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Introduction to Background Initialization



What is Background Initialization?

Definition

Given a video sequence acquired from a static viewpoint, the stationary background
initialization problem (also known as background generation, estimation, extraction,
or reconstruction problem) consists in generating a unique image estimating the
stationary background of the sequence (i.e. the set of elements which are motion-
less throughout the sequence). (Laugraud et al. 2016)

Example: Recovering a Road Without Cars

↓
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What is Background Initialization?

Several applications→ video surveillance, computational photography,
etc (see Maddalena et al. 2015).

Not as easy as it looks→ there are several challenges!

Let’s see the most important challenges described in Jodoin et al. 2017.

Note that the images used for illustrating the challenges have been taken from a
public dataset (SBMnet).
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Illumination Changes Challenge

Light or strong illumination changes (e.g. light switching, weather, etc).

Background evolves over time→ several solutions.

Methods should pay attention to temporal order.

BACV Expected output 1 Expected output 2
(Minematsu et al. 2016)
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Clutter Challenge

Foreground objects occupying a large portion of the visual field.

Several pixels depict foreground objects more than 50% of the time.

A pixel-wise temporal median filter cannot cope with this kind of sequences.

Temporal median Input frame Expected output
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Intermittent Motion Challenge

Objects that stop for a short while.

Objects that are abandonned.

Background objects starting to move.

Temporal median LaBGen Expected output
(Laugraud et al. 2017b)

Benjamin Laugraud (University of Liège) An Overview of Background Initialization and LaBGen 5 / 64



Jitter Challenge

Unstable camera (e.g. wind, vibrations in surrounding environment).

Consequently, the background is also in motion.

Methods should discover and compensate for the camera motion.

RMR RSL2011 Expected output
(Ortego et al. 2016) (Reddy et al. 2011)
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Very Short Challenge

Video sequences with a limited number of frames.

Very low frame rate, or no temporal order.

Increases the difficulty of detecting motion for traditional models.

Temporal median BE-AAPSA Expected output
(Ramirez-Alonso et al. 2017)
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Brief Overview of Some Popular Methods

(Following the Taxonomy of Bouwmans et al. 2017)



Methods Based on Temporal Statistics

Properties

Based on statistics (e.g. mean, median) computed on temporal information.

Statistics computed pixel-wise on the whole sequence or random frames.

Temporal Median

Pixel-wise temporal median filter considering all frames.

Assumption→ the background is observed > 50% of the time in each pixel.

This assumption is false in highly cluttered sequences.

But it produces excellent results for basic scenarios (see SBMnet basic cat.).
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Methods Based on Temporal Statistics

Mixture of Gaussians (Stauffer et al. 1999)

Background subtraction technique (in part).

Background model→ mixture of K Gaussians per-pixel.

Proba. of observing current pixel value→ determined by associated mixture.

Distributions adapted over time using an online K-means approximation.

Background image generation→ weighted average of background modes.

(Bishop 2006)
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Methods Based on Subsequences of Stable Intensity

Properties

Assumption: background has the longest stable intensity.

Stable temporal subsequences are located, and the most reliable is chosen.

(Wang et al. 2006)
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Methods Based on Subsequences of Stable Intensity

WS2006 (Wang et al. 2006)

1 Locate non-overlapping stable subsequences of pixel intensities (SSIs):

• Find all subsequences meeting three criteria.

• The subsequence has a minimum size Lw .

• Difference between all temporally consecutive intensities < Tf (a threshold).

• Difference between an intensity and the mean of all previous intensities < Tf .

2 Choose the most reliable SSI:

• Compute size and variance of each selected subsequence.

• Keep the one maximizing the ratio between both.
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Methods Based on Iterative Model Completion

Properties

Spatial areas with a static reliable background are generated.

The remaining areas are completed according to spatial consistency criteria.

RMR (Ortego et al. 2016)

Each frame is divided in s patches Rs
t at time t .

