Innovative Framework for Risk-Based Maintenance Optimization of Offshore Wind Substructures

Pablo G. MORATO¹, Jannie S. NIELSEN², Philippe RIGO¹

¹ANAST Research Group – University of Liege, Belgium ²Reliability and Risk Analysis Research Group – Aalborg University, Denmark

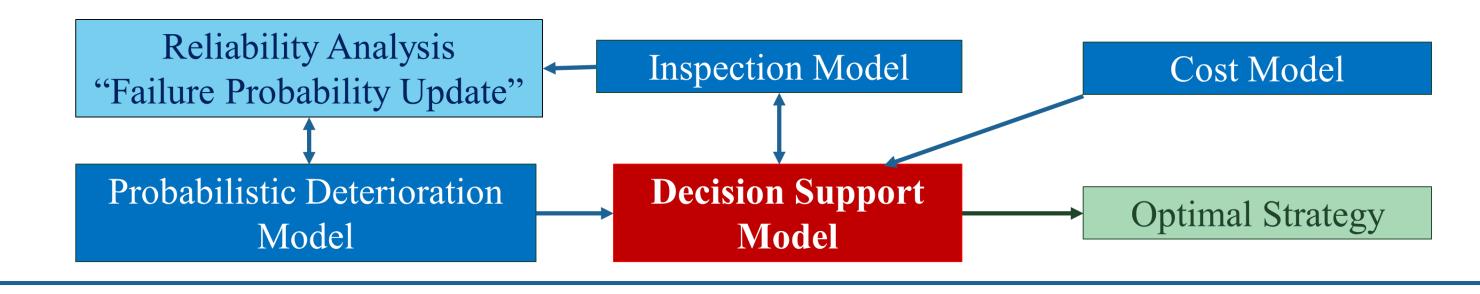
Introduction

Context: Wind farms further from shore Complicated maintenance tasks

Research Aim: To identify the optimal maintenance strategy

Impact: \downarrow O&M cost ($\approx 25\%$ LCOE) Lifetime Extension

Approach


Level IV Reliability Analysis: Failure Probability + Costs

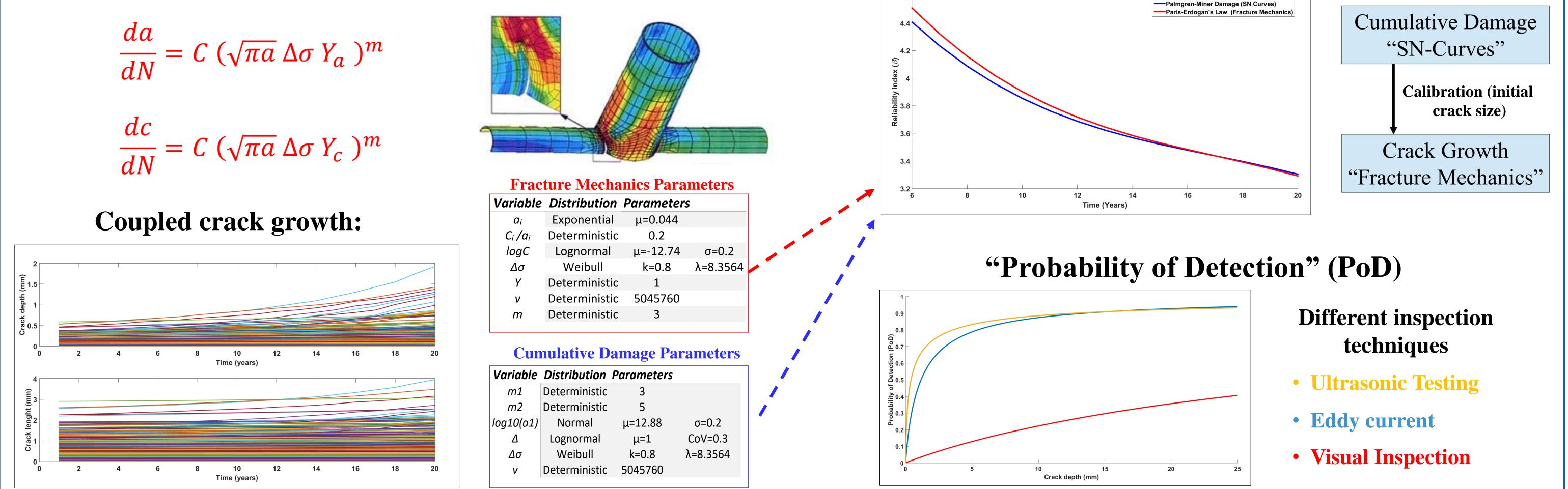
- Input: Damage, inspection and cost model

that deterioration model is realistic.

