signal in noisy data with a time-varying AR modeling and the basis function
approach [77]. The proposed idea is simple. Let’s assume that our model is of order
M , it is then able to identify M pole trajectories in time. Let’s also assume that in this
set, only p poles have a physical meaning ant the other (M − p) poles are numerical
ones, coming from the excess of parameters in the model. The idea in the selection
process, is to look to the radius distribution of all the discrete poles trajectories. The
discrimination is then performed by the property that the poles corresponding to FM
component should travel on the unit circle. The unit radius is due to the constant
amplitude of the FM components and their varying angle represents their variation in
frequency. The trajectories associated to spurious poles are larger and sweep wider
radius values. The radii of the poles being representative of their damping, values
close to one correspond to lightly damped modes. This kind of discrimination based
on low damping is also used by Reynders et al. as one (among various other) criteria
in an attempt to automatize the pole selection in the stabilization diagram [78]. They

67



assume that a hard criteria that physical poles must meet is that their damping should
be strictly positive and lower than a threshold value (that may depends on the problem
to analyze). Such a criterion then makes sense in our case assuming that physical
modes have low damping with respect to spurious ones even in the time-varying case.
A remark may however be drawn here. Conversely to the LTI case, the varying pole
trajectories have not to be considered lying strictly inside the unit circle in time-varying
conditions [61]. They may not respect that constraint in some cases without affecting
the stability of the time-varying system.

2.3.4 Time-varying modal analysis

We now apply the whole methodology described above on the same data as in Section
1.5 for the nonparametric identification. This will help us to compare the results ob-
tained with both methods. The identification is performed as follows. First the system
is roughly studied with the 2SLS method for a large variety of model structures because
of its faster computation time. The discriminating criteria (FPE, AIC and BIC) are
then computed on the large set of results in order to find good model candidates for
a more detailed analysis. The latter one is performed using the iterative optimization
scheme on the reduced set of model structures. Once the physical frozen-poles are pre-
cisely identified, the modal deflection shapes are extracted by the Vold-Kalman filter
in a non parametric way, exactly as what was done in the previous chapter.

Rough analysis and model structure selection by the 2SLS method

In order to select one or few model structures for the subsequent more detailed analysis,
a batch of 2SLS identifications of the system is performed on a set of model structures
in which the “good” model is assumed to be present. First, a class of basis functions
has to be chosen for the analysis. In the present case, a basis of increasing number of
Chebyshev polynomials is chosen. Note that this choice is a bit arbitrary here. Indeed,
the trajectory of a parameter can be approximated using different kind of functions with
an equivalent precision. The difference is that the number of functions to consider may
differ from a kind of basis to another. Without any particular physical information
about how the system parameters vary (periodically varying, abrupt variations, ...)
there is, a priori, no particular choice of functions that are better suited than others.
Note also that, even if the trajectory of the resonance frequencies draws some kind of
periodic motion, especially at higher frequencies, we have to keep in mind that these
are the ARMA parameters that are modeled by the basis functions approach and not
the poles. The latter one are computed as the roots of the AR polynomial and a direct
intuition of how they relate one with each other is not trivial. This means that a
Fourier series may of course be chosen as function basis, but nothing tells that it could
be better than another without comparing the results.

The batch analysis on various model structures is performed as follows using a ”for
loop” notation:
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for na = 10 to 30 by step of 2

for nb = na − 1 to na

for nfa = 5 to 13

for nfb
= 1 to nfa

Perform the identification with a model structure defined
by the na, nb, nfa and nfb

parameters and compute the value
of each of the FPE, AIC and BIC criteria.

end

end

end

end

The choice of starting the iterations of the AR order at ten is simply due to the presence
of five modes in the frequency band. A lower value would be useless because all the
modes could not be identified. For the same reason, the iterations are done by step
of two in order to introduce an additional pair of poles at each iteration. The choice
not to start the number of the basis functions for the AR part at one is simply due to
the fact that the system configuration is actually varying with a certain complexity so
a too low number of basis functions would obviously not be sufficient. It is arbitrary
fixed to five in this case. If the following analysis of the discriminating criteria between
models would not show a minimum, the upper and lower limit values for the size of the
basis functions should be considered, as long as a possible increase of the maximum AR
order. The considered MA orders do not start to 1 either. Indeed, in [79], Andersen et
al. demonstrate the relationship between equivalent ARMA models in various cases,
especially for the determination of the theoretical model orders to consider. They
considered univariate modeling of SDOF systems, multivariate modeling of MDOF
systems and univariate modeling of MDOF systems. This is the latter case that is
of interest in this chapter because we deal with univariate models aiming to identify
several excited modes in the data. The result is that, in theory, in order to identify
a n-DOF system, an ARMA model of orders (2n, 2n − 1) should be considered. If
some measurement noise is present in the data, an increase in the MA order should be
considered and ARMA(2n, 2n) model used for the identification.

The evolution of the FPE, AIC and BIC criteria is depicted in Figure 2.3. Looking
to that figures, some comments may be drawn. The first one, is that there is no clear
minimum for each criteria. At best, one cans select a set of model structures sharing
close values of the criteria. Let us note that the values are not directly sorted by in-
creasing complexity and that the values of each criterion evolves by following some kind
of repeated patterns. Each of them indeed corresponds to either an ARMA(2n, 2n−1)
or ARMA(2n, 2n) structure and the internal “sawtooth” evolution inside the patterns
corresponds to the variation of the size of the functions bases for each of the AR and
MA parts. It is also noticeable, as stated above, that the BIC criteria is more penal-
izing the model complexity than the FPE or BIC criteria whose follow a very similar
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FPE / AIC BIC
Model index dM na nb nfa nfb

Model index dM na nb nfa nfb

1586 700 28 28 11 2 837 313 20 19 9 1
1597 728 28 28 12 2 846 333 20 19 10 1
1598 924 28 28 12 3 856 353 20 19 11 1
1609 756 28 28 13 2 867 373 20 19 12 1
1610 952 28 28 13 3 879 393 20 19 13 1
1667 736 30 29 11 2 918 320 20 20 9 1
1668 939 30 29 11 3 927 340 20 20 10 1
1678 766 30 29 12 2 937 360 20 20 11 1
1679 969 30 29 12 3 948 380 20 20 12 1
1690? 796 30 29 13 2 960 400 20 20 13 1
1691 999 30 29 13 3 999 345 22 21 9 1
1748 750 30 30 11 2 1008 367 22 21 10 1
1749 960 30 30 11 3 1018? 389 22 21 11 1
1759 780 30 30 12 2 1029 411 22 21 12 1
1760 990 30 30 12 3 1041 433 22 21 13 1
1771 810 30 30 13 2
1772 1020 30 30 13 3

Table 2.1: List of potential model structure candidates based on the FPE, AIC and
BIC criteria. Chebyshev polynomials are used as basis functions. The models depicted
with a ? correspond to the global minimum in the criteria.

evolution. A first set of potential good candidates are chosen by taking the model
candidates close to the neighborhood of the minimum values in each criterion. Those
are shown in Figure 2.3 as blue circles and they are tabulated in Table 2.1. The chosen
model candidates give here a first indication on the model structures to be used in the
subsequent analysis.

Looking to Table 2.1, it seems that models with AR order equal to 20 to 22 and
MA orders from 19 to 21 could be suitable for the identification according to the BIC
criterion. AR and MA orders from 28 to 30 are them selected using the FPE and AIC
criteria. It is clear that, for each criteria, the theoretical value for the model order is
well overshot. This is due to two factors: the noise present in the experimental data,
but the sampling frequency also brings an increase in the model orders. In [80, 81],
Smail et al. study the influence of the noise and the sampling rate of the data on
the selection of the best model order to consider. They show that a too high level
of noise in the data requires higher order models to perform a good identification,
but, more interestingly, they also show that the sampling rate of the data has also a
great influence. Ideally, they advise to choose a sampling frequency from three to ten
times the frequency of interest in the data [80]. Some difficulties may appear if several
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(b) AIC scores for the large batch od model candidates.
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(c) BIC scores for the large batch od model candidates.

Figure 2.3: Good model structures candidates are selected based on the values of the
FPE, AIC and BIC criterion. Chebyshev polynomials are used as basis functions.
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frequencies (modes) are spread in a large frequency band. Of course, the sampling
frequency has to be chosen in order to cope with the highest frequency we want to
observe, but in that way, the higher the sampling frequency the lower the part of the
period corresponding to low frequency is covered by the regression vector. The effect of
high sampling frequencies is that the modes at higher frequencies are easily identified
with the theoretical order in the model, but the modes at lower frequencies require an
increase in the model order to be caught. This is even more true as the interval between
the lowest and highest frequencies increases. Figure 2.4 illustrates the phenomenon.

Regression length at high sampling rate

Regression length at low sampling rate

Figure 2.4: Comparison of the regression lengths for a fixed model order with low and
high sampling frequency of the data.

Concerning the size of the functions bases, 9 to 13 functions seem to be good sizes
for the AR part of the model, but quite surprisingly, only bases up to 3 Chebyshev
polynomials seem to be sufficient to model the MA part. This is surprising because
the MA part models the valleys in the spectrum and, at least in the wavelet spectrum
corresponding to channel 2, there is a valley between the two last modes with a time-
varying evolution comparable in complexity with the one of the higher frequency mode.
We should then have a higher number of functions employed to model the MA part.
The MA part of the model seems to be more discriminated than the AR one. It is
suspected that this behavior could be due to the unequal importance of each model
structure parameter on the complexity of the whole model. Indeed, because of the
equality constraint of the AR parameters but not on the MA ones, one has:

• a unit increase in the AR order adds nfa new parameters to the model,

• a unit increase in the AR functions basis adds na new parameters to the model,

• a unit increase in the MA order adds no × nfa new parameters to the model,

• a unit increase in the MA functions basis adds no × na new parameters to the
model,
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where no is the number of output measurement channels. Because of this difference,
the complexity of the MA part is more penalized as long as we have more than one
measurement channel. A zoom on one pattern of the evolution of the BIC criterion is
shown in Figure 2.5 where the drastic increase in the BIC value when additional basis
functions are considered in the modeling of the MA part is clearly visible.
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Figure 2.5: Zoom on the BIC criterion for the model structure with AR and MA orders
fixed at 22 and 21, respectively. The variations of the BIC values are due to the increase
in both nfa and nfb

.

In order to find a better value for the MA modeling, an alternative criterion is
used: the Residual Sum of Squares over the Signal Sum of Squares (RSS/SSS). This
is simply the square of the residuals normalized by the signal amplitude. Conversely
to the previous criteria, it does not penalize the overparameterization because each
increment in the model complexity enables to decrease the residual sequence. In Figure
2.6, the RSS/SSS ratio is plotted four times, one with respect to a fixed value of each
of the model structure parameter. Additionally, the median value of each column is
plotted to better see the global decreasing trend. In Figure 2.6(a), the AR order of
22 as identified by the BIC criterion seems to be a good value, even if no clear gap is
observed on the RSS/SSS value. In Figure 2.6(b) related to the MA order, the values
of the criterion between couples (2n, 2n − 1) and (2n, 2n) do not differ a lot. A MA
order at 21 is then chosen. In Figures 2.6(c), the last noticeable gain in accuracy is
obtained once at least 9 Chebyshev polynomials are contained in the basis, which is
in accordance with the BIC criterion. Finally, no clear gap is visible in Figure 2.6(d)
to identify a good size for the MA basis but adding more than 9 functions does not
bring a great gain in accuracy. Further, with at least 9 functions one also may observe
a large decrease in the dispersion of the RSS/SSS values, which can indicate it could
be a good choice.
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Figure 2.6: RSS/SSS values with respect to each of the model structure parameter.
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Accurate identification by the optimization process

The chosen model structure candidate being fixed with the following parameters: na =
22, nb = 21, nfa = 9 and nfb

= 9, the estimation of the model parameters based on the
nonlinear optimization process may be performed. The obtained results are illustrated
in the following figures. First, Figure 2.7 shows the identified frozen frequencies of
the system. It can be seen in Figure 2.7(a) that the procedure for the discrimination
between physical and spurious poles gives good results by looking to the black (physical)
and gray (spurious) poles and frequencies in both 2.7(a) and 2.7(b).

(a) Poles trajectories in the complex plane.
Black: poles selected as physical, gray: poles
selected as spurious.

(b) Identified frequencies. Black: frozen frequencies associated to the physical poles,
gray: frozen frequencies associated to the spurious ones.

Figure 2.7: Frozen-time frequencies identified through the time-varying parametric
model.
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Because the frozen poles are identified, besides the frequencies, the damping ratio’s
of the structure may also be obtained. Given a pole λr (in the continuous time domain
and under general viscous damping assumption), its related frequency and damping
ratio are given as follows [48]:

λr = −ζrωr − i
√

1− ζ2
r (2.80)

ωr = |λr| (2.81)

ζr = −Re (λr)
ωr

(2.82)

The damping ratios identified for the five modes are shown in Figure 2.8. It is
more difficult to compare the damping with the previously obtained values in the LTI
analysis. First, because the damping is generally the identified parameter with the
lower accuracy, but also because the motion of the mass directly affects the value of
the damping ratios. This phenomenon is shown by Ma et al. in [82] where they built a
dynamical model of a similar beam with a moving mass problem. They show that, in
addition to the position, the velocity and the acceleration of the moving mass impact
the dynamics of the system. In their example, the velocity has an effect on both the
damping and stiffness matrices but its effect is mainly visible on the damping of the
system. The acceleration affects only the stiffness matrix.

