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Abstract
Laccase 1 (Lac1), a polyphenol oxidase, has been proposed to be

involved in insect iron metabolism and immunity responses. How-

ever, little information is available on the roles of Lac 1 in insect–

plant interactions. The grain aphid Sitobion avenae is one of the most

destructive pests of cereal, directly drawing phloem sap and trans-

mitting viruses. In the present study, we first cloned the open read-

ing frame (ORF) of Lac 1 from S. avenae, and the putative protein

sequencewas predicted to have a carboxyl-terminal transmembrane

domain. We found that SaLac1 had higher expression levels in the

fourth and adult stages using reverse transcription real-time quan-

titative PCR (RT-qPCR). SaLac 1 was highly expressed in the sali-

vary gland and midgut and also in wingless compared with winged

morphs.After feedingonaphid-resistantwheatwith ahigh total phe-

nol content, the expression level of SaLac 1 increased significantly.

RNA interference (RNAi) by oral feeding successfully inhibited the

transcript levels of SaLac 1, and the knockdown of Lac 1 significantly

decreased the survival rate of S. avenae on aphid-resistant wheat.

Our study demonstrated that S. avenae Lac1 was involved in the

detoxification of phenolic compounds in wheat andwas essential for

the aphid to adapt to resistant plants.
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1 INTRODUCTION

Laccases, members of the multicopper oxidase (MCO) family, are polyphenol oxidases found in plants, fungi, bacteria,

and insects (Alexandre & Zhulin, 2000; Bao, O'Malley, Whetten, & Sederoff, 1993; Pezet, Pont, & Hoangvan, 1991).

Laccases can oxidize a wide range of compounds, including diphenols, monolignols, isoflavonoids, and tannins (Mayer

& Staples, 2002). Two types of laccase genes, laccase 1 (Lac 1) and laccase 2 (Lac 2), are identified in many insect species

(Dittmer et al., 2004; Parkinson et al., 2003). Several studies demonstrate that Lac 2 encodes an enzyme that is prin-

cipally involved in insect cuticular pigmentation and hardening (Futahashi, 2011; Niu et al., 2008 ). Lac 2 is highly

expressed in insect cuticles and levels of expression correlate temporally and spatially with cuticle sclerotization.
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Knockdown of Lac 2 using an RNA interference (RNAi) technique impaired insect cuticle tanning (Eliasneto, Soares,

Simões, Hartfelder, & Bitondi, 2010; Futahashi, 2011). However, silencing of the Lac 1 gene in the red flour beetle, Tri-

bolium castaneum, by injection of dsRNA had no effects on cuticle tanning (Arakane, Muthukrishnan, Beeman, Kanost,

& Kramer, 2005).

Orthologous Lac 1 genes have been identified in many insect species, including the whitefly, Bemisia tabaci (Yang

et al., 2017); green rice leafhopper, Nephotettix cincticeps (Hattori et al., 2010), and pea aphid Acyrthosiphon pisum

(Liang, 2006). Lac 1 is involved in iron homeostasis and immune defense of insects. Expression levels of orthologous

Lac 1 in the fruit fly, Drosophila melanogaster, increased with septic injury, indicating the role of Lac 1 in the melaniza-

tion pathway during the immunity response of the insect (Gregorio, Spellman, Rubin, & Lemaitre, 2001). The transcript

levels ofMCO 1 are upregulated in midgut and Malpighian tubules of the mosquito Anopheles gambiae in response to

a blood meal, which is either a source of iron or an injection of bacteria, suggesting that MCO 1 is involved in either

ironmetabolism or immunity (Gorman, Dittmer,Marshall, & Kanost, 2008; Liu et al., 2015). Additionally, Lac1 has been

detected in some insect tissues that function as detoxification systems, such as midguts and salivary glands; there-

fore, Lac 1 is also hypothesized to be involved in the oxidation of toxic phenolic compounds ingested by insects during

feeding and play an important role in insect–plant interactions (Dittmer et al., 2004). However, little research has been

conducted to verify this hypothesis.