In each spatial area s→ motion filtering to discard patches in motion (f. diff.).

Custering performed to build a set of candidates Cs
l .

Several numbers of clusters Ns tested→ between 1 and the number of
SSIs detected during motion filtering.

Choose Ns → metric max. compactess and separation, and min. similarity.

Candidates Cs
l in spatial area s→mean of each cluster K s

l , with l = 1, . . . ,Ns.

Seed selection selects highly reliable candidates Ss with a large cluster
cardinality and a low motion activity in the associated spatial area.

Spatial areas s with empty seeds Ss = /0 are iteratively completed→ inter-
and intra-block smoothness constraints (connected neighborhood).
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Methods Based on Iterative Model Completion

(Ortego et al. 2016)
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Methods Based on Optimal Labeling

Properties

Find a label in each pixel/region indicating the frame n° with background.

Consists in minimizing a spatio-temporal cost function.

Photomontage (Agarwala et al. 2004)

Create a composite image from a stack of source images.

To the composite is associated a labeling specifying the source for each pixel.

A pixel labeling is determined through graph-cut optimization.

The cost function is defined as the sum of an image and seam objective.

The image objective is the maximum likelihood (the most common value).

Probability distribution→ color histogram of the same pixel in the sources.

The result is refined with gradient-domain fusion.

A vector field is build from the optimal labeling, then the fusion is applied.
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Methods Based on Missing Data Reconstruction

Properties

Pixels/regions in motion are considered as missing data.

Missing data is recovered using inpainting or low-rank reconstruction.

Matrix Completion (Sobral et al. 2017)

Reconstruction has a high computational cost→ remove redundant frames.

A vector d containing the L2 distances between consecutive frames is built.

From its derivative d′, non-redundant frames are selected.

The selected frames are vectorized and put in a matrix A.

The values of A far from their temporal predecessor (motion) are set to zero.

A matrix completion algorithm is applied on A.
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Methods Based on Neural Networks

Properties

Learn automatically the background from the data.

The learning can be supervised or unsupervised.

BEWiS (De Gregorio et al. 2017)

Pixel-level method based on the WiSARDrp weightless neural network.

Learning from the sequence without any annotation→ unsupervised.
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Methods Based on Neural Networks

(De Gregorio et al. 2017)

Channels of a pixel value are first scaled between [0, . . . ,z−1] and binarized.

The result forms a binary pattern observed by a retina.

The bits of the retina are randomly mapped to a set of n-tuple RAM neurons.

For each RAM, the cell at the address read from the retina→ reward ρ.

Other cells→ decreased by a punishment Ψ.

Background recovered from the addresses of the cells with the highest values.
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To Get Further Information

There are two major reviews!

(Bouwmans et al. 2017) (Jodoin et al. 2017)

URL: https://doi.org/10.1016/j.patrec.2016.12.024 URL: https://doi.org/10.1109/TIP.2017.2728181
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Evaluation Framework



Estimation vs. Ground-truth

How to assess and compare methods? What about their robustness?

Low-level operation→ comparing an estimation to a ground-truth image.

A ground-truth image depicts the “perfect” background.

No unique solution→ compare to several ground-truths (e.g. traffic light).

Difference between an estimation and a ground-truth quantified by a metric.

Video sequence

Background
Initialization

Estimated Background Ground-truth

Metric

Score

Comparison to several ground-truths→ keep the best score.
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Metrics

Average Gray-level Error (AGE): mean absolute difference of luminance
between estimation and ground-truth.

Percentage of Error Pixels (pEPs): percentage of pixels whose absolute
difference of luminance between estimation and ground-truth > 20.

Percentage of Clustered Error Pixels (pCEPs): percentage of error pixels
whose 4-connected neighbors are also errors.