Figure 2.8: Time-varying evolution of the frozen damping ratio’s of the structure cor-
responding to the identified frozen poles.

A word about model validation

When dealing with model based identification, the validation of the model is important.
There are many ways to perform this task. However in the present case, the possibilities
are limited for several reasons:
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• The usual methods based on cross-validation are not adapted in our case. The
method assumes that we can split all the data in two sets, one used for the iden-
tification and the other one used to validate the identified model. This method
is not possible here because of the nonstationarity of the process which prevents
such a decomposition neither by cutting a small part of the data, nor by repro-
ducing the experiment because we deal with operational conditions.

• Another way to asses the quality of the model is to simulate the output response
of the identified model with the input data and compare them with the measured
ones. For the same reason as above, due to the absence of input data because of
the operational condition, that is not possible either.

• Other strategies rely on the analysis of the residuals after the identification. But
here again, some techniques as the whiteness test of the residual sequence are
not possible due to the nonstationarity which can induce a time variation in its
variance.

In time-varying condition, Poulimenos and Fassois [50] propose to use a simple test
on the residual sequence in order to know if they are representative of a usual random
sequence or not. Draper and Smith [83] explain this test which is simply based on the
analysis of the signs in the residual sequence and how they are ordered without taking
their amplitude into account. A statistical test is then performed in order to know if
the sequence is usual for a zero-mean uncorrelated random sequence or not. The main
idea is the following one. First, the sequence of residuals is analyzed in terms of number
of occurrences of positive, n1, and negative, n2, residuals and of number of “runs”, r
(a run designating a sequence of residuals with the same sign). In the case of sufficient
samples, an estimate of the mean value and variance of the discrete distribution of the
number of runs in a random sequence may be computed based on the numbers n1 and
n2 as follows:

µ = 2n1n2

n1 + n2
+ 1 (2.83)

σ2 = 2n1n2 (2n1n2 − n1 − n2)
(n− 1 + n2)2 (n1 + n2 − 1) (2.84)

If the number of samples is sufficiently large, the comparison can be performed
based on a normal distribution. The comparison is split into a lower and an upper case
depending if the actual number of runs is lower or higher than the estimated mean
value in the same condition (same number of positive and negatives residuals). For
each case, a unit normal random variables zl or zu is computed for the test with the
normal distribution as follows:

zl = r − µ+ 1/2
σ

(2.85)

zu = r − µ−+1/2
σ

(2.86)

and the probability to have less or more runs based on the same number of positive
and negative residuals is computed. If this probability is under a chosen threshold, the
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Channel # n1 n2 r µ

1 6442 6359 6374 6401.2 31.8 % probability to have a lower number of runs.
2 6405 6396 6317 6401.5 6.9 % probability to have a lower number of runs.
3 6339 6462 6376 6400.9 33.3 % probability to have a lower number of runs.
4 6424 6377 6322 6401.4 8.2 % probability to have a lower number of runs.
5 6387 6414 6376 6401.5 32.9 % probability to have a lower number of runs.
6 6405 6396 6390 6401.5 42.3 % probability to have a lower number of runs.
7 6410 6391 6433 6401.5 29.2 % probability to have a higher number of runs.

Table 2.2: Detailed results for the sign test in each channel.

residual sequence is considers as unusual for a random sequence, which may imply the
invalidation of the model.

The statistical test may be illustrated as follows. Let the following sequence be the
signs of the residuals obtained after the identification of the model:

(+)(−−)(+ + +)(−)(+ + ++)(−−)

It is composed of 8 positive and 5 negative residuals ordered in 6 runs. It is easily
understood this kind of arrangement is more usual for a random sequence than extreme
ordering as

(+ + +)(−−−−−)(+ + + + +)

or
(+)(−)(++)(−)(+)(−)(++)(−)(+)(−)(+)

The two latter cases may indicate some correlation in the residual data meaning that
the identification procedure missed something.

As a practical example, let us consider the residual of channel 2. In this sequence
there is actually n1 = 6405 residuals with a positive value and n2 = 6396 residuals
with a negative value in r = 6317 runs. At first sight, there is approximately the
same number of positive and negative values as it is generally the case for a random
sequence. Based on n1 and n2, the computed mean and standard deviation for the
number of runs equal µ = 6401.5 and σ = 56.57. r being lower than µ the lower tail
test is applied. Computing zl and comparing it to a normal distribution one gets a
value of zl = −1.49 which means that there is 6.9 % chance of occurrence to have a
lower number of runs with a similar number of positive and negative residuals. This
is a low probability but far to be negligible. With such a value we could validate the
result of the identification.

The same operation is performed with the residual sequence of all the measurement
channels to fully validate the combined identification. The position in the normal
distribution of each sequence of residuals is shown in Figure 2.9. The detail of the sign
tests in each channel is also tabulated in Table 2.2. As it can be observed in both
Figure 2.9 and Table 2.2, the model validity can be accepted.
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Figure 2.9: Sign test validation for the residual sequences in each measurement chan-
nel. The rejection criteria is fixed at 1% chance to have less or higher runs in each
distribution tail.

Additionally to the sign test, the computation of the wavelet spectrum of the resid-
ual sequence may indicate if a remaining oscillatory component is still present or not.
Figure 2.10 represents the time-frequency plot of the residual in the second channel.
As it can be observed, no oscillatory component is visible, which is also a good clue
for the validation of the model because it means that all the dynamics of the system
is taken into account in the predictor of the model.

Comparison with the nonparametric approach

Let us now compare the results obtained by both the parametric time-varying ARMA
model and the nonparametric method based on the Hilbert transform of the previous
chapter with respect to the frequencies and modal deflection shapes. First, concerning
the time-varying frequencies, Figure 2.11 plots the identified frequencies obtained by
both methods on top of the wavelet spectrum of the second channel. It can be seen
that the matching between the two set of frequencies is quite good. This comparison is
important because this good agreement between the parametric frozen-time frequencies
and the nonparametric instantaneous frequencies also increase the confidence in the
assumption of slow variation enabling the use of the frozen-time approach.

Second, the two sets of time-varying modal deflection shapes are compared using
the time-varying MAC criterion as in Section 1.5.2 but considering here that the two
sets of modes are varying. The time-expanded MAC matrix is illustrated in Figure
2.12. As it can be shown, the paired modes show (quasi-)monochromic black rows,
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Figure 2.10: Time-frequency representation of the residual sequence of the second
channel. Each active mode in the frequency band of interest is properly modeled and
extracted from the measurement data.

which indicates a good matching between them all along the time axis. Second, the
amount of cross correlation is also quite weak. To better evaluate the correlation
between corresponding modes, the values of each correlated pair are also plotted in
Figure 2.13. As expected by the shape of the full time-varying MAC matrix, the values
of each correlated pair is most of the time equal to one. This is not surprising because
the deflection shapes are extracted with the same Vold-Kalman filter based on quite
similar reference frequencies. The few drops in correlation may also be explained as
before as troubles in the extraction procedure when the instantaneous amplitude of the
corresponding mode in the actual signal is close to zero.

The comparison between the data and the identified model may also be performed
by looking to the time-varying power spectral densities calculated with both nonpara-
metric methods, such as the wavelet transform (to form a scalogram) on the data or
by synthetizing it with the model such as

SoARMA[t, ω] =
∣∣∣∣∣ 1 +∑

k b
o
k[t] e−k iωTs

1 +∑
k ak[t] e−k iωTs

∣∣∣∣∣ σ2
eo [t] (2.87)

with the ratio of both the AR and MA polynomials modulated by the time-varying
variance of the residual sequence of the current channel. The time-varying variance
of the residual may be empirically calculated by sliding a time window on the data
assuming a short-time stationarity of the variance over 2K + 1 time samples:

σ2
eo [t] = 1

2K + 1

t+K∑
τ=t−K

eo2[τ,θ]. (2.88)

The comparison is presented in Figure 2.14 with a common colorbar for both their
amplitude.
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Figure 2.11: Comparison of obtained frequencies with both methods.

2.4 Concluding remarks

This chapter presented a way to parametrically model time-varying systems in view
of modal identification. This step is used to straighten the step of the identification
of time-varying frequencies with a model-based approach while the modal deflection
shapes remain computed with the nonparmetric Vold-Kalman filter.

Based on existing work on the modeling of time-varying univariate ARMA models
with the basis function approach, multiples measurement channels are here taken into
account by a common modeling of the autoregressive part of each channel. The method
is validated by comparison with the results computed with the nonparametric methods
of the previous chapter. In this comparison, the difference between the nonparametric
instantaneous frequencies and the frozen-time ones is compared. The good matching
we obtain confirms that the assumption of slowly-varying rate of the system properties
enabling the use of the frozen-time approach is valid.

Because we are dealing with noisy measurements and because several modes are
spread in a large frequency band, it is also observed that the model structures enabling
a good identification largely overparameterize the system compared to the theoretical
orders for such a system. This overparameterization brings its part of spurious results
that have to be eliminated. The very simple discrimination based on the difference in
radii dispersion of the physical and spurious poles shows good performances for this
task.
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Figure 2.12: Time-varying modal correlation between the time-varying modes obtained
with both methods.
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Figure 2.14: Comparison of the time-varying PSDs between nonparametric and model-
based approaches. Top: scalogram with the wavelets spectrum, bottom: computed
with (2.87).
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3
Multivariate parametric modeling

This chapter is concerned by the multivariate modeling of time-varying systems for
their identification. The multivariate modeling is a natural extension of the univariate
one presented earlier when multiple records are available. The method presented in
the previous chapter uses scalar models with a common autoregressive part in order to
treat the multiple measurements available. In the multivariate case, vector models are
used, meaning that the measured quantities are treated as vectors instead of scalars
and the identification models are thus composed of matrix quantities. The goal of the
identification is then to identify all the coefficients of the matrices of the model. The
interesting aspect about considering multivariate models is that they give acces to the
full set of modal parameters by providing the mode shapes in addition to the poles
of the system. Scalar methods usually require an additional method to compute the
mode shapes. In LTI modal analysis, the Least Squares Frequency Domain (LSFD)
[84] method is often used to compute the mode shapes of the system based on a set of
a priori estimated poles and a set of FRFs measurements. The scalar method proposed
in the previous chapter works in the same way. The scalar ARMA model provides
information about the time-varying poles and an additional method, the Vold-Kalman
Filter, is used to compute the varying deflection shapes a posteriori.

The question to know if multivariate models have to be considered depends on
the application and on the needs of the identification. If only the frequencies and/or
the damping information are wanted, it may not be necessary to rely on multivariate
identification schemes and scalar models may be sufficient. The multivariate modeling
has several advantages with respect to the univariate one but it also brings some
drawbacks. The mode shapes being a part of the model, they are directly identified
without requiring the application of other methods for that purpose. This kind of
modeling is also beneficial when there is a strong relationship between the different
variables and multivariate models in modal analysis have better performance in the
identification of closely spaced modes. The identification of local modes is also improved
with respect to scalar models. Note that the local modes may also be observed with
scalar models as in the previous chapter when multiple channels are considered with
a linking constraint. If some sensors are placed in the local deflection areas of a local
mode, such a model is also able to identify it.
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The main drawback of multivariate models is the computational complexity due to
the drastic increase of the number of model parameters. The higher complex structure
of the model also reduced its parsimony which can make them more sensitive to initial
guesses (in the optimization procedure) and may easily be prone to fall in local minima.
The more complex structure also brings another drawback. Because of the higher
number of parameters in the model, any overparameterization required for a good
identification drastically adds more parameters to estimate. This is even more true as
long as the number of measurements channels increases.

In time invariant modal analysis, several multivariate methods are available. The
Ibrahim Time Domain (IDT) method [85] was proposed by Ibrahim and Mikulcik to
treat multiple free vibration responses in order to identify a complete set of modal
parameters. By complete, we understand here that the poles (frequencies and damp-
ing ratio’s) can be identified but also the mode shapes. The algorithm models the
free response data by the Prony method, assuming that the response can be modeled
with a series of damped complex exponential waves. Two other usual ways to model
MDOF linear systems are the multivariate autoregressive moving-average (often writ-
ten ARMAV or VARMA depending on the author, the V standing for “Vector”) and
the state-space models. In the identification of civil engineering structures, Andersen
uses ARMAV models for modal analysis [86] and Bodeux and Golinval use them for
damage detection purposes [87]. Fassois [88] and Florakis et al. [89] also present and
compare multivariate ARMAX-based experimental modal analysis. The state-space
way to model linear MDOF systems is also used for identification purposes and they
may be solved by the prediction error method, recursive (such as the Kalman filter)
or subspace techniques. The Eigensystem Realizaton Algorithm (ERA) proposed by
Juang and Papa in [90] aims to identify the state transition matrix of a dynamic sys-
tem based on its impulse response recorded in multiple channels. In case of operational
conditions (assumed to be broad-band random), it is possible to feed the ERA method
with auto- and cross-correlation functions of the measured structural response. In this
procedure, it is possible to show that the correlation functions are also a sum of de-
caying sine waves owning the same modal properties of the system. This is the base
of the NExT method (Natural Excitation Technique) [91]. Other state-space based
methods which are currently very popular and powerful are the subspace identification
methods. This familly of methods can identify deterministic, stochastic or mixed state-
space systems [57] and are then very interesting in many applications and especially in
stochastic operational conditions.

