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Abstract. This work proposes an approach based on reward shaping
techniques in a reinforcement learning setting to approximate the opti-
mal decision-making process (also called the optimal policy) in a desired
task with a limited amount of data. We extract prior information from
an existing family of policies have been used as a heuristic to help the
construction of the new one under this challenging condition. We use this
approach to study the relationship between the similarity of two tasks
and the minimal amount of data needed to compute a near-optimal pol-
icy for the second one using the prior information of the existing policy.
Preliminary results show that for the least similar existing task consid-
ered compared to the desired one, only 10% of the dataset was needed
to compute the corresponding near-optimal policy.
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1 Introduction

A decision-making process can be defined as a procedure which chooses from a
set of alternatives. Optimization problems related to the decision-making pro-
cesses are very interesting since they lead to various concrete applications (e.g.,
autonomous car driving, spam classification). But often, designing analytically
such an optimal decision making process can be difficult when very complex
tasks are considered. A popular way to overcome this difficulty is to use exist-
ing observations to approximate an optimal decision-making process. In others
words, a decision-making agent learns to perform these tasks using the informa-
tion in the observations while trying to optimize a particular family of criteria.
We call the function mapping observations to decisions a policy. Machine learn-
ing techniques are particularly efficient to design automatically these policies,
given a set of observations [13].

However, data acquisition can also be very difficult and/or expensive. This is
particularly true for biological systems, where data collection is time consuming,
requires laboratory experiments using expensive equipment and materials. To
overcome this issue, one possibility is to use a family of policies that have already
been computed for similar tasks. Then these policies can be used to build a
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new one for the desired task. In this work, we propose an approach to use an
existing family of policy to build a new one with limited set of data coming
from the desired task. We use a batch-mode reinforcement learning framework,
in particular we employ the Fitted-Q-Iteration (FQI) algorithm [2]. Then we
encode prior information coming from such a family of policy using the so-
called potential functions. This technique leads to a modification of the FQI
algorithm and is known as reward shaping [7]. This approach allows us to study
the relationship between the similarity of two tasks and the minimal amount of
data needed to build the second policy using the prior information of the policy
built for the first task.

The case study that we propose to investigate is a biological system called
genetic toggle switch system [5]. The goal of the task that we set up in this
system is to regulate the concentration of two proteins in a cell. This example
comes from a real life application that has been studied in the past [12]. A
model is known, however the exact values of parameters are hard to identify due
to variability in the cell phenotype. The difficulty of the problem is amplified
due to small amount of available data.

This paper is organized as follows. Section 3 describes the reinforcement
learning framework. Section 4 proposes an adaptation of the Fitted-Q-Iteration
algorithm for reward shaping. Section 5 defines our case study discussed above.
Section 6 shows the result of the simulation based on the whole framework.
Section 7 concludes this paper.

2 Related Work

Transfer between decision-making processes using decision-tree based boosting
techniques have been discussed in a supervised learning setting for classification
problems [3] [14]. Mapping between heterogeneous tasks have been adressed
with Restricted Boltzmann Machine (RBM) [1], a particular class of neural net-
works [10].

3 Reinforcement Learning Setting

Let us consider discrete-time systems, which is a specific case of a Markov De-
cision Process [8] in the following form:

st+1 = f(st, ut) ,

ct = c(st, ut, f(st, ut)) ,
(1)

where st ∈ S is the state of the system at time t, ut ∈ U is an action applied
to the system at state st and ct ∈ C is the cost of the applied action ut in the
system state st.

We aim to find a sequence of actions u0 · · ·u∞ in order to perform a task
while minimizing the sum of all the cost from c0 · · · c∞. More specifically, we aim
to compute a state-action mapping able to perform the task while minimizing
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this sum of cost. To do so, we use the following infinite-dimensional optimization
problem:

V (st) = min
µ∗(·)

+∞∑
i=t

γi−tc(si, µ
∗(si), f(si, µ

∗(si))) , (2)

where V (st) is called the value function, γ is the discount factor decreasing over
time, µ∗(·) : S → U is the optimal state-action mapping (also called an optimal
policy).