The grain aphid, Sitobion avenae, is the major pest of cereal in world, causing a severe yield loss from 20 to 80% by

both direct feeding phloem sap and transmitting plant viruses, such as barley yellow dwarf virus (BYDV) (Blackman &

Eastop, 2000; Fereres, Gutierrez, Del Estal, & Castañera, 1988). The enzyme activity of polyphenol oxidases has been

detected in the saliva of S. avenae (Ma, Chen, Cheng, & Sun, 2010). The primary goal of this study was to determine the

potential roles of Lac1 in the interactions between S. avenae and wheat. In this study, we first obtained the complete

open reading frame (ORF) sequence and then determined the temporal and spatial expression patterns of Lac 1 in S.

avenae using RT-qPCR. Next, to determine whether Lac1 was involved in the interaction with plants or the detoxifi-

cation of toxic secondary plant metabolites, the transcript levels of Lac1 in the aphid were detected after feeding on

aphid-resistant wheat with high total phenol content. Knockdown of Lac1 in S. avenae by feeding on dsRNA and the

subsequent effects on aphid survival were also determined to further examine the role of this gene in aphid–wheat

interactions.

2 MATERIALS AND METHODS

2.1 Plants and aphids

Seeds of aphid-susceptible winter wheat, Triticum aestivum var. Beijing 837 (BJ837) and aphid-resistant wheat var.

KOK1679 (Chen, Sun, Ding, Ni, & Li, 1997), were respectively immersed in 0.5% sodium hypochlorite (Amresco, OH,

USA) for 30 min to sterilize the surface, then washed three times, and germinated in distilled water for 3–4 days at a

temperature of 25 ± 1◦C in sterilized petri dishes. Seedlings with similar size were carefully transferred into plastic

plots with organic soil, and rearing continued in a climate chamber (16-h light:8-h dark; 20± 1◦C).

Clones of S. avenaewere initially established from a single aphid collected from awheat field in LangfangCity, Hebei

Province, northern China and have been reared on aphid-susceptible wheat plants (var. BJ 837) for at least 6 years

(25–30 generations per year) in an indoor environment at a temperature of 20 ± 1◦C, relative humidity of 75% and

photoperiod of 16-h light:8-h dark.

2.2 Sequence and phylogenetic analysis

The full ORF of Lac 1 was obtained from the transcriptome of S. avenae (unpublished). The protein

sequence was deduced using ORF finder (https://www.ncbi.nlm.nih.gov/orffinder/). The molecular weight

and isoelectric point of the deduced protein sequence were calculated using ExPASy Proteomics Server

https://www.ncbi.nlm.nih.gov/orffinder/
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TABLE 1 Primers used for RT-qPCR analysis of SaLac 1 and reference genes

Genes Primer sequences PCR product size (bp) Amplification efficiency (E)% R2 values

SaLac 1 Forward: GACCAGACTGTGTGCCGGC 159 99 0.9996

Reverse: TTACCGTGCCAGTGGACAGA

𝛽-Actin Forward: CGTTACCAACTGGGACGATATG 111 96 0.9994

Reverse: GGGTTCAATGGAGCTTCTGTTA

NADH Forward: CGAGGAGAACATGCTCTTAGAC 93 113 0.9918

Reverse: GATAGCTTGGGCTGGACATATAG

(http://cn.expasy.org/tools/pi_tool.html). Signal peptide cleavage sites and transmembrane helices region in the

protein sequence were predicted with SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP/) and TMHMM

Server v 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), respectively. The presence or absence of glycosylphos-

phatidylinositol (GPI) anchor sites was predicted with GPI–SOM (http://gpi.unibe.ch/). Cu-oxidase Pfam domains in

the sequence were predicted using SMART (http://smart.embl-heidelberg.de/).

The phylogenetic treewas constructedwith 46 laccase sequences from insects, plants, fungi, and bacteria using the

neighbor-joining method with a matrix of pair-wise distances estimated by a Poisson model for amino acid sequences

through MEGA 5.05 software. Gaps were treated by the pairwise deletion method; bootstrap values were calculated

on 1,000 replications; branch points with bootstrap values less than 50%were collapsed.

2.3 Expression profiles of SaLac 1 in different aphid tissues, developmental stages,

andmorphs

Approximately 600 salivary glands and 300 midguts of wingless adult aphids were dissected in phosphate buffered

saline (pH = 7.2). All samples were transferred into liquid nitrogen immediately and stored at –70◦C until used. Total

RNA was extracted from different tissues, instars, and morphs of aphids using TRIzol Reagent (Invitrogen, CA, USA)

following the protocols provided by themanufacturer. The quality and quantity of RNAwere assessedwith NanoDrop

2000 Spectrophotometer (Thermo Scientific, CA, USA). A total of 1 𝜇g of RNAwas reverse transcribed into cDNAwith

a transcript one-step gDNA removal and cDNA synthesis supermix kit (TransGenBiotech, Beijing, China) following the

manufacturer's instructions, and cDNA templates were stored at –20◦C.