Dealing with time-varying identification some multivariate methods were also devel-
oped. Of course, in case of slowly varying systems, the classical modal analysis methods
may be employed in a short-time stationary assumption. In this way, Marchesiello et
al. applied the SSI method on a bridge-like structure on sliding short time windows
in [5]. Similarly, Goursat et al. [92] apply a variant of this method (the Crystal Clear
SSI method [93]) on flight data of the Ariane 5 launcher to track the variation of its
modal properties due to its decrease in mass with time. The time-varying behavior
of structures is also treated by several authors using ARMAV and state-space mod-
els. In [94], Spiridonakos and Fassois apply multivariate ARMA modeling estimated
both by a recursive algorithm and by a two stages least squares functional series (basis

86



functions) approaches. They also compare their results with a short-time approach.
The problem we address here is similar but we put more emphasis on the mode shapes
estimates which are not considered in [94]. Concerning the identification based on
state-space models, some attempts were also made to track the variations of the sys-
tem’s properties. Liu in [95, 96] and Liu and Deng in [97], propose to perform the
identification of time-varying systems through the subspace identification state-space
models in which the discrete state transition matrix is free to vary with time. An
eigenvalue decomposition of this series of matrices results in what the author called
the pseudo-modal parameters (pseudo-natural frequencies, -damping ratio’s and -mode
shapes). The method is experimentally tested in [97] on a set-up made of an axially
cantilever beam. In this set-up, the time-varying boundary condition of the system
brings the time-dependent characteristics of its modal properties. Another approach is
also provided by Tasker et al. [98] for an online subspace identification. Their method
implies an efficient update of the subspace as new data are available. The method is
experimentally tested in [99] on a truss structure with a mass-loading/unloading as
time-varying structural change.

In this chapter, two approaches are followed. First, a multivariate ARMA modeling
of the time-varying system is used (Section 3.1). Second, a time-varying state-space
model is used with the particularity that it is written in a modal form (Section 3.3). In
each case, the time-variability of the parameters are modeled with the basis function
approach just as in the preceding chapter. Both the methods are then applied on the
same data set which was used earlier.

3.1 Multivariate ARMA model

In this section, the method of Auto-Regressive Moving Average in Vector form (AR-
MAV) is first recalled in the field of linear time invariant system identification. It leads
to the determination of the modal properties in terms of poles (eigen frequencies ωr
and damping ratio’s ζr) as well as mode shapes vr of the structure. Next, the method
is extended to the time-varying behavior using the previously presented basis function
approach in a multivariate form. According to this multivariate modeling, the param-
eters to be estimated become matrices instead of scalar coefficients and each of their
component is expressed in the basis of functions.

3.1.1 The ARMAV method for output-only modal identifica-
tion

The ARMAV method is able to perform modal identification of a structure in oper-
ational conditions based only on response measurements. A required assumption is
that the external excitation generating the response of the structure is an uncorrelated
white noise. This method is commonly used in the field of structural dynamics. In
structural identification, Piombo et al. [100] use ARMAV models for the identification
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of modal parameters both numerically on a simulated problem and experimentally on
a laboratory setup and on an actual bridge structure. Andersen in [86] provides a
lot of details about the ARMAV modeling for modal identification in civil applica-
tions. His thesis provides all the details about the method, the way to perform the
identification (multi stages least squares and nonlinear optimization) and to select an
appropriate model structure and the extraction of the modal parameters. Bodeux and
Golinval also use ARMAV models for structural health monitoring purposes (damage
detection) [87, 101].

In what follows, let us denote by y[t] the d×1 multivariate responses measurement
vector gathering the data of all the sensors spread on the structure. The ARMAV(na, nb)
model of the output signal writes:

y[t] +
na∑
i=1
Ai y[t− i] = e[t] +

nb∑
j=1
Bj e[t− j], (3.1)

where the innovation vector e[t] is a zero-mean uncorrelated white noise process. Sim-
ilarly to the scalar model, the na Ai matrix coefficients represent the autoregressive
part of the model that contains the dynamic information of the system. The other nb
Bj matrix coefficients constitute the moving average part of the model.

The relationship between an ARMAV model and a mechanical system is established
in [79, 86] by the comparison between state-space representation of both the motion
equations and the ARMAV model. Let us consider a mechanical system of order n for
which the governing equation writes

M ÿ(t) +C ẏ(t) +K y(t) = f(t) (3.2)

and suppose that all the n degrees of freedom are measured. Similarly to the univari-
ate case, Andersen et al. show in [79] that an ARMAV(2,1) is a covariance equivalent
model of the structure dynamics. However, in a general case, the number of measure-
ment channels will not be strictly equal to the number of modes in the response of
the structure. In such a case, assuming m signals are measured from the structure
exhibiting n modes in the measured frequency range, an ARMAV model of autoregres-
sive and moving average orders equal to 2n/m and 2n/m − 1, respectively, should be
considered. Providing of course that the n/m ratio is an integer. If this is not the case,
its upper rounded value is chosen. As an example, in our practical application, having
five excited modes under 120 Hz and recording the response of the structure with seven
measurement channels, the theory says that an ARMAV(2,1) model is sufficient for the
identification. Unfortunately, as previously encountered with the scalar model, when
dealing with experimental data, a certain degree of overparameterization is required in
order to get a good identification result.

3.1.2 Time-varying ARMAV model

Let us now consider the problem of time-varying mechanical systems where it is again
assumed that the rate of variation of the system is slow with respect to the period of
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vibration (i.e. the term Ṁ(t) ẏ(t) is negligible):

M (t) ÿ(t) +C(t) ẏ(t) +K(t)y(t) = f(t) (3.3)

Regarding to the signal model (3.1), the time dependence have to be captured by
the AR and MA coefficients. It follows that the ARMAV model in the framework of
LTV systems is simply obtained by time-dependent matrices Ai[t] and Bj[t], i.e.:

y[t] +
na∑
i=1
Ai[t]y[t− i] = e[t] +

nb∑
j=1
Bj[t] e[t− j]. (3.4)

The coefficients to be estimated are now components of the time-varying Ai[t] and
Bj[t] matrices. The same basis functions approach as in the previous chapter is used
to project these matrices on a previously selected set of known time functions fk[t]:

Ai[t] =
nfa∑
k=1
Ai,k fk[t], (3.5)

Bj[t] =
nfb∑
k=1
Bj,k fk[t]. (3.6)

in which nfa and nfb
correspond to the number of basis functions in the AR and MA

parts, respectively.

In this way, the identification problem becomes a time invariant problem when
looking for the projection coefficients Ai,k and Bj,k. Introducing (3.5) and (3.6) into
(3.4) yields to

y[t] +
na∑
i=1

nfa∑
k=1
Ai,k fk[t]y[t− i] = e[t] +

nb∑
j=1

nfb∑
k=1
Bj,k fk[t] e[t− j]. (3.7)

The solving of the identification problem in the multivariate case is highly similar to
the one with the scalar model. In this work, the prediction error method is used again
for the identification. The latter is performed with the same two stages least squares
and nonlinear optimization scheme adapted to the new multivariate model structure.

Two stages least squares identification

As previously said, the aim of the method is to identify the AR and MA projection
coefficients. To do so, let us first gather all these coefficients in a single matrix Θ:

Θ =
[
A1,1, A1,2, · · · , A1,nfa

, A2,1, · · · , Ana,nfa
, B1,1, · · · , Bnb,nfb

]
. (3.8)

In the same way, the product of the basis functions and the lagged values of the
output and error term are also put in the following vector forms:

φ[t]T =
[
f1[t]y[t− 1]T , f2[t]y[t− 1]T , · · · , fnfa

[t]y[t− p]T
]

(3.9)

ψ[t]T =
[
−f1[t]e[t− 1]T , −f2[t]e[t− 1]T , · · · , −fnfb

[t]e[t− q]T
]

(3.10)
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The prediction error of the model can now be expressed by subtracting the estimate
of the response ŷ[t,Θ] from the response signal itself y[t]:

e[t,Θ] = y[t]− ŷ[t,Θ] (3.11)

where the estimate of the output signal is given by

ŷ[t,Θ] = −
na∑
i=1

nfa∑
k=1
Ai,k fk[t]y[t− i] +

nb∑
j=1

nfb∑
k=1
Bj,k fk[t] e[t− j]. (3.12)

Using the notations (3.8), (3.9) and (3.10), the prediction error becomes

e[t,Θ] = y[t] + Θ

φ[t]
ψ[t]

 (3.13)

The matrix regression parameters of the system can be found by minimizing a
positive scalar cost function of the modelling error with respect to the parameters. A
commonly used cost function is the Sum of Squared Errors (SSE) defined as

V (Θ) = 1
2N

N∑
t=1
e[t,Θ]T e[t,Θ], (3.14)

where N is the number of data samples. A good estimate of Θ is given by the minimum
of V (Θ), i.e.

Θ = arg min
Θ

1
2N

N∑
t=1
e[t,Θ]T e[t,Θ]. (3.15)

The latter equation leads to a nonlinear optimization problem because ψ[t] depends
on the error term (3.13) which itself depends on the Θ parameter. To solve this
problem, the Two Stage Least Squares (2SLS) method [58] presented in Section 2.3.1
of the preceding chapter is first used. In a first step, a high-order autoregressive model
is used to fit the data which requires only a least square estimate as the nonlinearity
is located in the MA part. Once this model is known, it is used to get an estimate
of the innovation e[t, Θhigh order]. In the second step, an ARMAV model is estimated
by using the innovation as a known input in an ARX way. The process may then be
iterated by updating the output estimate and the innovation.

Nonlinear minimization of the cost function.

In order to perform the minimization of the nonlinear cost function (3.15), with the
Levenberg-Marquard or trust-region algorithms, we will have to compute its gradient
with respect to the parameters of the multivariate model. To this goal, and for the
computation of the predictors, the time-varying ARMAV is rewritten in an observer
canonical state-space form (also known as the companion form of the model) as follows
[58]:

x[t+ 1] = F [t]x[t] +K[t] e[t]
y[t] = C x[t] + e[t]

(3.16)
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in which the matrices F and K are populated with the AR and MA matrices :

F [t] =



−A1[t] I 0 · · · 0
−A2[t] 0 I · · · 0

... ... ... . . . ...
−Ana−1[t] ... ... I

−Ana [t] 0 0 · · · 0


, (3.17)

K[t] =


B1[t]−A1[t]
B2[t]−A2[t]

...
Bn[t]−An[t]

 , (3.18)

n being the maximum value of na and nb and any Ai or Bi with an order higher than
the model orders na and nb, respectively, is put to zero. The output matrix C is equal
to

C =
[
I 0 0 · · · 0

]
(3.19)

with I the identity matrix of appropriate dimension.

The same optimization scheme previously presented in Section 2.3.1 is adapted
in the case of the multivariate identification model. A quadratic model of the cost
function is built around the current set of parameters

V(θ) = V
(
θ(k)

)
+
(
θ − θ(k)

)T dV (θ)
dθ

∣∣∣∣∣
θ=θ(k)

+ 1
2
(
θ − θ(k)

)T d2V (θ)
dθ2

∣∣∣∣∣
θ=θ(k)

(
θ − θ(k)

)
(3.20)

with
dV(θ)

dθ = dV (θ)
dθ

∣∣∣∣∣
θ=θ(k)

+ d2V (θ)
dθ2

∣∣∣∣∣
θ=θ(k)

(
θ(k+1) − θ(k)

)
= 0 (3.21)

and θ being a vector stacking all the model coefficients in the matrix of parameters Θ.
The iteration step is then given by

(
θ(k+1) − θ(k)

)
= −

(
d2V (θ)

dθ2

∣∣∣∣∣
θ=θ(k)

)
︸ ︷︷ ︸

H

−1 dV (θ)
dθ

∣∣∣∣∣
θ=θ(k)︸ ︷︷ ︸

g

(3.22)

As for the optimization performed in the previous chapter, one has to compute the
gradient of the cost functions in order to iterate in the optimization scheme, again by
neglecting the second order term in the Hessian matrix:

dV (θ)
dθ = 1

N

∑
t

deT [t,θ]
dθ e[t,θ], (3.23)

d2V (θ)
dθ2 = 1

N

∑
t

(
deT [t,θ]

dθ

) (
deT [t,θ]

dθ

)T
+ 1
N

∑
t

d2

dθ2

(
e[t,θ]Te[t,θ]

)
︸ ︷︷ ︸

To be neglected

.(3.24)
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The derivative of the prediction error then needs to be computed, which is equivalent
to minus the derivative of the predictor with respect to the same parameter:

d eT [t,θ]
dθ = d (y[t]− y[t,θ])T

dθ (3.25)

= −dy[t,θ]T
dθ (3.26)

Writing the state space equation in a predictor form, one has:

x̂[t+ 1] =
[
F [t]−K[t]C

]
x̂[t] +K[t]y[t]

ŷ[t,θ] = C x[t]
(3.27)

which is helpful for the computation of all the derivatives of the predictor. Indeed, for
each parameter θi in the identification model, one gets for its respective derivative of
the predictor:

• if θi belongs to the autoregressive part:

z[t+ 1] = dF [t]
d θi

x̂[t]− dK[t]
d θi

Cx̂[t] +
[
F [t]−K[t]C

]
z[t] + dK[t]

d θi
y[t]

d ŷ[t,θ]
d θi

= C z[t]
(3.28)

• if θi belongs to the moving-average part:

z[t+ 1] = −dK[t]
d θi

Cx̂[t] +
[
F [t]−K[t]C

]
z[t] + dK[t]

d θi
y[t]

d ŷ[t,θ]
d θi

= C z[t]
(3.29)

with z[t] being the derivative of x̂[t] with respect to θi. The computation of the
derivative may then be obtained by a state-space filter fed with the measured signal
y[t] and the states sequence x̂[t] at the current iteration step.

