Computational & Multiscale Mechanics of Materials

Stochastic study of unidirectional composites: from micro-

structural statistical information to multi-scale analyzes

Wu Ling, Bidaine Benoit, Major Zoltan, Nghia Chnug Chi, Noels Ludovic

The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of the M-ERA.NET Joint Call 2014.

CM3

- Two-scale modelling
 - One way: homogenization
 - 2 problems are solved (concurrently)
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)

Material uncertainties affect structural behaviors

The problem

- Illustration assuming a regular stacking
 - 60%-UD fibers
 - Damage-enhanced matrix behavior

• Question: what does happen for a realistic fibre stacking?

CM3

NPU2018 -

3 - 4 April 2018, Xi'an, China

The problem

Proposed methodology:

CM3

• 2000x and 3000x SEM images

• Fibers detection

CM3

NPU2018 -

- Basic geometric information of fibers' cross sections
 - Fiber radius distribution $p_R(r)$
- Basic spatial information of fibers
 - The distribution of the nearest-neighbor net distance function $p_{d_{1st}}(d)$
 - The distribution of the orientation of the undirected line connecting the center points of a fiber to its nearest neighbor $p_{\vartheta_{1st}}(\theta)$
 - The distribution of the difference between the net distance to the second and the first nearest-neighbor $p_{\Delta d}(d)$ with $\Delta d = d_{2nd} - d_{1st}$
 - The distribution of the second nearest-neighbor's location referring to the first nearest-neighbor $p_{\Delta\vartheta}(\theta)$ with $\Delta\vartheta = \vartheta_{2nd} \vartheta_{1st}$

Micro-structure stochastic model

- Dependency of the four random variables d_{1st} , Δd , ϑ_{1st} , $\Delta \vartheta$
- Correlation matrix

	d_{1st}	Δd	$\vartheta_{1 { m st}}$	$\Delta \vartheta$
d_{1st}	1.0	0.21	0.01	0.02
Δd		1.0	0.002	-0.005
$\vartheta_{\rm 1st}$			1.0	0.02
$\Delta \vartheta$				1.0

• Distances correlation matrix

 d_{1st} and Δd are dependent they will be generated from their empirical copula

	d_{1st}	Δd	$\vartheta_{1 { m st}}$	$\Delta \vartheta$
d_{1st}	1.0	0.27	0.04	0.08
Δd		1.0	0.05	0.06
$\vartheta_{1 { m st}}$			1.0	0.05
$\Delta \vartheta$				1.0

- 9

• d_{1st} and Δd should be generated using their empirical copula SEM sample Generated sample

Directly from copula generator

Statistic result from generated SVE

0.8

- The numerical microstructure is generated by a fiber additive process
 - 1) Define *N* seeds with first and second neighbors distances

- The numerical microstructure is generated by a fiber additive process
 - 1) Define *N* seeds with first and second neighbors distances
 - 2) Generate first neighbor with its own first and second neighbors distances

CM3

3 - 4 April 2018, Xi'an, China

- The numerical microstructure is generated by a fiber additive process
 - 1) Define *N* seeds with first and second neighbors distances
 - 2) Generate first neighbor with its own first and second neighbors distances
 - 3) Generate second neighbor with its own first and second neighbors distances

- The numerical microstructure is generated by a fiber additive process
 - 1) Define *N* seeds with first and second neighbors distances
 - 2) Generate first neighbor with its own first and second neighbors distances
 - Generate second neighbor with its own first and second neighbors distances
 - Change seeds & then change central fiber of the seeds

3 - 4 April 2018, Xi'an, China

CM3

- The numerical micro-structure is generated by a fiber additive process
 - The effect of the initial number of seeds *N* and
 - The effect of the maximum regenerating times n_{max} after rejecting a fiber due to overlap

SEM: Average $V_{\rm f}$ of 103 windows;

Numerical micro-structures: Average $V_{\rm f}$ of 104 windows.

Comparisons of fibers spatial information

- Numerical micro-structures are generated by a fiber additive process
 - Arbitrary size
 - Arbitrary number

Possibility to generate non-homogenous distributions

CM3

Stochastic homogenization on the SVEs

Stochastic homogenization

- Extraction of Stochastic Volume Elements
 - 2 sizes considered: $l_{SVE} = 10 \ \mu m$ & $l_{SVE} = 25 \ \mu m$
 - Window technique to capture correlation

$$R_{\mathbf{rs}}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\left(r(\boldsymbol{x}) - \mathbb{E}(r)\right)\left(s(\boldsymbol{x} + \boldsymbol{\tau}) - \mathbb{E}(s)\right)\right]}{\sqrt{\mathbb{E}\left[\left(r - \mathbb{E}(r)\right)^{2}\right]}\sqrt{\mathbb{E}\left[\left(s - \mathbb{E}(s)\right)^{2}\right]}}$$