RT-qPCR was conducted on an ABI 7500 Real-Time PCR System (Applied Biosystems, CA, USA). The cDNA tem-

plates were diluted to 10-fold and then used as templates to detect the relative expression of the target genes in a

20 𝜇L reaction system containing 2 𝜇L of cDNA, 0.5 𝜇L of 10 𝜇mol/L forward primer and reverse primer each, 10 𝜇L

of 2 × SYBR premix Ex TaqTM (Tli RNaseH Plus, Takara, Dalian, China), and 0.4 𝜇L of 50 × ROX Reference Dye II at the

following conditions: 30 s at 95◦C followed by 40 cycles of 30 s at 95◦Cand 40 s at 60◦C. In the RT-qPCR, three biolog-

ical replicateswere analyzed for each sample, each replicate consisted of three technical replicates and the differential

expressionwas calculated using the 2−ΔΔCt method (Livak& Schmittgen, 2012). The primers of target gene SaLac 1 and

two reference genes 𝛽-actin andNADH dehydrogenase (NADH) (Xue et al., 2016) are presented in Table 1.

2.4 Transcript levels of SaLac 1 in aphids after feeding on aphid-susceptible and resistant
wheat plants

Wingless adults of S. avenae were first transferred onto new wheat plants; the next day, only newborn nymphs were

left on the plants, which were reared to wingless adults. At the two-leaf stage, five synchronous wingless adults of S.

avenaewere transferred to the first leaf of BJ 837 (aphid-susceptible) or KOK1679 (aphid-resistant) and restricted in

a plastic ecological cage (2.7 cm × 2.7 cm × 2.7 cm) to prevent aphid escape. The edge of ecological cages was covered

with sponge to avoid causing mechanical wounding of the leaf. Each pot contained one wheat plant and was grown in

climate incubator at 20 ± 1◦C and a photoperiod of 16-h light:8-h dark. After 24 or 48 h of feeding, all aphids were

http://cn.expasy.org/tools/pi_tool.html
http://www.cbs.dtu.dk/services/SignalP/
http://www.cbs.dtu.dk/services/TMHMM/
http://gpi.unibe.ch/
http://smart.embl-heidelberg.de/
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TABLE 2 Primers used for dsRNA synthesis of SaLac 1 andGFP

Genes Primer sequences PCR product size (bp)

dsLac 1 Forward: TAATACGACTCACTATAGGGCAGAATTAGAAGACGCAACA 613

Reverse: TAATACGACTCACTATAGGGCCTCAACGTGGAACTCAA

dsGFP Forward: TAATACGACTCACTATAGGGTACGGCGTGCAGTGCT 495

Reverse: TAATACGACTCACTATAGGGTGATCGCGCTTCTCG

collected, and RT-qPCRwas performed as described before to detect the expression of SaLac 1 after feeding onwheat.

Each treatment was a set of three replicates, and aphids that fed on BJ 837were used as control group.

2.5 RNA interference of SaLac 1 by feeding on dsRNA

PCR primers with T7 promoter sequences were used to produce the SaLac 1 gene for further dsRNA synthesis (Table

2). dsRNA was generated and purified using a MEGAscript T7 Transcription Kit (Thermo Fisher Scientific, CA, USA)

following the manufacturer's protocols. The dsRNA was detected by agarose gel electrophoresis and quantified using

a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific). The dsRNA was stored at –80◦C until further use.

Sucrose solution, 30%, was formulated as aphid artificial diet, and the feeding apparatus was prepared according to

a previous report (Chen, Ni, Ding, & Sun, 2000). Briefly, dsRNA was first diluted into artificial diet at 50, 100, and

200 ng/𝜇L. Two hundred microliters of artificial diet with dsLac 1 or dsGFP (control) was sandwiched between two

layers of parafilm membrane. Wingless adult aphids were collected from fresh wheat plants, and then 30 healthy and

active aphids were assigned into treatment and control groups with three replicates in each group, after being starved

for 3 h. Each feeding device was placed in an artificial climate chamber with a temperature of 20 ± 1◦C, humidity of

75%, and photoperiod of 16-h light:8-h dark. All survived aphids were collected at days 1 and 3 of feeding on dsRNA at

different dsRNA concentrations to detect the inhibition efficiency of Lac1 transcription in S. avenae.