Note that the computation of the gradient and the approximate of the Hessian
matrix is a computationally demanding task. When the number of model parameters,
measurement channels and/or data samples is high, this step can be problematic on
standard computers, mainly because of lack of memory. In order to cope with this issue,
it is possible to perform the computation in several batches and iteratively update
the gradient vector and the Hessian matrix. This method is explained in details in
Appendix A.2.

3.1.3 Computation of the modal parameters

At the end of the optimization of the parameters of the model, it remains to compute
the modal parameters of the system. This is done by a series of eigenvalue decom-
position of the state transition matrix F [t] in (3.16)-(3.17) which corresponds to the
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companion matrix of the autoregressive matrix polynomial. These decompositions are
representative of the instantaneous dynamics of the system at time t following the same
frozen-time approach. The obtained parameters are a first approximation of those of
the actual time-varying system under the same assumption of a slowly-varying system.
In [96], Liu gives the justification of the computation of its pseudo-modal parameters
based on the decomposition of the instantaneous state transition matrix. Let’s assume
that F c(t) is the state transition matrix of the time-varying system in the continuous-
time domain. Its transformation to the discrete-time domain is given by

F [t] = I + F c(t) τ (3.30)

+ 1
2
[
F c(t)2 + Ḟ c(t)

]
τ 2 (3.31)

+ 1
3!
[
F c(t)3 + F c(t)Ḟ c(t) + 2Ḟ c(t) + F̈ c(t)

]
τ 3 (3.32)

+ · · · (3.33)
in which τ is the sampling time. The true discrete state matrix is then dependent
of the rate of variation of the dynamic system. However, if its rate of variation can
be neglected, we recover the classical approximate of the matrix exponential form
computed at the instantaneous configuration of the system:

F [t] ≈ I + F c(t) τ + 1
2 F c(t)2 τ 2 + 1

3! F c(t)3 τ 3 + · · · = exp [F c(t) τ ] . (3.34)

The successive eigenvalue decompositions of the F matrices lead to a series of
eigenvalues µr which are the discrete-time frozen poles of the system and are related
to the poles of the system λr by

µr[t] = eλr[t] τ . (3.35)
The d first components of the corresponding eigenvectors give the mode shapes of the
system.

3.2 Experimental identification with the multivari-
ate time-varying ARMA model

This section presents the application of the multivariate time-varying ARMAV model-
ing for the identification of the varying beam-mass structure. The procedure followed
for the identification is similar to the one presented in the previous chapter, i.e. a first
batch of fast identifications by the 2SLS method in order to identify good model can-
didates followed by the application of the nonlinear optimization method on a reduced
set of candidates for better identification results.

3.2.1 Selection of the model structure with the 2SLS method

Just as in the scalar model, a large family of model structure candidates are tested
in order to locate the best combination of AR and MA orders as well as the best
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sizes of their basis of functions. To this goal, the autoregressive order is tested from
order 2, which is the minimum value given by the theory, up to an overestimated order
equal to 8. Concerning the size of the bases of functions, Chebychev polynomials up
to the order 7 (8 functions in the basis) are considered. The evaluation of the model
candidates is then performed based on the same citeria as in the previous chapter, i.e.
the FPE, AIC and BIC criteria. The scores obtained by each criteria with respect to
each model structure are given in Figure 3.1. The evolution of each criteria follows the
same kind of behavior as what we obtained with the scalar model. The evolution of
the scores follows a repetition of a pattern which corresponds to a couple of AR and
MA orders. The internal variations inside a pattern are again due to the variation in
the size of the bases of functions. First, concerning the AR and MA orders, model
structures ARMAV(3,2) and ARMAV(3,3) seem to be good candidates. ARMAV(4,3)
and ARMAV(4,4) structures may also be considered but at the price of a higher model
complexity.

In order to refine the choice of the model structure, the RSS/SSS criteria is used as
done in the previous chapter to clarify the selection of the model orders but also the
size of the bases of functions. This criteria is plotted in Figure 3.2 with respect with
each of the tunable parameters of the model structure. First, a confirmation about
the model order may be obtained, the third order in each of the AR and MA parts
brings a large decrease in the criterion. Any subsequent refinement of these parameters
does not bring any significant improvement and the ARMA(3,3) family seems to be
the best one at first sight. However, things are not so easy for the selection of the
number of basis functions for each part of the model. Concerning the scalar model, a
drop in median value and spread of the RSS/SSS score was observed and it indicated
a good choice for the selections of the sizes of each basis of functions. Facing that
difficulty in the selection of proper sizes for the bases, it is chosen to perform a second
selection based on a reduced set of candidates identified this time with the nonlinear
optimization approach.

3.2.2 Refined identification with the nonlinear optimization

Based on the information obtained with the 2SLS batch identification and the repre-
sentation of their scores for each selection criteria, it is observed that the model orders
(3,2), (3,3), (4,3) and (4,4) may be suitable candidates model structures. In order to
select the proper size of each basis of functions, these only four couples of model orders
are considered in a second run of identifications. The preselected number of functions
to test are here chosen from 6 to 9 for the AR part. The number of functions to model
the MA part of the model is iterated from 1 to the current number of functions used to
represents the AR part. This selection process is obviously far slower that the previous
one based on the 2SLS estimation but we hope that it could bring better information
regarding the structure selection purpose.

Once all the calculations are performed, the new scores obtained by each model
candidate are saved and plotted in Figure 3.3. Once again, The FPE and AIC criteria
bring similar results and the BIC criterion is more strict than the other two. Among
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(b) AIC scores for the large batch of model candidates.
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(c) BIC scores for the large batch of model candidates.

Figure 3.1: Good model structures candidates are selected based on the values of the
FPE, AIC and BIC criterion. Chebyshev polynomials are used as basis functions.
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Figure 3.2: RSS/SSS values with respect to each of the model structure parameter of
the ARMAV model.
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Model index dM na nb nfa nfb

38 1323 3 3 7 2
45 1470 3 3 8 2
52 1470 3 3 9 1
53 1617 3 3 9 2

Table 3.1: Refined set of possible model structures candidates.

all that results, models with minimum values in each criteria are listed in Table 3.1.
The latter few candidates are then tested and the retained one for this identification is
the ARMAV(3,3)[9,1] model. This choice is driven by the wish to restrain as much as
possible the number of parameters but the ARMAV(3,3)[9,1] model describes a little
bit better the lower frequency mode than the ARMAV(3,3)[7,2] and ARMAV(3,3)[8,2]
models for similar values in the selection parameters.

3.2.3 Identified results

Discrimination between physical and spurious modes

Once the model orders are fixed, the difficulty is to deal with the number of calculated
poles and mode shapes. Indeed, the multivariate ARMA model leads to a number of
poles increasing linearly with both the model order na of the AR part and the number
of measurements d (the dimension of the companion, or state trasition, matrix (3.17)
is na d× na d). The dimension of the companion matrix may grow rapidly and exceed
the actual number of excited modes in the frequency range of interest. Because of
that, a huge number of spurious poles are calculated besides the physical ones. A
discrimination should then be performed in order to get clear results. The situation is
similar as the one encountered with the scalar modeling in the previous chapter; the
idea followed here is to retain a number M of modes that looks the more physical among
all the modes. The subset selection of physical modes based on the radial distribution
of the poles in the complex plane as in Section 2.3.3 may of course be applied. However,
in this case we also have another information that can be exploited which is the time-
varying mode shapes. The mode shapes may also serve for discrimination purposes
between physical and spurious modes. Indeed, the physical modes of a real mechanical
structure usually appear well aligned in the complex plane conversely to the spurious
ones that exhibit a large dispersion. One way to quantify the aligned or scattered
behavior of a mode is to compute its mean phase (MP) and its mean phase deviation
(MPD) which can be seen as the variance of the phase from the mean phase. Obviously,
the ideal value of the MPD for a physical mode is close to 0◦. In the identification
process, we will then retain only the M modes with the lowest time-averaged MPD.
Note that if we do not know the actual number of physical modes, an automatic
clustering process could be applied to distinguish the modes with a MPD close to zero
from the others. Of course, both the radial distribution of the poles and the MPD
may be used at once in the selection process. This kind of process is applied in [102]
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(b) AIC scores for the large batch of model candidates.
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(c) BIC scores for the large batch of model candidates.

Figure 3.3: Good model structures candidates are selected based on the values of the
FPE, AIC and BIC criterion. Chebyshev polynomials are used as basis functions. The
blue ellipsoids indicate well suited candidates.
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Figure 3.4: Illustrative example of the mode phase dispersion in the complex plane.
(a) is a physical mode and (b) is classified as a spurious.

by Reynders et al. in an attempt to automatize the selection of the physical poles in
modal analysis. In Figure 3.4, an example of a physical mode 3.4(a) and a spurious
mode 3.4(b) is shown. The mean phase for each mode is drawn together with their
mean phase deviation.

The identification model based on the selection process is then applied to provide an
estimate of the time-varying poles and mode shapes. The obtained results are shown in
Figure 3.5(a) in which the discrimination process between physical and spurious mode
based on the MPD criterion is already applied. Note that the method employed in
the previous chapter for the selection of the physical poles give the same physical and
spurious sets of modes. As an illustration of the selection process, Figures 3.6 and 3.7
show the varying physical and spurious modes at a snapshot at t = 10 s.

The time-varying physical modes shown in Figure 3.6 represent somehow classical
deflections for a doubly supported beam. The location of the moving mass may also be
visually located because of the decrease in deflection of the mode shapes close to the
second and third nodes with respect to their symmetric amplitude on the other side of
the beam. The Argand plots showing the mode shapes in the complex plane describe
well aligned complex deflections in phase or antiphase. It should also be noted that
the damping ratio of the fifth physical mode is negative. This kind of value may be
observed at some moments in time-varying systems without implying the instability
of the whole system. Such negative damping was also observed on the bridge-like
structure studied in [5]. This occurs at moments when the amplitude of vibration of
the nonstationary responses show an increase in their amplitude.

Concerning the identified modes which are classified as spurious ones, two kinds of
behaviors are shown in Figure 3.7. First, the first and the two last modes exhibit purely
real deflections. This real-valued shapes are clues indicating they are not physical
modes. The first one exhibits a damping ratio of 100% related to a real pole. The
two last modes are related to complex poles, however, their respective values do not
appear in complex-conjugated pairs which is also a useful information to eliminate
them. Finally, it is easily seen that the MPD of the other modes is larger than the one
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(a) Idendified time-varying modes.

(b) Time-frequency representation of the residuals after the identification (channel 2).

Figure 3.5: Identified time-varying modes. The selection between physical (black) and
spurious (gray) modes is performed using the MPD criterion.
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f1[10] = 8.95 Hz f2[10] = 27.39 Hz f3[10] = 39.42 Hz f4[10] = 48.60 Hz f5[10] = 93.87 Hz
ζ1[10] = 5.32 % ζ2[10] = 1.35 % ζ3[10] = 0.037 % ζ4[10] = 2.25 % ζ5[10] = −0.21 %

Figure 3.6: Snapshots of the five physical modes at t = 10 s with their shape, Argand
representation and frequency and damping ratio information.

for the modes selected as physical.

3.3 State-space model in the modal space

3.3.1 State-space modeling

Besides to the multivariate ARMA modeling, State-Space models are also investigated
in this study for the application in the tracking of the time-varying modal properties
of time-varying mechanical systems. The same assumptions as previously made are
followed, i.e. the systems slowly vary with respect to their dynamics in order to cope
with the frozen-time approach, and the parameters of the model may be properly
described through a projection in a series of basis functions.