- For each SVE
 - Extract apparent homogenized material tensor \mathbb{C}_{M}

$$\begin{cases} \boldsymbol{\varepsilon}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\varepsilon}_{\mathrm{m}} d\omega \\ \boldsymbol{\sigma}_{\mathrm{M}} = \frac{1}{V(\omega)} \int_{\omega} \boldsymbol{\sigma}_{\mathrm{m}} d\omega \\ \mathbb{C}_{\mathrm{M}} = \frac{\partial \boldsymbol{\sigma}_{\mathrm{M}}}{\partial \boldsymbol{u}_{\mathrm{M}} \otimes \boldsymbol{\nabla}_{\mathrm{M}}} \end{cases}$$

- Consistent boundary conditions:
 - Periodic (PBC)
 - Minimum kinematics (SUBC)
 - Kinematic (KUBC)

When l_{SVE} increases

- Average values for different BCs get closer (to PBC one)
- Distributions narrow
- Distributions get closer to normal

• When l_{SVE} increases: marginal distributions of random properties closer to normal $-l_{SVE} = 10 \ \mu m$

Correlation

Increasing l_{SVE}

- (1) Auto/cross correlation vanishes at $\tau = l_{\rm SVE}$
- (2) When l_{SVE} increases, distributions get closer to normal

(1)+(2) Apparent properties are independent random variables However the distribution depend on

- l_{SVE}
- The boundary conditions

• Quid larger SVEs?

- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
 - Take advantages of the fact that the apparent tensors can be considered as random variables

• Quid larger SVEs?

- Computational cost affordable in linear elasticity
- Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
 - Take advantages of the fact that the apparent tensors can be considered as random variables

CM3

- Quid larger SVEs?
 - Computational cost affordable in linear elasticity
 - Computational cost non affordable in failure analyzes
- How to deduce the stochastic content of larger SVEs?
 - Take advantages of the fact that the apparent tensors can be considered as random variables
 - Accuracy depends on Small/Large SVE sizes

- Numerical verification of 2-step homogenization
 - Direct homogenization of larger SVE (BSVE) realizations
 - 2-step homogenization using BSVE subdivisions

- Stochastic model of the anisotropic elasticity tensor
 - Extract (uncorrelated) tensor realizations $\mathbb{C}_{\mathrm{M}}^{i}$

- Represent each realization \mathbb{C}^i_M by a vector \mathcal{V} of 9 (dependent) $\mathcal{V}^{(r)}$ variables
- Generate random vectors ${m {\cal V}}$ using the Copula method

• Simulations require two discretizations

Stochastic reduced order model

- Ply loading realizations
 - Non-uniform homogenized stress distributions
 - Different realizations yield different solutions

- Mean-Field-homogenization (MFH)
 - Linear composites

 $\boldsymbol{\sigma}_{\mathrm{M}} = \boldsymbol{\overline{\sigma}} = v_0 \boldsymbol{\sigma}_0 + v_{\mathrm{I}} \boldsymbol{\sigma}_{\mathrm{I}}$ $\boldsymbol{\varepsilon}_{\mathrm{M}} = \boldsymbol{\overline{\varepsilon}} = v_0 \boldsymbol{\varepsilon}_0 + v_{\mathrm{I}} \boldsymbol{\varepsilon}_{\mathrm{I}}$ $\boldsymbol{\varepsilon}_{\mathrm{I}} = \mathbf{B}^{\varepsilon} (\mathbf{I}, \mathbb{C}_0, \mathbb{C}_{\mathrm{I}}) : \boldsymbol{\varepsilon}_0$

 $\bigcirc \mathbb{C}_{M} = \mathbb{C}_{M}(I, \mathbb{C}_{0}, \mathbb{C}_{I}, v_{I})$

- We use Mori-Tanaka assumption for $\mathbf{B}^{\varepsilon}(I, \mathbb{C}_0, \mathbb{C}_I)$
- Stochastic MFH
 - How to define random vectors \mathcal{V}_{MT} of I, \mathbb{C}_0 , \mathbb{C}_I , v_I ?

3 - 4 April 2018, Xi'an, China

- Inverse stochastic identification
 - Comparison of homogenized properties from SVE realizations and stochastic MFH

- Stochastic MFH model:
 - Homogenized properties $\widehat{\mathbb{C}}_{\mathrm{M}}(\frac{a}{b}, \widehat{E}_{0}, \hat{v}_{0}, v_{\mathrm{I}}, \theta; \widehat{\mathbb{C}}_{\mathrm{I}})$
 - Random vectors \mathcal{V}_{MT}
 - Realizations $v_{MT} = \left\{ \frac{a}{b}, \hat{E}_0, \hat{v}_0, v_I, \theta \right\}$
 - Characterized by the distance correlation matrix
 - · Generator using the copula method

- Stochastic simulations
 - 2 discretization: Random field \mathcal{V}_{MT}

- Realizations to reach a given deflection δ

- Stochastic generator based on SEM measurements of unidirectional fibre reinforced composites
- Computational homogenization on SVEs
- Two-step computational homogenization for Big SVEs
- Definition of a Stochastic MFH method
- In progress: nonlinear and failure analyzes

Thank you for your attention !