- Output: Optimal strategy (when to go for inspection)

*Information from inspections and monitoring is used to update the reliability

Fracture Mechanics Model Calibration


"Cumulative damage" using empirical SN curves. Thus, it is ensured

The initial crack size is calibrated to obtain similar damage as

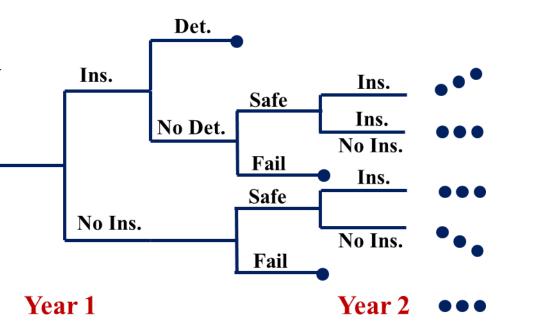
Deterioration & Inspection Models

Probabilistic Fracture Mechanics Model

The main failure mode to be considered in offshore structures is fatigue. A probabilistic damage model is built. The crack growth is estimated by using **Paris-Erdogan's Law** for each sample considered.

m2	Deterministic	5		
log10(a1)	Normal	μ=12.88	σ=0.2	
Δ	Lognormal	μ=1	CoV=0.3	
Δσ	Weibull	k=0.8	λ=8.3564	
V	Deterministic	5045760		

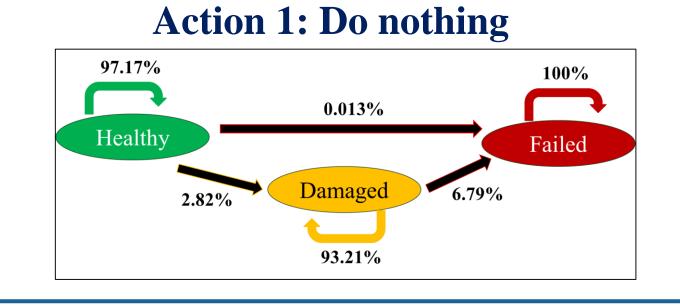
Decision Support Model – "Partially Observable Markov Decision Process"

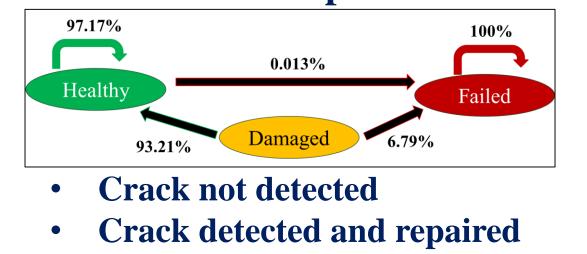

Traditional Risk-Based Inspection Methods

Before

Limitations are imposed to solve the decision problem:

- Equidistant inspections \bullet
- Probability of Failure Threshold


Otherwise, it cannot be solved within a reasonable CPU time


Innovative Risk-Based Maintenance Method

Now

- Dynamic maintenance policies POMDP
- Example: 3 States 2 Actions \bullet

Action 2: Inspection

Results

O&M Strategy for a simple tubular joint (10million samples)

Perspectives

Include system effects

- Lifetime: 30 years \bullet
- Limit state: $g = a a_c$; $a_c = 25 mm$
- Repair rule: Crack detected & repaired

Equidistant inspections

- Insp. at years: 9, 18, 27
- **CPU time: 3 hours**
- E [Repair+Ins Cost]: 7,060 €
- E [Failure Cost]: 15,360 €
- E [Total Cost]: 22,420 €

- Inspection cost: 2,000,000 €
- Repair cost: 50,000 €
- Failure cost: 5,000 €

POMPD

- Insp. at years: 14, 24
- **CPU time: 40 min (78% Reduction)**
- E [Repair+Ins Cost]: 4,630 €
- E [Failure Cost]: 16,500 €
- **E**[Total Cost]: 21,130 € (6% Reduction)
- Investigate dependencies (stochastic/functional) between components
- **Incorporate monitoring information**
 - Reliability update / Assess the "Value of Information"

Publication

Pablo G. Morato, Quang. A. Mai, Jannie S. Nielsen, Philippe Rigo (2018). "Point-Based POMDP" Risk Based Inspection of Offshore Wind Substructures. International Symposium on Life-Cycle Civil Engineering, Ghent (Belgium).

BERA PhD Seminar on Wind Energy December 4, 2017

Contact: Pablo G. Morato ANAST, Université de Liège Allée de la Découverte 9, Bat B52/3 4000 Liège, BELGIUM

pgmorato@uliege.be

AALBORG UNIVERSITET