Estimation Ground-truth

Abs. Difference EPs CEPs
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Metrics

Multi-Scale Structural Similarity Index (MS-SSIM; Wang et al. 2003):
pyramidal SSIM, which uses structural distortion as an estimate of the perceived
visual distortion. (Wang et al. 2004)

Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10× log10
2552

MSE
,

with MSE being the mean squared error.

Color image Quality Measure (CQM; Yalman et al. 2013): combination of
per-channel PSNRs computed on an approximated reversible RGB to YUV
transformation.

Using those metrics has been proposed by Maddalena et al. 2015.
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Datasets

On which data the metrics can be used?

A dataset provides video sequences along with their ground-truth.

Public datasets enable to perform fair comparisons in the literature.

When several methods are evaluated on the same dataset→ ranking.

State-of-the-art datasets gather video sequences in categories (challenges).

Enable to evaluate their robustness against different challenges.
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Scene Background Initialization (SBI)

Composed of 14 video sequences.

http://sbmi2015.na.icar.cnr.it/SBIdataset.html

Advantages

Ground-truth provided for all sequences.

Provides Matlab scripts for performance evaluation.

Drawbacks

Small number of video sequences preventing a good generalization.

The sequences are not gathered by categories.

No submission platform for a public comparison of different methods.
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SceneBackgroundModeling.NET (SBMnet)

Composed of 79 video sequences.

Scattered through 8 categories: Basic, Intermittent Motion, Clutter, Jitter,
Illumination Changes, Background Motion, Very Long, and Very Short.

http://www.scenebackgroundmodeling.net (Jodoin et al. 2017)

Advantages

Uses several ground-truths when needed.

Various challenges covered through the proposed categories.

Provides Python and Matlab scripts for performance evaluation.

Online submission platform allowing an up-to-date comparison of methods.

Drawbacks

Small number of ground-truths provided (for 13 sequences only).

Two rankings are proposed, and they sometimes disagree.
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SBMnet: Average Ranking
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SBMnet: Category Average Ranking (Clutter)
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SBMnet: Method Details (LaBGen)
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LaBGen



Ideas

1 Median buffer polluted with foreground elements→ let’s filter them out.

2 Such a filtering could be motion-based.

3 Discard elements with the largest “quantities of motion”.

Observation

Background subtraction (BGS) algorithms are designed to detect motion!
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LaBGen in Short

(Laugraud et al. 2015) (Laugraud et al. 2017b)

URL: http://hdl.handle.net/2268/182893 URL: http://hdl.handle.net/2268/203572

It combines a pixel-wise median filter and a patch selection mechanism.

The selection mechanism is based on motion detection (BGS).

This mechanism selects the patches with the smallest amounts of motion.

The pipeline of the method comprises 5 steps.
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Step 1: Augmentation

BGS needs sometimes a long training→ problem with short sequences.

The agumentation step increases the duration of the input video sequence.

In practice, we process the sequence in P passes.

An odd (resp. even) pass is performed forwards (resp. backwards).

forwards (odd passes)

backwards (even passes)
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Illustration with ViBe on HighwayII

ViBe (Barnich et al. 2011) is highly sensitive to bootstrap.

First frame contains several foreground objects→ ghosts!

The augmentation mechanism can help to reduce false alarms.

(Laugraud et al. 2017b)

Frame 1 Frame 446 Pass 1

Pass 2 Pass 3 Pass 5
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Step 2: Motion Detection

The BGS algorithm being used is the parameter A .

LaBGen does not leverage the model of A , only segmentation maps.

LaBGen can be used with any BGS algorithm “out-of-the-box”.

Background Subtraction
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Step 3: Local Estimation of the Quantities of Motion

The image plane is divided into N ×N non-overlapping spatial areas.

A quantity of motion q is estimated for each patch of each frame.

Probability of observing pixels corresponding to moving objects.

h
N

w
N

q =
# pixels classified as foreground in the patch

# pixels in the patch
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Why it is Necessary to Work at the Region Level?

Some BGS algorithms are optimized to reduce false positives.

