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Introduction:  Various approaches exist to study 

the roughness of planetary bodies. The most commonly 

used focus on characterizing the roughness spatially by 

deriving statistics such as the root mean squared (RMS), 

median absolute or median differential slope, the RMS 

height, or the Hurst exponent [e.g., 1-5]. Other ap-

proaches focus on characterizing the roughness in fre-

quency space, such as those using Fourier transforms.  

Wavelet-based analyses have the advantage of char-

acterizing the surface roughness both spatially and in 

frequency, but have been rarely used in a planetary sci-

ence context so far. The Mexican Hat Wavelet Trans-

form (MHWT) has been used to characterize the rough-

ness of Mars in 1D using topographic profiles [6], while 

the Wavelet Leaders Method (WLM) has been used to 

characterize the roughness of Mars in 1D and in 2D us-

ing gridded topographic data [7]. Results from the 1D 

roughness characterization of Mars using the WLM are 

in agreement with the results using the MHWT and sta-

tistical approaches [e.g., 1-2], while the 2D roughness 

characterization of Mars was the first of its kind.  

In this study, we use and refine the WLM used by 

[7] to study the roughness of the Moon both spatially 

and in frequency in 1D using gridded topographic data 

from the Lunar Orbiter Laser Altimeter (LOLA). The 

1D WLM is an iterative process that calculates wavelet 

components at various spatial scales for a given vector 

of data, and investigates the wavelet leaders at each 

scale. These wavelet leaders are then used to determine 

(1) what are the different scaling regimes present in each 

longitudinal or latitudinal data profile (i.e., at which 

scales or spatial resolution changes in what governs 

topographic processes occur), (2) whether the data at a 

given latitude or longitude is monofractal or multifrac-

tal, and (3) what is the value of its Hölder exponent. 

Dataset :  We used topographic data from LOLA 

that has been gridded and projected into a simple cylin-

drical projection (PDS3, V1.05) at 1024 ppd (or ~30 

m/pixel), which is the highest spatial resolution cur-

rently available for the whole Moon. We downloaded 

individual tiles of 15° in latitude by 30° in longitude to 

obtain data for the whole globe. We then analyzed each 

of the 184,320 lines (latitudinal roughness) and 368,640 

columns (longitudinal roughness) of data. The WLM 

uses data of size 2x as input, so we downsampled each 

line of data (368,640 pixels) to 218 (262,144) pixels, and 

each column of data (184,320 pixels) to 217 (131,072) 

pixels. This corresponds to a spatial resolution of 728 

ppd or ~41 m/pixel. 

Methods:  The wavelet components at various spa-

tial scales for a given vector of data are first calculated 

as follows. The topographic signal of pixel i and its 

neighbors at scale j (2x pixels) is compared to a theoret-

ical wavelet (here a 3rd order Daubechies), yielding two 

components that each have 2x-1 pixels: the wavelet co-

efficients and the scaling coefficients. The former con-

tain the high-frequency information (analogous to 

detrended topographic data) which is temporarily set 

aside for subsequent analysis. The latter contain the 

low-frequency information (analogous to the topo-

graphic data itself) which is used as input for the subse-

quent comparison between the “topographic” data and 

the theoretical wavelet at scale j+1. This process is done 

iteratively until there are 20 pixels left.  

The wavelet “leaders” at each spatial scale are then 

identified. To do so, the wavelet coefficients obtained at 

each scale are compared using a dyadic cube; the maxi-

mum absolute value of the wavelet coefficient for pixel 

i-1 to i+1 at scale j and all finer scales is the wavelet 

leader value retained for pixel i at scale j.  

The wavelet leaders are used to identify the different 

scaling regimes in a given vector of data via the struc-

ture function S: 

𝑆(𝑗, 𝑞)  =  2−𝑗 ∑ 𝑑𝜆
𝑞

𝜆

 

where j is the scale, λ is the dyadic cube, dλ is the wave-

let leader for that dyadic cube, and q is the order of the 

structure function. In practice, this can be done by (1) 

plotting log2S(j,q) versus j (Fig. 1), and (2) identifying 

the absolute value of the curvature on that plot, where 

the highest curvature value(s) represent the likeliest 

scale break(s).  