The particularity we follow here in the modeling is to recast the model equation in
the modal domain. This way to model the system provides very attractive properties.
First, concerning the parameters to identify, being in a modal description of the model
directly brings a physical meaning of each parameters. Indeed, in that way, the poles
and the components of the mode shapes appear directly in the structure of the model
and eigenvalue decompositions for each time step are no more required as it is the case
with the multivariate ARMA modeling. Second, the identification of the parameters in
the optimization process may be facilitated because the values of the parameters may
be more concentrated. The time-varying parameters describing the poles should be
inside or closely outside the unit circle. This means that their real and imaginary parts
lie inside or closely outside the [−1; 1] interval. It is also true for the mode shapes if
their initial guess is unit-normalized for example.

The state-space representation of a system is a very common representation used in
many fields such as control or model identification for example. In the present case we
will deal with only external measurements on the structure, the input force is recorded
by the acquisition system, but not used as input of the method to show that it can be
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f [10] = 2.87 Hz f [10] = 21.10 Hz f [10] = 84.05 Hz f [10] = 142.12 Hz
ζ[10] = 100 % ζ[10] = 97.83 % ζ[10] = 18.35 % ζ[10] = 42.55 %

f [10] = 146.54 Hz f [10] = 160.01 Hz f [10] = 160.35 Hz
ζ[10] = 24.86 % ζ[10] = −0.94 % ζ[10] = 6.56 %

Figure 3.7: Snapshots of seven spurious modes at t = 10 s with their shape, Argand
representation and frequency and damping ratio information.

used in output only conditions. It is then not included in the state-space equations. In
this case, the classical way to represent a system in a state-space form is composed of
two equations, the state equation and the output equation:

 x[t+ 1] = F [t]x[t] +K[t] e[t]
y[t] = C[t]x[t] + e[t]

(3.36)

in which

• F is the state-transition matrix,

• x is the state vector,

• y is the output vector (gathering the experimental measurements),

• e is the innovation vector, and

• K is the Kalman gain matrix.

It is also pointed out by Ljung in [58] that the modeling of time-varying systems
may be performed by letting the matrices of the model vary with time.

Let us note that there are many ways to represent the same system in a state-
space form. If all the matrices in (3.36) are fully populated, one speaks about a
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fully parameterized form. The way to write the ARMAV model in (3.16) is one of
the canonical forms of the state-space model. It has the advantage to be the more
economical in parameters for equivalent models. Finally, the structure which interests
us here is a tridiagonal form, in which the matrix F has non-zero components only on
its three main diagonals. A short comparison between these different forms is given
in [103] for example and summarized in Table 3.2 for a multivariate time-invariant
case for illustrative purpose. The time-variant counterpart using the basis functions
approach is simply obtained by multiplying each of the component by its number of
projection coefficients of the functions which are considered in the model.

Parameterization F C K dM

Full n2 dn dn n2 + 2dn
Canonical dn 0 dn 2dn

Tridiagonal 3n− 2 dn dn 3n+ 2dn− 2

Table 3.2: Model structure complexity of each form of parameterization of the state-
space model. n the order of the state-space model, d the dimension of the response
vector and dM the model complexity.

The model shown in (3.36) is called an innovation form because of the presence in
the model of the innovation vector, e, that contains all the information that cannot be
predicted by the model using the past data. It is similar to the moving-average part in
the ARMA modeling that takes into account this innovation in the model. The use of
the innovation is a convenient way to write the model instead of introducing process
and measurement noises in the state-space equations. It should also be noted that
there are also many ways to represent this system using similarity transformations.

Practically, a special case of similarity transformation is to transform any state-
space form into a modal form which has the property to have a diagonal state-transition
matrix. In order to perform this transformation an eigenvalues/eigenvectors decompo-
sition of the state transition matrix F is required. The matrices of the system are then
transformed by projections with the such obtained eigenvectors:

F [t] = V [t]A[t]V −1[t]. (3.37)

The model (3.36) can be transformed into the following one η[t+ 1] = A[t]η[t] + Ψ[t] e[t]
y[t] = Φ[t]η[t] + e[t]

(3.38)

with

η[t] = V −1[t]x[t], (3.39)
A[t] = V −1[t]F [t]V [t], (3.40)
Φ[t] = C[t]V [t], (3.41)
Ψ[t] = V −1[t]K[t]. (3.42)
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With that model, we get some physical interpretation of the new parameters which
can be related to theoretical modal analysis. Indeed, the A matrix is now a diago-
nal one gathering the discrete poles of the system and the Φ matrix its mode shapes.
Both appear in complex conjugated pairs. The η vector corresponds to the modal
coordinates and the output equation of (3.38) is no more than the modal expansion
of the response of the system which is an important concept in linear modal analysis.
This kind of modal representation of the system was already used by Brincker and
Andersen in [104]. Their motivation to apply a series of ARMA to modal state-space
model transformations is to reduce their number of optimization parameters in their
algorithm. It can be surprising with respect to the observation done about the com-
parison of different kinds of parameterizations (Table 3.2), but in their method, they
only focus on a reduced subset of modal parameters of interest in the optimization
procedure.

In the following, we use a similar parameterization with a slight difference. The
model (3.38) is made up with complex conjugated values for the poles and modes
shapes. In order to avoid treating such complex values, separating the real and imag-
inary parts of each parameter offers the possibility to work with only real-valued pa-
rameters. This does not change anything to the modal decoupling of the model but
slightly change the model matrices.

Matrix A is not purely diagonal anymore but is now a block-diagonal matrix (the
tridiagonal form cited above):

A[t] =


A1[t]

A2[t]
. . .

An[t]

 (3.43)

in which each block is formed as follows

Ai[t] =
 ai[t] bi[t]
−bi[t] ai[t]

 . (3.44)

The ai and bi represent the real and imaginary parts of the ith pole, respectively. The
left and right mode shapes in Φ and Ψ are also constructed with couples of their real
and imaginary parts of each mode instead of complex conjugated pairs. This kind of
representation is explained in details in [105] for example.

3.3.2 Identification of the state-space model parameters

The identification of the model parameters is based on the same procedure as before,
i.e. the minimization of the prediction error (PE). This prediction error is iteratively
minimized by the same nonlinear optimization algorithm as used previously. If we
denote by a hat (ˆ) the estimates of the model (the output estimate ŷ[t] and the state
estimate η̂[t]) we have
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 η̂[t+ 1,θ] = A[t] η̂[t,θ] + Ψ[t] (y[t]− ŷ[t,θ])
ŷ[t,θ] = Φ[t] η̂[t,θ]

, (3.45)

or equivalently  η̂[t+ 1,θ] = (A[t]−Ψ[t]Φ[t]) η̂[t,θ] + Ψ[t]y[t]
ŷ[t,θ] = Φ[t] η̂[t,θ]

. (3.46)

The error to be minimized is the difference between the measured and predicted
output:

e[t,θ] = y[t]− ŷ[t,θ] (3.47)
and it is minimized in a least squares sense, using the following cost function

V (θ) = 1
2N

N∑
t=1
e[t,θ]Te[t,θ]. (3.48)

The nonlinear optimization scheme described in Section 3.1 is still valid. The only
difference in this case lies in the different parameterization of the state-space model.
This only has an influence on the computation of the gradients of the cost function
with respect to the model parameters. This computation implies the derivative of the
prediction error with respect to the parameters and it is still given by

d e[t,θ]
dθi

= −d ŷ[t,θ]
dθi

. (3.49)

The latter operation has to be performed for each of the parameters in the model in
order to populate the Jacobian matrix of the optimization scheme. All the derivatives
can be analytically computed as the realization of other state-space models. In fact,
introducing first a new variable ẑ[t] = ∂η̂[t,θ]

∂θi
and considering (3.46), we have the

following cases

• If θi belongs to the A matrix :
ẑ[t+ 1] = (A[t]−Ψ[t]Φ[t]) ẑ[t] +Ek,l[t] η̂[t,θ]
∂ŷ[t,θ]
∂θi

= Φ[t] ẑ[t]
, (3.50)

• If θi belongs to the Φ matrix :
ẑ[t+ 1] = (A[t]−Ψ[t]Φ[t]) ẑ[t]−Ψ[t]Ek,l[t] η̂[t,θ]
∂ŷ[t,θ]
∂θi

= Φ[t] ẑ[t] +Ek,l[t] η̂[t,θ]
, (3.51)

• If θi belongs to the Ψ matrix :
ẑ[t+ 1] = (A[t]−Ψ[t]Φ[t]) ẑ[t]−Ek,l[t]Φ[t] η̂[t,θ] +Ek,l[t]y[t]
∂ŷ[t,θ]
∂θi

= Φ[t] ẑ[t]
,

(3.52)
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where Ek,l[t] is a single entry matrix of appropriate dimension in which all components
are null but one. This value represents the value of the basis function corresponding
to the θi parameter evaluated at time t.

Direct advantage of the modal domain parameterization

One point we have to deal with in the optimization problem is its complexity i.e.
the number of parameters involved in the identification process. It is well known in
non-convex optimization with the Levenberg-Marquardt (and the Newton familly algo-
rithms) that the greater the number of parameters, the greater is the risk to converge
to a local minimum. To tackle this problem, a graduated optimization strategy may
be investigated. It means that the initial (very-) complex problem is decomposed in a
series of simpler optimization problems. An illustration of this way to solve the prob-
lem is shown in Figure 3.8. This method can be used in our case because of the chosen
parameterization for the identification. Indeed, our parameterization corresponding to
the modal decomposition, it is possible to identify one or few modes at a time and
retrieve their contribution to the response before continuing with the identification of
one or few other modes. Of course, it is better to begin by the modes having the
greater influence in the response because the optimization algorithms tries to minimize
the residual. This way to proceed may be advantageous on more complex structures.

Figure 3.8: Illustration of the path to the solution by graduated optimization.

3.4 Experimental identification with the multivari-
ate time-varying state-space model

3.4.1 Identification of a good model structure

In the present case, the identification of the time-varying structure is slightly different
as previously done with the ARMA(V) models. Let us remind that in the preceding
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sections and chapter, a first batch analysis using a fast 2SLS method was used to
identify good possible model candidates. A more detailed analysis was then performed
by nonlinear optimization on a reduced set of promising model candidates. The goal
was to properly choose AR and MA orders and good bases dimensions. In the present
case, no variation of the model order is performed, it is directly fixed to five because only
five modes are identified in the frequency band of interest. Of course, fixing the order
of the model in the ARMA models is also possible, but we saw that an overestimation
of the order was required to get identified results of good quality. In the present state-
space model, the order is fixed a priori and the only degrees-of-freedom in the model
structure will be the number (and type) of the basis functions. It is chosen here to take
the same number of functions for all the parameters in the model. A second difference
is that, conversely to the ARMA models that could be initiated by other longer AR
models, the state-space model requires an external initial guess to start properly. It
is chosen here to start with the results of the LTI analysis performed without the
moving mass (Section 1.5.1). If such results are not available, a simple analysis with
any modal identification method applied on a short time window of the data may be
suitable too. This starting guess is then placed in the vector of parameters at the place
corresponding to the first function (generally a unit function). It will acts as the “mean
value” of the vector of the model parameters. The other parameters are set to zero
and will be updated in the subsequent optimization. Of course, if the first function is
not a unitary one, for example if a basis of splines is chosen, the parameters have to
be projected on the whole basis to form the average constant starting value.

A series of identification is then performed by iterating on the number of functions
in the basis up to 15 functions. Chebyshev polynomials are again considered for consis-
tency purpose between the results obtained with the other methods. Because only one
parameter tunes the structure of the identification model, the plots of the FPE, AIC
and BIC scores is far easily readable than in the previous cases. Each of these three
scores is shown in Figure 3.9. Analyzing this figure indicates that nine polynomials in
the basis of functions is the best choice for the identification. The identification is then
performed using these basis functions and the results of the LTI analysis as starting
point.

The result of the identification with the selected model structure is shown in Figure
3.10. It is also interesting to show the particular advantage brought by the modal
modeling. Because the state-space model is written in a modal superposition way, it
is possible to decompose the identification mode by mode. Indeed, the states of the
model representing the modal coordinates, their product with their respective mode
shape enables to study the influence of each mode on the total response separately.
This is illustred in Figure 3.11 in which the modal response of each mode is plotted
separately for the second measurement channel.
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(a) FPE scores for the batch of model candidates.
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(b) AIC scores for the batch of model candidates.
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(c) BIC scores for the batch of model candidates.

Figure 3.9: FPE, AIC and BIC criteria with respect to the number of Chebyshev
polynomials.
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Figure 3.10: Identified results with 9 Chebyshev polynomials.

3.5 Comparison between both multivariate model-
ings

A fast comparison of the results may be drawn between both the time-varying ARMAV
and state-space models. First, as it can be seen in Figure 3.12, the correspondence in
frequencies between both the models is quite close. Further, they also lie close the
the resonance frequencies that appear on the wavelet plot in the background. Then,
concerning the identification of the mode shapes, Figures 3.13 and 3.14 compare the
two sets of varying modes obtained by each method. The time-varying MAC being
most of the time close to one, it can be concluded that the mode shapes extracted with
each method correspond quite well.