Consequently, false negatives could be increased.

No guarantee that more than 50% of pixels classified as background belong to
the background (negative predictive value > 0.5).

We can taking into account classifications in the spatial neighborhood.

CaVignal - Frame 244 Frame Difference
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Step 4: Patch Selection

In each spatial area, S patches are selected.

The S selected patches are associated to the smallest quantities of motion q.

S
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Step 5: Background Generation

A pixel-wise median filter is applied on the sets of S selected patches.

The background is then generated.

S

=⇒
pixel-wise median

generated background
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Summary of the Pipeline

(Laugraud et al. 2017a)

Input video sequence 1. Augmentation step 2. Motion detection step

3. Estimation step 4. Selection step 5. Generation step (output)
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What is the Best BGS Algorithm for our Framework?

No obvious correlation between the performance of LaBGen and BGS.

Worst (resp. best) BGS algorithm→ 1st (resp. 3rd) best for LaBGen.

(Laugraud et al. 2017b)

CDnet 2014 Baseline Performance (F1)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
a

c
k
g

ro
u

n
d

 G
e

n
e

ra
ti
o

n
 P

e
rf

o
rm

a
n

c
e

 (
p

E
P

s
)

0

1

2

3

4

5

6

7

8

9

10

F. Diff.

MoG G.

SuBS.

PBAS

VuMeter

KDE

MoG Z.

LBP

S-D

ViBe

Pfinder

SOBS

Hypothesis

The frame difference provides the best contribution on average.

Unique property compared to other algorithms→ temporally memoryless.
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What About the Temporal Stability?

With some BGS algorithms, the background estimation is never stable.

pEPs of frame difference —, VuMeter —, and oracle — (Board sequence).

(Laugraud et al. 2017b)
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What About the Temporal Stability?

Mean variation of the pEPs score over pass on the SBI sequences.

SuBSENSE, PBAS, and VuMeter are not temporally stable.

(Laugraud et al. 2017b)
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Performance on SBMnet: Average Ranking (07/03/2018)

Submitted with A = Frame difference.
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Video Demonstration

URL: https://youtu.be/rYhX8ZizSL0
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LaBGen-OF



Motivation

Hypothesis

The frame difference provides the best contribution on average.

Unique property compared to other algorithms→ temporally memoryless.

We checked this hypothesis experimentally.

We shown in a simple case the impact of temporal memory.

We made a comparison of motion detection with or without temporal memory.

Motion detectors with memory→ background subtraction.

Motion detectors without memory→ optical flow, and frame difference.

To leverage optical flow, we made a variant of LaBGen called LaBGen-OF.

Benjamin Laugraud (University of Liège) An Overview of Background Initialization and LaBGen 43 / 64



LaBGen-OF: Motion Detection Step

PETS 2006 - Frame 100 Some velocity vectors (optical flow)

Spatial normalization of `2-norms Segmentation map (threshold)
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Experience 1: Impact of the Motion Detection Memory on the Performance

Average performance using an exponential smoothing BGS on SBI.

Background model (B) maintained over time (t) as follows:

Bt = (1−β) ·Ft + β ·Bt−1,

with F being an input frame, and β ∈ [0,1] a parameter.

Classification performed by applying a hard threshold τes on |Ft −Bt |.

β increases→ More importance is given to the temporal history.

First indication that using no memory is an appropriate choice for LaBGen.

(Laugraud et al. 2017a)
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Experience 2: Comparison of Motion Detectors (MD) With or Without Memory

Average performance using several MDs on the SBI dataset.

The one of MDs without memory � vary around the one of the frame diff. �.

All MDs without memory � are better than any MD with memory �.

(Laugraud et al. 2017a)
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Performance on SBMnet: Average Ranking (07/03/2018)

Submitted with A = DeepFlow (Weinzaepfel et al. 2013).
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Publication: ACIVS 2017

(Laugraud et al. 2017a)

URL: http://hdl.handle.net/2268/213147
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Video Demonstration

URL: https://youtu.be/6tzzY65sCzc
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LaBGen-P



Motivation

Sometimes, with LaBGen, we have a “patch effect”.