The scaling function n is used to determine if the 

scaling regimes have a mono- or a multifractal behavior:  

𝑛(𝑞) = lim
𝑗→ +∞

log 𝑆(𝑗, 𝑞)

log 2−𝑗
 

In practice, this can be done by (1) plotting n(q) versus 

q for various values of q (here from -2 to 2) for each 

scaling regime, and (2) calculating the correlation r be-

tween the n and its regression. The data has a monofrac-

tal nature if r is close to 1. Here we considered the data 

monofractal if r > 0.98, and multifractal if r ≤ 0.98 as in 

[7]. If the data is monofractal, the slope of n(q) versus q 

coincides with the Hölder exponent and characterizes its 

irregularity. If the data is multifractal, the slope gives 

the dominant Hölder exponent but does not fully repre-

sent the fractal properties of the signal.  
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Figure 1. Plot of log2S(j,q) versus j (where q=1) for a 

given line of topographic data (at 50ºN) used to identify 

the different scaling regimes occurring at that latitude. 

  

 
Figure 2. Plot of n(q) versus q for the three scaling re-

gimes (solid lines) identified at 50ºN and their corre-

sponding best linear fit (dashed lines).   

 

Results and conclusion:  Our preliminary results 

consist in the 1D roughness analysis for each latitudinal 

profile. S was calculated for a sample of profiles (every 

degree) to determine what are the different scaling re-

gimes. We found that while the values vary slightly, 

scale breaks occur most often at j = 3, 10, and 15, cor-

responding to spatial resolutions of 659 m/pixel, 84 and 

2,700 km/pixel. They indicate that three scaling regimes 

are generally present in latitude at the discrete scales in-

vestigated here: j = 1-3 (165-659 m/pixel), j = 4-10 (1-

84 km/pixel), and j = 11-15 (169-2,700 km/pixel). The 

scale breaks identified at j = 3 and 15 are still under in-

vestigation as data from fewer scales were involved in 

the computation of the curvature. The smallest scaling 

regime is consistent with [5] who found that within the 

baselines they investigated (~17 m to ~2.7 km), compet-

ing surface processes mostly occurs near 1 km. The two 

larger scaling regimes have not been studied previously. 

We hypothesize that the intermediate scaling regime (1-

84 km/pixel) is characterized by the formation of simple 

and complex craters, whereas the largest scaling regime 

(169-2,700 km/pixel) is characterized by the formation 

of impact basins up to the largest on the Moon, the South 

Pole-Aitken basin (D ~2,500 km). At all latitudes the 

smallest scaling regime has a multifractal behavior, 

while the intermediate scaling regime has a monofractal 

behavior. The largest scaling regime has a multifractal 

behavior in the maria (~25°S-65°N, mean Hölder = 

0.34), and a monofractal behavior in the South Pole-Ait-

ken basin (mean Hölder = 0.25) (Fig. 3). 

The characterization of the 1D roughness for longi-

tudinal profiles is underway. The characterization of the 

2D roughness will be undertaken next, which will allow 

to determine the scale breaks, the fractal behavior, and 

the Hölder exponent value for each pixel rather than for 

vectors of data. This will allow a more precise charac-

terization of the surface roughness, especially by inves-

tigating the differences between highlands and maria.   
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Figure 3. Results from the 1D roughness analysis for each latitudinal profile (line of data) for the largest scaling 

regime j = 11-15 (169-2,700 km/pixel). Left: correlation coefficients between n(q) versus q and the best linear fit. 

Middle: LOLA topographic data shown between 75ºS and 75ºN. Right: the corresponding Hölder exponents. 
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j = 1-3 
(r = 0.89) 

j = 11-15 
(r = 0.99) 

j = 4-10 
(r = 0.99) 
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