2.6 Detection of aphid survival after SaLac 1 gene silencing

After feeding on 200 ng/𝜇L dsRNA for 3 days, 20 wingless adult aphids were fed wholly on freshly prepared pure arti-

ficial diet (without any dsRNA) or transferred onto aphid resistant wheat plants (var. KOK1679). The artificial diet was

replaced every third day to prevent mildew. The number of surviving aphids was recorded for seven consecutive days,

and the effect of SaLac 1 gene silencing on aphid survival was calculated as the percentage of surviving aphids to the

total aphids. Each treatment consisted of three replicates.

2.7 Statistical analyses

The relative expressionof SaLac1 in different aphid tissues anddevelopmental stageswas calculatedwith that ofwhole

wingless adults as reference. The expression of SaLac 1 in wingless adults was calculated using that of winged adults

as reference. The effect of dsRNA at different concentrations on SaLac 1 expression was expressed relative to that of

control groups. All results of RT-qPCR were analyzed using the SPSS Statistic 17.0 software package (SPSS, Inc., CHI,

USA), and the differences between or among groups were examined using t tests or one-way analysis of variance. The

survival rate of aphids on artificial diet or wheat was analyzed using the log-rank (Mantel-Cox) test. P values less than

0.05 indicated statistical significance.

3 RESULTS

3.1 cDNA cloning and sequence analysis of SaLac 1

As shown in Figure 1, theORFof S. avenae Lac1 (SaLac 1) contained 2,157 bases encoding 718 amino acid residueswith

a predicted molecular weight of 10.82 kDa. The GenBank accession number of SaLAC1 is MG189702. The N-terminal

http://SPSS, Inc
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F IGURE 1 Full-length ORF sequence and deduced amino-acid sequence of SaLac1 (GenBank accession no.
MG189702)
Notes. The putative signal peptide predicted by SignalP 4.1 is bold and underlined. Sequence region with green, blue,
and pink color represent T2, T1, andT3 copper domains, respectively. Carboxyl-terminal transmembrane region is indi-
cated with gray color.

signal peptide of 27 amino acid residues was predicted using SignaIP 4.1. The protein sequence was predicted to have

a carboxyl-terminal transmembrane region and be GPI-anchored; therefore, the expectation was that SaLac 1 was

attached to the exterior of the plasmamembrane through a carboxyl-terminal transmembrane region or a GPI anchor.

The encoded protein had three typical Cu-oxidase domains, located in 84–201, 212–365, and 463–618 amino acid

residues.
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F IGURE 2 Phylogenetic tree constructed by comparing the amino-acid sequences of SaLac 1 and known Lac 1 from
plants, fungi, bacteria, and insects
Notes. Phylogenetic tree was constructed by the neighbor-joining method using MEGA5.05. Bootstrap values calcu-
lated as a percentage for 1,000 replications are shown at nodes. All Lac 1 amino acid sequences and abbreviations used
to generate the tree are listed in Table S1. Solid triangle, diamond, circle, and square indicated plants, hemipetrans,
hymenopterans, and fungi. Hollow circle, diamond, and square represented lepidopterans, coleopterans, and bacteria.

3.2 Phylogenetic analysis

The phylogenetic tree was constructed to study the evolutionary relationships among Lac 1 genes of plants, insects,

fungi, and bacteria. As shown in Figure 2, Lac 1 genes were clustered into independent clades according to taxonomic

classification. Lac 1 gene of S. avenae had a close evolutionary relation with that of A. pisum, B. tabaci, N. cincticeps, and

Du-ensiform gall aphid Kaburagia rhusicola, which are all hemipteran insects.

3.3 Expression profiles of SaLac1 in different developmental stages, tissues, andmorphs

The temporal and spatial expression of SaLac 1 was detected using RT-qPCR (Figure 3A–C). Based on the results,

SaLac1 was detected in all developmental stages of S. avenae. The expression levels of SaLac 1 were lowest at the

pseudo-embryo stage and thenwere upregulated to the highest levels at the fourth (1.98± 0.15-fold) and adult stages

(1.87± 0.05-fold; P< 0.001). SaLac 1 had a higher level of expression inwingless adults than that inwinged adults (1.98

± 0.16-fold; P = 0.027), and the transcript levels of SaLac 1 were most highly expressed in the salivary gland (2.88 ±
0.28-fold) andmidgut of aphids (1.62± 0.13-fold; P< 0.001).