We wanted to make a pixel-based method to avoid this effect.

LaBGen-P(ixel).

Example of background estimated with the same parameters:

(Laugraud et al. 2016)

LaBGen LaBGen-P Ground-truth
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What is New?

Augmentation Motion
detection

Quantity
of motion
(patch)

Patch
selection

Background
generation

segmentation map

⇓ Modifications performed in LaBGen-P

Frame
difference

Quantity
of motion

(pixel)

Pixel
selection

motion map
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Using Motion Maps Instead of Segmentation Maps

We define motion scores as raw absolute diff. of intensities (no threshold).

A motion map gathers all the motion scores computed between two frames.

Such a map allows to capture some shades about motion.

For instance: 200 > 20→ fg, 30 > 20→ fg, but p(fg|200) > p(fg|30).

Avoid to find an appropriate threshold!

Motion map Segmentation map (τ = 20)
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Local Estimation of the Quantity of Motion

Unlike in LaBGen, quantities of motion are estimated per pixel.

However, this estimate take into account the spatial information!

The motion scores available in the local neighborhood are aggregated (sum).

The local neighborhood is delimited by a window centered on the current pixel.

The size of the window depends on the parameter N .

1 2 5 7 5 8 3 3

5 1 8 8 5 2 5 2

6 5 8 3 1 3 6 2

9 3 5 1 1 1 6 1

7 4 2 3 2 1 4 3

7 9 1 1 2 2 1 9

4 8 1 7 7 2 9 8

3 4 2 9 5 6 9 8

Motion map (3×3 window)

quantity of motion of � = ∑
�

= 14
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Scene Background Modeling Contest (IEEE SBMC 2016)
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Subjective Evaluation: Web Platform
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Subjective Evaluation: Web Platform
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Subjective Evaluation: Web Platform

35 human experts participated to the study.

Unable to choose between LaBGen and LaBGen-P for 38 sequences.

LaBGen-P was prefered for 26 sequences and LaBGen for 15 sequences.

LaBGen-P

The metrics are not correlated with the human eye and our perception of
the background→ confirmed recently by Shrotree et al. 2018.
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Award

Benjamin Laugraud (University of Liège) An Overview of Background Initialization and LaBGen 58 / 64



Performance on SBMnet: Average Ranking (07/03/2018)
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Publication: ICPR 2016

(Laugraud et al. 2016)

URL: http://hdl.handle.net/2268/201146
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Video Demonstration

URL: https://youtu.be/lcXHM42EeZo
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Unsolved Issues

Intermittent motion Strong illumination changes

Intermittent motion→ memoryless motion detection inefficient.

Strong illum. changes→ no intrinsic mechanism for temporal consistency.
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Conclusion



Conclusion

A lot of challenges make background initialization difficult to solve.

Methods based on various math. tools→ none of them solves all challenges.

LaBGen is a state-of-the art method based on temporal median filtering.

Observations considered as in motion are evicted from the median “buffer”.

Results of motion detection combined spatially.

Motion detectors without temporal memory perform the best for LaBGen.

According to state-of-the-art datasets, LaBGen is among the top performers.

Robustness against illum. changes and inter. motion still to be improved.

The human eye sometimes disagree with the current evalution methodology.
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Perspectives

Create new and innovative methods.

Welcome in our field :-)!

Improve the robustness of LaBGen against illumination changes.

We have nothing in our pipeline for the moment!

Improve the robustness of LaBGen against intermittent motion.

We are currently working on something!

Improve the evaluation methodology.

Recently, a new metric has been proposed for background initializa-
tion (Shrotree et al. 2018).

Deep learning needs a lot of data.

A massively huge dataset full of ground-truth would be really appreciated :-)!
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