The solution of this optimization problem satisfies the Bellman equation [13]:

V (s) = min
u∈U

(c(s, u, f(s, u)) + γV (f(s, u))) . (3)

In practice, it is more convenient to consider a mapping between a state, an ac-
tion and an estimate of the long-term cost. Q-functions express such a mapping:

Q(s, u) = c(s, u, f(s, u)) + γV (f(s, u)) . (4)

The main approach used to compute this function is to use the following
recursive procedure:

Qk(s, u) = c(s, u, f(s, u)) + γmin
v∈U

Qk−1(f(s, v), v),∀k > 0 , (5)

whereQk approximates a long-term discounted cost at iteration k andQ0(st, ut) =
c(st, ut). Intuitively, this is often an estimation of the sum of discounted cost in
a time horizon of k. When the desired (i.e. near-optimal) Q-function Q∗ is com-
puted, the value function is given by the following equation:

V (s) = min
v∈U

Q∗(s, v) . (6)

Even with this approach, it is often difficult to compute the value function
analytically, because (i) the state-transition function f may not be known and
(ii) even if f is known, it is often intractable to find directly the value function.

A popular way to approximate the value function is to observe how the system
reacts given a set of actions. It means also that we can collect samples in terms
of one-step transitions, denoted by the quadruplet {st, ut, ct, st+1}. Therefore,
we assume that we have a dataset of one-step transitions, the main input to
approximate the optimal Q-function and therefore the value function.

This setting is known as Batch-mode reinforcement learning as discussed
in [4]. Many algorithms can be used to address this optimization problem (e.g.,
SARSA [11]). We choose the Fitted-Q-Iteration algorithm as it is directly de-
signed for this reinforcement learning setting and for its convergence speed prop-
erties, discussed in [2].
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Algorithm 1 Reward-shaping based FQI

1: Inputs: Set of quadruplets F = {st, ut, ct, st+1}, stopping criterion, poten-
tial function Φ(·)

2: Outputs: Policy µ̂∗(s)
3: Set k = 0
4: Set Q̂0(st, ut) = ct + γΦ(st+1)− Φ(st),∀{st, ut, ct, st+1} ∈ F .
5: repeat
6: Set k = k + 1
7: Compute, for all {st, ut, st+1, ct} ∈ F :
8:

Q̂k(st, ut) = ct + γΦ(st+1)− Φ(st) + γmin
u∈U

Q̂k−1(st+1, u)

9: Approximate directly the Q̂k(st, ut) function using a regression algo-
rithm.

10: until the stopping criterion is met
11: Returns µ̂∗(s) = arg min

u∈U
Q̂k(s, u)

4 Reward Shaping Based Fitted-Q-Iteration

Let us consider the following modification of the Q-function defined in Equation
(5):

Qk(s, u) = c(s, u, f(s, u)) + γΦ(f(s, u))− Φ(s) + γmin
v∈U

Qk−1(f(s, v), v) ∀k > 0 ,

(7)
where Φ(st) is called a potential function. Reward shaping properties have essen-
tially been discussed in [9]. The authors have essentially stated that (i) initializ-
ing the Q-function with either the instantaneous cost or the potential function
leads to the same near-optimal policy and (ii) the potential function can be used
as an heuristic to speed up the learning process, as empirically shown in [9].

For example, let us consider a sparse cost function, for which the cost is
strictly negative only for a restricted set. Without any prior information and
starting in a state outside this set, the estimated long-term cost of each available
action for this state does not provide enough information to be able to choose
it to reach such a set of states. Designing a proper potential function with prior
information about the system can provide a more informative long-term cost
and therefore helps to pick the desired action. Algorithm 1 describes a reward
shaping version of the FQI algorithm.

5 Regulation of a Toggle Switch System

First, we briefly describe the benchmark problem of regulation of a genetic toggle
switch. We consider two genes (lacI and tetR) with their respective proteins
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concentration, referred respectively as gene 1 and gene 2. We consider also a
binary action space that represents the light pulse activating a photo-sensitive
promoter controlling the expression of the lacI gene. When the photo-sensitive
promoter is activated, its concentration is increased instantaneously by a small
amount. This section also describes the considered configuration for the learning
framework.