A second comparison about the practical use of the methods may also be done.
First, concerning the complexity of both identification model structures, the TV-
ARMAV(3,3)[9,1] model contains 1323 parameters to identify against 1350 for the
time-varying state-space model in the modal domain. These values are quite close.
In theory, the theoretical ARMAV model orders should be [2,2] but as seen earlier,
some overparameterization was required to properly identify the system. The over-
parameterization of the model also brings an undesirable consequence by introducing
spurious poles in the results. It seems that the state-space modeling is less impacted
by the overparameterization issue because the true order, ten for the identification of
the five modes, is used with success. The selection of a good model structure is also
a challenge. Even if a strategy based on fast 2SLE identifications is applied with the
ARMAV model, the fact that four parameters (the two model orders and the two sizes
of the basis of functions) increases the complexity of this task. The model order of the
state-space model being fixed a priori, only iterations about the number of basis func-
tions are required. Concerning the starting of the identification process, the advantage
goes to the ARMAV model because it can be initiated in a least square sense using a
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Figure 3.11: The modal contribution of each mode is a direct product of the modal
domain state-space identification. Time-frequency representations of the five modal
contributions of the second channel are shown.
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Figure 3.12: Comparison in frequency between the two kinds of models.

first AR model. The state-space model requires a good initial guess. If no information
about the system is known, it can already be initiated through an approximate LTI
identification on a more or less short time window.

3.6 Concluding remarks

In this chapter, two types of multivariate modelings are implemented for identification
purposes in nonstationary conditions. The two methods are applied on the same data
set as the one used in the two preceding chapters. It is shown here that the method
of the basis functions can be applied on multivariate identification models in order to
get a full set of time-varying parameters, the mode shapes included. The two methods
considered here for the identification are able to correctly extract the varying modal
parameters of the structure and the results with both methods show a good correlation.
The challenges with each method are the model structure selection of the time-varying
ARMAV model and the way to select the results corresponding to the physical modes
from the spurious ones which are introduced by the overparameterization of the model.
On the other hand, the structure of the time-varying modal state-space model is simpler
to choose. However, conversely to the ARMAV model, it requires a good initial guess
which has to be provided from another analysis.
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Figure 3.13: Comparison in mode shapes between the two kinds of models with the
full TV MAC matrix.
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Figure 3.14: Comparison in mode shapes between only the paired modes.
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4
Extended applications

In the preceding chapters, several methods able to perform the modal identification of
structures which exhibit a time-dependency were introduced. The aim of this chapter
is first to test the previous methods, especially the multivariate ones, when complexity
is increased. Practically, the experimental setup is extended to twelve sensors placed at
the edges of the beam and the considered frequency band is increased up to 200 Hz. The
latter modifications render the problem more complex. Indeed, the extended frequency
band and the new placement of the sensors brings new modes in the identification
process. The upgrade to 200 Hz adds a new bending mode and the fact that the
sensors are placed on the edges of the beam make the torsion and rotation modes to
be visible.

A second point which is addressed is the knowledge of the varying parameter.
In the present problem, another way to treat the problem could be to consider a
parameterically-varying behavior. In our example it is the position of the moving mass
which influence the dynamics of the primary structure even if this parameter is itself
time-dependent. In the experiment, the position of the moving mass is monitored with
a laser sensor and this information is used for monitoring purposes.

The chapter is divided as follows. First, a LTI identification is performed in order
to understand the dynamics of the newly added modes. The identification is then
performed in time-varying conditions to perform the same analysis as in the previous
chapter. Next, because the methods developed here provide some information about
the varying mode shapes of the structure, it is shown how they can be useful for
monitoring purposes by trying to recover the time-varying position of the mass. Finally,
another example of application with a direct use of the information of the position of
the mass is presented.
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4.1 LTI modal identification of the extended exper-
imental setup

The same structure, the beam and its moving mass, is considered here but the frequency
band is extended from 120 to 200 Hz and the number of sensors is increased from 7 to
12. Two sensors are placed at both ends in front of the springs and five pairs of sensors
are located on each side of the beam in order to be able to detect bending as well as
torsion modes. A schematic model of the measurement setup is shown in Figure 4.1.
For all the tests, the system is randomly excited using a shaker at coordinate 3 (Figure
4.1(b)).

(a) Experimental beam.

(b) Experimental measurement map.

Figure 4.1: Scheme of the excitation and recording coordinates.

The LTI analysis is performed in the same way as described in Chapter 1. The
structure is randomly excited and modal analysis is performed using the frequency
domain PolyMAX method. The obtained stabilization diagram is shown in Figure 4.2.
The frequency, damping ratio and mode shape corresponding to each of the selected
physical poles are listed and depicted in Table 4.1 and Figure 4.3, respectively. In these
results, the bending modes identified previously are recovered. A new bending mode
appears and two additional rotation and torsion modes are now also visible. It should
be noted that a slight difference appears in the frequencies of the bending modes with
respect to the previous results. It was observed that the setup is sensitive to small
modifications at the supporting springs and they were moved between the two set of
experiments. It should also be observed that the torsion modes have a larger damping
ratio than the bending ones.
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Figure 4.2: Stabilization diagram of the beam subsystem. The selected poles are appear
as bold black s.

Mode # fr [Hz] ζr [%]
1 9.86 0.32
2 30.12 0.52
3 38.6 0.65
4 53.14 0.28
5 62.17 1.57
6 99.70 0.28
7 131.57 2.039
8 168.60 0.99

Table 4.1: Frequencies and damping ratio’s up to 200 Hz in the linear time invariant
case.

117



(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4

(e) Mode 5 (f) Mode 6 (g) Mode 7 (h) Mode 8

Figure 4.3: Complete set of mode shapes up to 200 Hz in the linear time invariant case.

4.2 Simple finite element model of the structure

In this section, a numerical model (a beam finite element model) is constructed and
will serve later for monitoring purposes. The model consists in an assembly of Euler-
Bernoulli beam elements. At both ends, the supports are modeled by stiffness elements
and lumped masses. The updated finite element model has the following properties:

• Euler-Bernoulli beam finite elements:

– Young’s modulus: E = 65 GPa
– Density: ρ = 2695 kg/m3

– Poisson’s ratio: ν = 0.33

• Stiffness elements

– Stiffness in the vertical direction: kz = 1.68 105 N/m
– Stiffness in the lateral direction: ky = 5.83 104 N/m
– Stiffness in rotation about the beam axis: kθx = 1555.79 Nm/rad
– Mass element in vertical translation : mz = 2.93 kg
– Mass element in vertical translation : my = 2.72 kg
– Inertia element in rotation : Jx = 7.5 10−3 kg.m2

The correlation between the experimental and the finite element results is illustrated
in Figure 4.4 by a MAC matrix.

118



Figure 4.4: MAC matrix between the identified LTI structure and its basic finite ele-
ment model.

4.3 Identification in time-varying conditions

For this test, the random excitation is turned on and the mass is pulled by hand using
a simple wire while its current displacement is recorded by a laser position sensor. The
acquisition time is around 50 seconds but only the time sequence when the mass is
moving from the left to the right end of the beam is kept. The data is recorded for 42
seconds at a sampling rate of 400 Hz for each channel. The output of the laser sensor
corresponds to a linearly increasing voltage from 0 V (when the mass is located at the
left end of the beam) to 10 V (when the mass reaches the right end). For illustration,
the displacement of the mass with respect to time during the experiment is plotted
on top of Figure 4.5. The evolution of the frequencies of the system with respect to
time (or with respect to the position of the mass) is also shown in this figure with the
wavelet transform of the third channel as reference. The observation that can be drawn
are similar to the case when sensors are placed only on the neutral axis of the beam.
The time-varying resonance frequencies oscillate between upper and lower bounds and
the upper ones are the frequencies of the beam without the moving mass.

4.3.1 Identification with the time-varying ARMAV model

The identification with the time-varying ARMAV model starts in the same way as what
was done in the previous chapter. The process begins with a series of identifications
using several models in order to identify good model candidates. This time, in order to
save computation time, only equal AR and MA orders are considered in the loop. The
FPE, AIC and BIC scores obtained by the 2SLS identifications of models with equal
AR and MA orders going from 2 to 8 (and up to 13 functions) are plotted in Figure 4.6.
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Figure 4.5: Time-frequency representation of the time-varying response in the third
channel. The relative position of the center of the mass is plotted on the top.

Before going further, we can notice that the FPE criterion encounters negative values
for some test cases. This is the illustration of one drawback of the multivariate ARMA
modeling. Looking to the way the FPE criteria is computed, a negative value means
that the number of coefficients to identify is greater than the number of data samples.
In these configurations, the result of the identification should directly be rejected. It
occurs here for the higher orders and sizes of the basis of functions. This huge increase
in the number of parameters is also amplified by the higher dimensionality of the vector
of measurements because each block in the model is proportional to the square of this
dimension. As a rule of thumb, Niedźwiecki suggests that the number of parameters to
identify should be less than 20% of the number of observations [61]. This high number
of parameters should then be carefully analyzed when dealing with large problems.

As in the previous chapter, the selection of a good model candidate is not straight-
forward. As previously observed, the BIC criterion penalizes more the model complex-
ity compared to the AIC one. In Figure 4.6, it can be observed that a good candidate
may lie in the first block of identification scores related to the ARMAV(2,2) family but
that few models in the second block of ARMAV(3,3) models may also be suitable. The
AIC criteria in Figure 4.6(b) targets model in the (3,3) or (4,4) family, which are far
more complex. The RSS/SSS criteria (Figure 4.7) does not give any additional clue on
the best model candidate.

One of the best model candidates is the time-varying ARMAV(2,2)[8,1] model. The
results of the identification performed with the latter model are shown in Figure 4.8(a).
At first sight, most of the modes are identified by the identification model but some
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(a) FPE scores for the large batch of model candidates.
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(b) AIC scores for the large batch of model candidates.
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(c) BIC scores for the large batch of model candidates.

Figure 4.6: FPE, AIC and BIC criteria for the extended test setup. Chebyshev poly-
nomials are used as basis functions.
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Figure 4.7: RSS/SSS values with respect to each of the model structure parameter for
the extended test setup.
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(a) First set of identified modes.

(b) Zoom around the crossing modes.

Figure 4.8: Identified results with the TV-ARMAV(2,2)[8,1]. Black physical modes,
gray: spurious modes.

inaccuracies appear. The first one is that the mode at the lowest frequency is not
identified by the model. As previously observed, some overparameterization will be
required in order to get it. Second, the crossings between the fourth and fifth modes is
not perfectly identified as illustrated in the zoom of Figure 4.8(b). The first crossing
around 16 seconds is well caught but the second one, close to 27 seconds, not. It means
that, even if the modes are identified all along the time axis, there is a switching in the
middle of these two mode lines.

In all the set of possible good candidates, no one performs completely the identifi-
cation of all the modes present in the frequency band. The strategy is then to combine
the results of several model structures in order to get the best trajectory for each mode.
Of course, in this way, we loose the uniqueness of the model, which makes impossible
its direct use for simulation purposes for example. The combination of three model
structures enables the identification of the full set of modes involved in the whole re-
sponse. In Figure 4.9, the combination of ARMAV models (2,2)[8,1], (2,2)[11,2] and
(6,6)[11,6] are able to represent the eight physical varying modes. The most difficult
to catch is the first mode close to 10 Hz because it requires a drastic overparameteri-
zation of the model order up to six to be identified. With such a model, the number
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Figure 4.9: Combination of three model structures for the full identification.

of identified poles increases up to 72 and the number of parameters to identify is far
more than the suggested 20 % of the number of data points. The drawback with such
heavy models is that the identification with the nonlinear optimization process rapidly
becomes impractical, even if the cutting procedure for the computation of the Jacobian
matrix is used.

4.3.2 Identification with the time-varying state-space model

The same problem is now solved using the modal state-space identification model. As
an initial guess, the method is started with the results of the LTI identification of the
reference beam.

The problem is now more complex because of the increase of the number of pa-
rameters in the identification model. In order to make the work of the optimization
scheme easier, the whole problem is cut in several pieces by considering few modes in
the model. The vector of parameters is then upgraded with the other modes. The full
convergence is not necessary, few iterations may be sufficient in order to have a better
initial guess for the subsequent identifications. The identification is first started with
modes 2, 4 and 6 which are the mainly excited bending modes. After few iterations,
the vector of parameters is then upgraded with the initial guess of the first and third
modes. In a final step, all the remaining modes are introduced in the identification
scheme. The result is presented in Figure 4.10 which illustrates the different steps of
the process. Twelve Chebyshev polynomials are used in this identification which gives
the best results.
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(a) Time-varying frequencies (modes 2, 4, 6).

(b) Time-varying frequencies (modes 1, 2, 3, 4, 6).

(c) Time-varying frequencies (all modes).

(d) Residual in the third channel.

Figure 4.10: Results of the time-varying identification of the extended setup with the
state space model.
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4.4 Application for monitoring purposes

In this section, it is shown how the identified time-varying mode shapes may be used
for tracking of structural changes. To this end, tools initially developed for error
localization can be used. Model updating methods can be used to detect and locate
errors or damages between numerical and experimental data [106] but they usually
require the knowledge of the structural matrices obtained from a finite element model
of the structure. At first glance, it is however possible to use the Coordinate Modal
Assurance Criterion (COMAC) [107, 48] or its enhanced version (eCOMAC) [108]
which are tools able to correlate the coordinates between two sets of modes. In what
follows, we compare the set of experimental data of the time invariant system (beam
and supports only) presented in Section 4.1 and the results of the corresponding finite
element model presented in Section 4.2.

4.4.1 Mass tracking using only experimental results

The COMAC criterion is a vector containing as many coefficients as the number of
degrees-of-freedom contained in the mode shapes. It is computed as follows:

COMAC(i) =
∑Nm
j=1 |Xj(i)−Zj(i)|2∑Nm

j=1Xj(i)2∑Nm
j=1Zj(i)2

(4.1)

in which X and Z are two matrices containing two sets of corresponding mode shapes
(for example from numerical and experimental analyses) and Nm is the number of
modes used for the correlation. In the same way, the eCOMAC equation is given as:

eCOMAC(i) =
∑Nm
j=1 |Xj(i)−Zj(i)|

2Nm

(4.2)

Let us note that for the eCOMAC criterion, the two sets of modes have to be unit-
normalized and the modes in each pair have to be in phase.

Having performed a linear time invariant modal analysis of the system before the
introduction of the moving mass, these results can be used as a reference for the
tracking of the structural modification due to the presence of the mass. In Figure
4.11 the sixth mode of the beam in its reference condition (Figure 4.11(a)), the same
mode in the system containing the moving mass identified at t = 10 s, (Figure 4.11(b))
and the COMAC values distributed on the experimental mesh (Figure 4.11(c)). The
sixth mode is used here because of the visual effect of the mass for that mode at that
particular time instant but all the modes could be obviously retained for the criterion
calculation.

The COMAC criterion is calculated at each time step and the scores for each couple
of sensors are averaged to only retain seven values along the beam axis. Because of
the rather rough experimental mesh, a cubic interpolation of the criterion is used
between successive nodes along the beam in order to “smooth” the spatial resolution.
The COMAC values (in reality 1-COMAC because we are looking for a decrease in
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(a) Sixth LTI mode shape. (b) Sixth TV mode shape at t = 10
s.

(c) COMAC distribution at t = 10 s.

Figure 4.11: Comparison between the reference experimental set of modes and the
time-varying identified ones with the COMAC criterion. The gray rectangle represents
the actual (recorded) position of the mass.

nodal correlation) are represented as a colormap in Figure 4.12. In this figure, the
black trajectory represent the measured position of the center of the moving mass for
comparison. We can see that the global motion is caught but the discrepancies between
the measured and estimate positions may be large at some instants but let us recall
the high simplicity of the method which does not need a lot of inputs while giving a
good first approximation of position of the perturbing mass.

4.4.2 Mass tracking using experimental results and a refer-
ence numerical model

A second approach to track the modification of the system with time is to use our
finite element model. As shown previously in Section 4.2, this model well represents
the structure without the moving mass. The advantage of the results from that model
compared to the results of the LTI modal analysis is that the model may be refined. The
problem is how to compare our rough measurement mesh with the refined numerical
one. To do so, expansion methods can be used to expand the measurements results
to the refined numerical mesh. The System Equivalent Reduction Expansion Process
(SEREP) [109] method is used here to expand our results. The aim of the method is
to use a set of analytical modes to expand the experimental ones. First, let us separate
the analytical degrees-of-freedom into two subsets, the m masters DoFs corresponding
to the measured DoFs, and the s slaves DoFs. If Z represents the set of experimental
mode shapes and

X =
 Xm

Xs

 , (4.3)
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Figure 4.12: Estimated position of the mass by the COMAC criterion. The black line
represents the measured position of the mass.

the (smoothed) expanded set of experimental modes is given by

Zexpanded =
 Zm

Zs

 =
 Xm T

Xs T

 , (4.4)

in which the transformation matrix T is computed with the experimental modes and
the pseudoinverse (†) of the analytical modes at the master nodes:

T = X†mZ. (4.5)

A remark should however be drawn here. The FE model is built using beam finite
elements, meaning that the degrees-of-freedom of the model are nodal translation and
rotations whereas in the experimental measurement process, only vertical displacements
are recorded. An additional step is then required to make a good matching between
both set of modes. The operation is to compute the displacements at the both sides of
the beam using the rotation DoFs and the beam width or, conversely, estimating the
rotation angle with both the displacements at each side.

Having our expanded experimental mode shapes, we may now use them in conjunc-
tion with the finite element model (analytical mode shapes and matrices). The method
which is applied here is to analyze the discrepancies in energy for each element in the
model. This method is quite simple and is described in [110]. With the elementary
stiffness and mass matrices, it is possible to compute strain and kinematic energies with
the finite element model. The difference in energies for the jth element is computed as
follows:

EK
j =

Nm∑
i=1

(
X(j) −Z(j)

)T
K(j)

(
X(j) −Z(j)

)
(4.6)

EM
j =

Nm∑
i=1

(
X(j) −Z(j)

)T
M (j)

(
X(j) −Z(j)

)
(4.7)
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in which EK
j and EM

j are the strain and kinematic energy discrepancies, respectively
and X(j), X(j), K(j) and M (j) are the numerical and experimental modes shapes and
the system matrices, each one restricted to the degrees-of-freedom of the jth element.

In the present application of a moving mass on the beam, it is natural to directly
study the dispersion of the difference in kinematic energy on the structure. For il-
lustration purposes, Figure 4.13 represents the sixth FE initial mode shape (Figure
4.13(a)), the sixth TV mode shape and its expansion at t = 10 s (Figures 4.13(b) and
4.13(c)). As in the previous example with the COMAC calculation, the effect of the
mass is directly visible. The computation of the discrepancies in kinematic energy is
represented in Figure 4.13(d) together with the actual position of the mass. A short
gap is visible but it is explained in the following.

(a) Sixth FE mode shape. (b) Sixth TV mode shape
at t = 10 s.

(c) Expanded sixth TV
mode shape at t = 10 s.

(d) Elementary kinematic energy discrepencies.

Figure 4.13: The expansion process of the experimental time-varying modes is illus-
trated to match the finite element mesh.

The moving mass in now tracked all along the time axis. Processing exactly in
the same way as before, the results obtained using the refined mesh are closer to the
actual position of the mass as shown in Figure 4.14. Regarding to this result, the
use of the expansion method increases the tracking precision of the position but it
requires an analytical or numerical (finite elements model) modal basis, which is not
always available. One can also observe two horizontal lines with higher values of the
energy differences. These two lines correspond to elements close to the springs and may
be related to small errors between the numerical model and the experimental results.
Further, the bottom one is also located at the location of the excitation shaker which
is not represented in the model.

4.5 Application with additional information

In this section, we will make use of additional information about the structure under
study. Let us assume that, in addition to the vibration response of the structure,
some other quantities are recorded. This could be environmental conditions such as
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Figure 4.14: Estimation of the position of the mass by the deviation in elementary
kinematic energies.

temperature, wind speed and direction and so on. Working conditions are also valuable
information that may help the varying identification such as current configuration of
the system or angular velocity in rotating machines for example. In our case, the
position of the mass that impacts the dynamics of the system is known thanks to
the laser sensor. It is shown hereafter how this additional information may help the
identification process. Indeed, up to now, we considered the system as time-varying,
meaning that the time was used as driving parameter in the basis functions. However,
the actual parameter that impacts the dynamics of the supported beam is the moving
mass which is itself traveling with time. Knowing its time-varying position, it is possible
to build a new set of functions based on this parameter in order to improve the tracking
ability of the identification algorithms.

As an example, let us consider the following problem with the mass moving as
illustrated in Figure 4.15. Looking at the dynamic response of the system, it is obvious
that the use of functions based on time would require a huge size of the basis in order
to track this kind of dynamic evolution. This would results in a dramatically high
number of parameters to identify and may easily lead to the failure of the identification.
Conversely, linking the functions in the basis to the actual varying parameter is a better
choice because in this way, the system matrices in the identification model are directly
dependent on it, such as it would be the case in a mathematical model of the system.

The time-varying identification of this problem is performed with the time-varying
state-space model in exactly the same way as above. Feeding a basis of twelve Cheby-
shev polynomials with the recorded instantaneous position of the mass leads to the
results shown in Figure 4.16. The identified varying modes are also well identified and
can be used for the same monitoring purposes. Applying the method described in
Section 4.4.2, the position of the mass can be tracked using the discrepancies in the
elementary kinetic energies of the mathematical model. The tracking ability of this
method if shown in Figure 4.17 together with the recorded position of the mass. As
in the previous case, it can be seen that the energy deviations element by element
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Figure 4.15: Experiment with a more complicated moving mass trajectory.

well match with the position of the mass, even in a case in which its motion is more
complex.

Concluding remarks

The purpose of this chapter is to test the ability of the presented identification methods
in more complex situations. In a first time, the time-varying ARMAV and state-space
models were tested on an extended problem with both higher frequency range and
spatial distribution. In these conditions, the task is harder to perform because of the
increase of the number of parameters to be identified. Both the methods were applied
with good identified results at the end. However, the identification with the ARMAV
method was harder and it was not possible to get a single model able to fully identify
the whole response of the system. The modal results obtained with this method were
then selected from different sets of results. The weakness of this approach is that we
do not have a full experimental model that can be used for other applications. The
identification performed with the state-space model worked well, certainly due to the
fact that it is less sensitive to the the need of overparameterization required by the
ARMAV models when a too large frequency band is studied.

It was then shown that the results of the time-varying identification can be used
for condition monitoring purposes. This was applied in two configurations, with and
without the availability of a mathematical model. The method based on the COMAC
and a reference experimental set of results gives coarse approximation of the location
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Figure 4.16: Time-varying frequencies identified with a basis of functions based on the
position of the mass.

Figure 4.17: Tracking of the varying perturbation of the system in the more complex
evolution.
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of the moving mass. The method based on the kinematic energy discrepancies element
by element on a mathematical model is shown to be more accurate. If such a model is
available, it could be used for condition monitoring.

Finally, it was also shown that the time-varying identification may be drastically
improved in complex cases if some additional information on the perturbing parameter
is available. Using this information renders possible the identification of systems that
could not be identified with bases of time functions because of the need of a too high
increase in the basis size. It was also demonstrated that the tracking ability based on
the elementary energies performed well in this condition.
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Conclusion and perspectives

Concluding remarks

This thesis focuses on the development and improvement of current identification meth-
ods of time-varying mechanical systems. The methods can be classified in three cat-
egories: nonparametric, semi-parametric and parametric methods. Each of them was
presented and successfully tested on an experimental time-varying laboratory structure.
The main contribution of the thesis can be summarized as follows:

1. The nonparametric Hilbert Vibration Decomposition method has been extended
to the field of multiple degrees-of-freedom problems using blind source decom-
position techniques. The proposed method was proven to be efficient on small
problems (few excited modes) with well separated natural frequencies. When
tested on the laboratory structure, the method was able to identify the varying
frequencies and mode shapes. A difficulty appeared however for the extraction
of the first mode. This was assumed to be due to the weaker response of this
mode with respect to the rest of the signal. The application of this method was
presented at the 9th EURODYN conference [111].

2. The time-varying ARMA model based on the basis functions approach was intro-
duced with a linking constraint added into the method in order to be able to treat
the information from multiple measurement channels at once. The drawback of
this method is that an overestimation of the AR and MA model orders is re-
quired. For this reason, a simple method to discriminate the physical poles from
the spurious ones has been proposed. The good matching between the identified
frequencies obtained from the nonparametric and the parametric approaches al-
lows to validate the frozen-time approach on which the time-varying parametric
modeling is based on. A simpler version of the method proposed in the present
manuscript (an AR modeling was used) was presented at the ISMA conference
in 2014 [112].
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3. The scalar identification models were extended to their multivariate counterparts.
In this way, it was possible to obtain the complete set of modal parameters in a
parametric manner. Existing multivariate ARMA models were considered here
with a specific focus on the identification of the mode shapes and the selection
of the physical modes. This development was presented at the 34th IMAC con-
ference [113] and published in the Mechanical Systems and Signal Processing
(MSSP) journal [114].

4. An alternative modeling was developed in order to bring more physical meaning
in the parameters to identify. The state-space model in the modal domain is
closely related to the method of modal superposition which is very popular in the
theory of vibration of linear systems. Even if this kind of model is theoretically
less parsimonious, its use showed that it is less sensitive to the need of over
parameterization. In this way, they are competitive with the ARMAV models
in terms of number of parameters to identify. The method was presented at the
2016 edition of the ISMA conference [115].

5. The identification of the varying mode shapes was finally used for monitoring
purposes. With few initial information, it was shown that the perturbing pa-
rameter (the position of the moving mass) could be estimated based only on the
vibration measurements. This application was illustrated in [114] based on the
varying mode shapes obtained with a time-varying ARMAV model.