5.1 Dynamics

The state-transition dynamics describing the two proteins concentration are de-
fined by the following equations:

ṡ1 = β1 +
c1

1 + (s2/r1)
α1
− c2s1 + bu ,

ṡ2 = β2 +
c3

1 + (s1/r2)
α2
− c4s2 ,

(8)

where si is the concentration of the protein i at time t, c1 and c3 are the effective
rate of synthesis of the proteins, αi is the cooperativity coefficient of the protein
i, c2 and c4 are the degradation rates of proteins, βi models basal transcription
level during the gene expression of the gene i, ri is the gene repression rate of
gene i, and b is the increase in protein concentration produced per unit of time
as a result of one light pulse when activated. The sampling time used to compute
the state transition is 1 seconds. The instantaneous cost in this system is defined
by the following equation:

c(〈s1, s2〉, u, 〈s1+, s2+〉) = −
s1+
n1

+
s2+
n2

+ pu , (9)

where p is the penalty coefficient applied to the action, 〈s1+, s2+〉 = f(〈s1, s2〉, u)
and n1, n2 are used to restrict interval of the instantanous cost in order to
make the parameter tuning more convenient. Table 1 enumerates the different
dynamics with their respective parameters.

Table 1. Parameters of the generation model described in Equations 8 and 9

MDP β1 β2 c1 c2 c3 c4 α1 α2 b r1 r2 n1 n2 p

T 0 0 7000 1 10000 1 2 2 400 10000 10000 10000 100 40
S1 0 0 7000 1 10000 1 2 2 1000 5000 5000 10000 100 40
S2 0 0 7000 1 10000 1 2 2 4000 100 100 10000 100 40
S3 0 0 10000 1 7000 1 2 2 400 100 100 10000 100 40
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5.2 Dataset

5000 time series of 20 steps have been generated by a random decision process
(uniform distribution of the actions) during the simulation for each generation
model.

5.3 Learning Configuration

Fitted-Q-Iteration 100 iterations have been performed with γ = 0.75. The ap-
proximator used is the well-known Extremely Randomized Trees algorithm [6]
with a forest of 100 trees. We also take Φ(s) to be an existing value function VS
built from another task S.

5.4 Metrics

Let us consider the following score function related to a performance of a policy
µ in any given one-step transition function f(x, u):

s(µ, f) =

T∑
t=0

γtc(st, µ(st), f(st, µ(st))) . (10)

We also consider to compute the regret score as a proxy for the task similarity
purpose. We defined the regret score as a distance between the best policy µ∗

fitted for a given one-step transition function f and another policy µ′ fitted for
another one-step transition function by the following equation:

r(µ∗, µ′, f) = s(µ′, f)− s(µ∗, f) . (11)

Let us define µ∗K to be the policy fitted with a one-step transition database,
computed with f , of size K ∈ N. We say that K is the minimal amount of
data needed to reach the performance of µ∗ fitted if the following inequation is
satisfied:

s(µ∗, f)

s(µ∗K , f)
6 ε , (12)

with ε = 0.01 in our settings.

6 Results and Discussion

First, we show that using directly an existing policy that has not been built
for the desired does not allow a proper regulation of the proteins concentration.
Figure 1 shows an example of such a statement. Figure 6 shows the performance
achieved by using prior information from existing policy built generation model
S3 to build the desired policy for the generation model T , compared to classical
reinforcement learning, with a limited amount of data.
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Fig. 1. Optimal policy convergence for the target model T (left) compared to the
non-convergence of optimal policy fitted for model S3 (right)
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Since the dataset used to fit the existing policy contains 100000 samples, and
the prior information from policy built for S3 allows to have a dataset containing
10000 samples, it can be stated that only 10% of the dataset was needed to reach
the desired performance. Table 2 shows the regret score computed with the target
model and all considered source generation models.

Table 2. Regret score when using directly Q-function from a source model in the
target one

Dist S1 S2 S3

T 517 806 1018

Fig. 2. Simulation results with and without reward shaping (S3 to T , discounted cost
+ variance with 100 batches)

7 Conclusion

In this work, we have proposed an approach to build efficiently, with a limited
amount of data, a policy for a desired task using prior information of an existing
family of policies. This approach allowed us to study the relationship between
the similarity of two tasks and the minimal amount of data needed to compute a
near-optimal policy for the second task using prior information from the policy
built for the first one. Moreover, it appeared that for the least closed task that
we considered, only a database of 10000 samples (i.e. 500 time series) have been
required to reach such a performance, considering that 100000 samples, (i.e.,
5000 time series) are needed when no existing policy has been used.

Since we have considered a deterministic system in this paper, it would also
be interesting to extend the study to a stochastic version of this system to verify
the robustness of our approach in a future work.
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