Each of the proposed methods has its own advantages and drawbacks. If only
the time-varying natural frequencies are of interest, the modified HVD method or the
scalar ARMA method with multiple channels should be preferred in order to reduce
the computational costs. They can also be used to get an approximate of the varying
mode shapes. If the latter mode shapes are of high interest, their identification in a
parametric way should be preferred using the time-varying ARMAV and state-space
models. However, their increased computational complexity should be kept in mind
for large problems. For this reason, for very large problems the multichannel scalar
ARMA model could be the best compromise.

Perspectives

As shown in the last chapter, the use of time-varying identification methods may be
used for monitoring purposes. It was shown that the knowledge of the varying mode
shapes can be a valuable information in such applications, especially for damage loca-
tion, which cannot be done by only analyzing the varying poles. The monitoring of
time-varying structures with a locally perturbing element could then benefit from this
knowledge.

Another field in which the proposed methods could be useful is the identification of
parameterically excited problems and stability analyses [116, 117]. Instability monitor-
ing in particular cases such as in periodically varying systems already exists using the
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Floquet theory [116]. An extension to a more general type of time variation rather than
periodic variation could be performed. As an example, flutter in aeroelastic problems
by considering the effect of turbulence as a parametric excitation could be studied in
this way.

The problem of the estimation of first-passage time may also benefit from methods
able to deal with time-varying or parameter-varying identification in an experimental
way. The first-passage estimation methods try to estimate in a system the time to reach
a certain level of amplitude given some initial conditions. In civil engineering, this kind
of problem may concern cranes left in auto rotation under some wind conditions for
example [118].
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A
Appendix

A.1 Details about common blind source separation
techniques

This section describes the main properties of commonly used blind source separation
methods. The first two methods, PCA and SOD, are very simple to implement.

Principal Component Analysis (PCA, POD, KLT): The PCA is a simple mul-
tivariate statistical tool based on the concept of decorrelation. The empirical
covariance matrix is given as

RX = 1
N

N∑
i=1
x(i)xT (i). (A.1)

Performing an eigenvalue decomposition (EVD) of the covariance matrix leads
to the computation of the principal modes and variances:

RX V = V Λ (A.2)

in which the eigenvectors in V correspond to the principal modes and the Λ
matrix gathers the variances of each principal component on its diagonal. Note
that due to the real symmetric behavior of RX , one has the property V T = V −1.
The principal components sPCA are then extracted from the data by projection
on the eigenvector basis

sPCA(t) = V −1 x(t) = V T x(t) (A.3)

With this procedure, it is easily shown that

1
N

N∑
i=1
sPCA(i) sTPCA(i) = 1

N

N∑
i=1
V Tx(i)xT (i)V (A.4)

= V TRXV (A.5)
= Λ (A.6)
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So, the covariance matrix of the principal components data matrix is diagonal,
which implies that the principal components are uncorrelated.
Another way to compute the principal components and modes is to rely on the
definition of the singular value decomposition (SVD) and its relations with the
eigenvalue decomposition. Let us stack the time data in a n×N matrix

X = [x(1), x(2), . . . , x(N)]T .

Applying the SVD to this matrix, one obtains

X = UΣV T (A.7)

where U and V are the left and right singular vectors, respectively, and Σ con-
tains the singular values on its main diagonal. The eigenvalue and singular value
decompositions are closely related. First, the singular values of the data matrix
X are equal to the eigenvalues of the square symmetric XTX matrix and are
equal to the squared amplitudes of the eigenvalues in Λ. The left and right singu-
lar mode are the eignevectors of the XXT and XTX matrices, respectively. By
comparison, the principal components are located in the U matrix up to a scalar
factor because both U and V are orthonormal matrices. It is well known that
the vibration modes of a dynamical system are orthogonal in the metric of its
structural mass and stiffness matrices, thus this enforced orthogonality between
principal modes limits the use of this approach. Indeed, only systems which pos-
sess a mass matrix proportional to the identity fulfill this property. The other
way to proceed to a correct analysis of the system with the PCA source separa-
tion is to a priori know the mass matrix of the system to correct the correlation
matrix [119, 39].

Smooth Orthogonal Decomposition (SOD): The goal of the SOD method is to
find a mapping of the data in a basis of modes that provides smooth orthogonal
components (SOCs) with maximum variance but submitted to a smoothness
constraint. Mathematically, lets assume that v is one of these modes, the problem
of the SOD method is described as the following optimization [40]

max
v
‖Xv‖2 subjected to min

v
‖V v‖2 (A.8)

where V is an approximation of the derivative of X and can be computed as

V = DX, (A.9)

D being the (N − 1)×N first-order numerical derivative operator

D =


−1 1 0 · · · 0
0 −1 1 · · · 0
... . . . . . . . . . ...
0 · · · 0 −1 1

 . (A.10)

Computing the square norms ‖Xv‖2 and ‖V v‖2 as

‖Xv‖2 = vTXTXv = N vTRXv (A.11)
‖V v‖2 = vTV TV v = (N − 1)vTRV v (A.12)
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with the covariance matrices of X and V , respectively, the optimization problem
(A.8) can be equivalently reformulated as follows

max
v

(
λ(v) = vTRXv

vTRV v

)
. (A.13)

The solution of the decomposition is then obtained by solving the Rayleigh’s
quotient (A.13) which can be done by the generalized eigenvalue problem

RXvi = λiRV vi, i = 1, . . . , n (A.14)

in which n is the size of the covariance matrix. The smooth orthogonal compo-
nents are finally obtained by the projection of the data on the smooth orthogonal
modes.

The next two methods are based on the concept of independence between vari-
ables (the sources) to perform the separation. This property of independence between
sources is a realistic assumption in many practical applications. The assumption of
independence is stronger than simply uncorrelation. Independence implies uncorrela-
tion, but the inverse is not true. Statistically speaking, the independence can be defined
through probability density functions. Two variables are said independent if their joint
probability density function can be obtained by the product of the marginal probability
functions of each variable. The property of independence is better suited for modal
analysis of mechanical systems than uncorrelation because the normal coordinates are
themselves usually independent. The limit case for which the independence between
normal coordinates is lost is when the ratio between two component frequencies is
rational [42].

Independent Component Analysis (ICA): To perform the separation between so-
urces, the ICA method tries to maximize the degree of independence between the
sources. This can be done by several ways [42]. A first technique is based on
the central limit theorem stating that the distribution of the sum of indepen-
dent random variables converges to a normal law. The method of maximization
of non-Gaussianity is based on that principle because a mixture of independent
sources is more Gaussian than the sources themselves. The Gaussianity can be
measured by higher-order cumulants such as the Kurtosis (fourth order) which
is a very simple measure but which can be very sensitive to the outlier values in
the data. This is the main drawback of the ICA method. The kurtosis is defined
as:

γ(s|µ, σ) = E

[(
s− µ
σ

)4
]

(A.15)

where E denotes the expected value, and µ and σ the mean and standard devia-
tion of s, respectively. The value of the kurtosis defined as in (A.15) equals 3 for
Gaussian variable. Note also that another definition of the kurtosis exists, the
excess kurtosis, in which 3 is retrieved in a way to get a null kurtosis for Gaus-
sian distribution. One has to be careful about which definition is implemented
when using an existing software. For example, Matlab uses the definition (A.15)
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without the −3 normalization. The negentropy may also be used as a measure of
non-Gaussianity [120]. In information theory, the entropy of a random signal can
be related to the amount of information it contains. The higher the randomness
of variable, the higher its entropy and for a same variance, a Gaussian variable
has the highest entropy. Other methods based on minimization of mutual in-
formation, maximum likelihood or projection pursuit may also be implemented
[120]. Finally, because the ICA method is based on non-Gaussianity, Gaussian
sources may not be separated.

Second-Order Blind Identification: Similarly to the ICA, the SOBI method also
performs a separation into independent sources. The advantage of SOBI over ICA
is that the temporal structure of the signals is taken into account. Indeed, this
method is based on time-lagged covariance matrices, hence the reference to second
order. The use of second-order statistical measures renders the SOBI method also
more robust than ICA based on higher-order statistics. We saw earlier that the
PCA method is able to perform a decomposition leading to uncorrelated sources.
In the case of independent sources, not only the covariance matrix is diagonal,
but all the time-lagged covariance matrices are diagonal too. This latter property
is the basis of the SOBI algorithm. The SOBI workflow is as follows (the whole
implementation details may be found in References [121, 42, 122], among others):

1. Whitening the data: this preprocessing procedure transforms the data set
to a unit variance uncorrelated one:

xw = W x(t) = W As(t) (A.16)

The whitening matrix W can be straightforwardly computed using the pre-
viously described PCA method (Equation (A.3)).

2. Computation of a series of p time-lagged covariance matrices of the whitened
data:

Rxw(τ) =
N∑
i=1
xw(t+ τ)xw(t)T ∀τ = τ1, τ2, . . . , τp (A.17)

By assuming that the sources are of unit variance (this is a simplifying
constraint to remove the scaling indeterminacy), the latter equation becomes

Rxw(τ) =
N∑
i=1
xw(t+ τ)xw(t)T (A.18)

= WA
N∑
i=1
s(t+ τ) s(t)TATW T (A.19)

= WARs(τ)ATW T (A.20)

with Rs(τ), the τ -lagged covariance matrix of the unknown sources.
3. Joint diagonalization of the p covariance matrices. This operation is the op-

timization part of the method to find a suitable A matrix that diagonalyzes
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the p covariance matrices as much as possible [121]. The optimization op-
erates on the elements of the A matrix in order to minimize a loss function
such as

min
A

∑
τk

off (Rs(τk)) (A.21)

in which the “off” operator sums the square of all the off diagonal elements
of a matrix:

off(M ) =
∑
i 6=j
|Mi,j|2. (A.22)

4. Once the mixing matrixA in known, the corresponding independent sources
may be computed by (1.39).

A.2 Practical computation of the gradients in the
nonlinear optimization schemes.

In this section, we discuss an issue that may rapidly occur in case of large test cam-
paigns, i.e. larger number of involved modes in the frequency band, a larger number of
sensors on the structure or a higher complexity in the time evolution of the dynamics.
A high number of excited modes requires the selection of high orders in the identifica-
tion models. More sensors increase the amount of information about the dynamics but
enlarge the size of the response vector. If the time-varying behavior of the dynamics
of the system increases, a higher number of basis functions will be necessary. Each of
these cases, and even worse, a combination of them, will increase the complexity of the
problem by increasing the number of parameters to identify. In such cases, the calcu-
lation costs, especially in the nonlinear optimization process, may become prohibitive
because of the huge requirements in computation and memory.

The critical point in the optimization is the computation of the Jacobian matrix of
the residuals. As a reminder the cost function of the optimization process is given in
a least squares sense:

V (θ) = 1
2N

N∑
t=1
e[t,θ]Te[t,θ]. (A.23)

Stacking all the residual terms in a single vectorE(θ) =
[
e[1,θ]T e[2,θ]T · · · e[N,θ]T

]T
,

the latter equation may be rewritten as

V (θ) = 1
2N E(θ)T E(θ). (A.24)

The updating of the vector of parameters in the Levenberg-Marquard optimization is
iteratively processed as

θ(k+1) = θ(k) + d (A.25)

with the update ste d given by the solution of(
JTJ + λI

)
d = JTE. (A.26)
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The Jacobian matrix appearing in this equation being computed as the derivative of
the residual vector

J = ∂E(θ)
∂θT

, (A.27)

its dimension is equal to N × dim(θ). Its computation may then represents a huge
quantity of components in case of large number of samples and/or number of parameters
and it may be critical for the computation. A solution however exists to tackle this
problem and it relies on QR factorization and is explained in details in [123]. First,
stacking the J matrix and theE vector together and performing their QR factorization,
one gets [

J E
]

=
[
Q1 Q2

] R11 R12

0 R22

 . (A.28)

Due the the orthogonal properties of the Q matrix, the following matrix product
gives JT

ET

 [J E
]

=
RT

11 0
RT

12 RT
22

R11 R12

0 R22

 . (A.29)

This makes appear that the (cumbersome) Q matrix is not required and only the R
matrix is needed, which does not depends on the number of data samples N but only
the number of parameters plus 1. The computations on JTJ and JTE need only the
R11 and R12 matrices.

In case of very long measurements, it may also be possible that the computation
of the whole J matrix is not possible because of too many coefficients. In such a case,
the latter properties combined with the fact that the Jacobian matrix is computed by
state-space filtering offer the possibility to cut the whole calculation into several blocks.
Let J (1) be the Jacobian matrix computed for N1 < N data samples. Similarly, let
E1 being the residual vector with the N1 first error terms. A first QR decomposition
is then performed as previously described in order to get rid of the number of data
samples [

J (1) E(1)
]

=
[
Q

(1)
1 Q

(1)
2

] R(1)
11 R

(1)
12

0 R
(1)
22

 . (A.30)

Based on the last state vectors at time N1 in the derivative operations, the next part
of the Jacobian may be computed for times N1 + 1 to N2. The QR decomposition is
then iteratively updated by a series of computation of subblocks of the whole Jacobian
matrix  R(k)

11 R
(k)
12

J (k+1) E(k+1)

 =
[
Q

(k+1)
1 Q

(k+1)
2

] R(k+1)
11 R

(k+1)
12

0 R
(k+1)
22

 . (A.31)
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