3.4 Expression of SaLac 1 after feeding on aphid-susceptible and resistant wheat

No significant differences were detected in the expression levels of SaLac 1 after feeding on aphid-susceptible (BJ

837) and resistant (KOK1679)wheat for 24 h (Figure 4). Additionally, no significant differenceswere observed in gene
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F IGURE 3 Temporal and spatial expression of SaLac 1 analyzed by RT-qPCR
Notes. (A) Relative expression of SaLac 1 in pseudo-embryo, larval, and adult stages. (B) Relative expression of SaLac
1 in winged and wingless morphs. (C) Relative expression of SaLac 1 in salivary gland (SG), midgut (MG), whole body
(WB), and whole body removed salivary gland (–SG). The bars indicate Mean ±SE. The different lowercase letters and
asterisk indicate significant difference (P< 0.05).
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F IGURE 4 Relative expression of Lac 1 in Sitobion avenae after feeding on aphid-susceptible and aphid-resistant
wheat
Notes. The bars indicateMean±SE. Asterisk indicates significant difference between groups (P< 0.05). No statistically
difference between groups is indicated as “ns.”

TABLE 3 Relative expression of SaLac 1 in Sitobion avenae after feeding on dsRNA for 1 and 3 days

Feeding time dsRNA 50 ng𝝁L−1 100 ng 𝝁L−1 200 ng 𝝁L−1

1 day dsGFP 0.94 ± 0.056 1.06 ± 0.040 1.07 ± 0.076

dsLac 1 0.95 ± 0.053 0.95 ± 0.063 0.70 ± 0.026*

3 days dsGFP 1.11 ± 0.070 1.09 ± 0.054 1.05 ± 0.056

dsLac 1 1.17 ± 0.06 0.64 ± 0.040* 0.49 ± 0.039*

The values (mean ± SE) in the table indicate silencing efficiencies for the different target gene dsRNA treatments relative to
the control group (dsGFP-treated group). Asterisk indicates significant difference between groups (P< 0.05).

expressionwhen exposed to BJ837 for 24 and 48 h. However, the expression levels of SaLac 1were significantly upreg-

ulated (2.65± 0.27-fold; P= 0.025) after feeding on aphid-resistant wheat for 48 h.

3.5 Expression levels of SaLac 1 after feeding on dsRNA

The silencing efficiency of different concentrations of dsRNA on the SaLac 1 gene was examined using RT-qPCR. As

shown in Table 3, the transcript levels of SaLac 1 in S. avenae decreased significantly after feeding on 200 ng/𝜇L dsLac

1 for 1 day (P = 0.011). After 3 days treatment, the expression of SaLac 1 was significantly inhibited when exposed to

100 ng/𝜇L (P= 0.003) and 200 ng/𝜇L dsLac 1 (P= 0.001).

3.6 Effect of SaLac 1 silencing on aphid survival

The effect of knockdown of SaLac 1 on aphid survival was determined. First, aphids were fed 200 ng/𝜇L dsLac 1 for

3 days to knockdown the target gene and then were transferred onto either artificial diet or aphid-resistant wheat. As

shown in Figure 5A, the survival rate of S. avenae treated with dsLac1 was not significantly different from the control

group (dsGFP) when fed the artificial diet. However, the survival rate of S. avenae treatedwith dsLac 1decreased to 58.3

±1.67%after feeding on aphid-resistantwheat for 4 days, significantly lower than that of the control group (P=0.003)

andwas further reduced to 40.0± 2.88% at day 7 (P= 0.001; Figure 5B).

4 DISCUSSION

First, Laccase 1 was obtained from S. avenae in our study, and three different conserved copper domains, Type-1 (T1),

Type-2 (T2), andType-3 (T3) (Dwivedi, Singh, Pandey,&Kumar, 2011),were found in the sequence, indicating that SaLac
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F IGURE 5 Effects of SaLac 1 silencing on the survival rate of Sitobion avenae
Notes. (A) Survival rate of S. avenae fed on artificial diet after exposed to dietary dsLac 1 and dsGFP. (B) Survival rate
of S. avenae fed on aphid-resistant wheat after exposed to dietary dsLac 1 and dsGFP. Asterisk indicates significant
difference between groups (P< 0.05).

1 is amember of the blue copper-containing polyphenol oxidase family and has oxidative activity. Studies demonstrate

that Lac 1 is a secreted protein, and laccase activity has been detected in the watery saliva of B. tabaci andN. cincticeps

(Hattori, Konishi, Tamura, Konno, & Sogawa, 2005; Yang et al., 2017). However, in our study, Lac 1 in S. avenae was

predicted as attached to the exterior of the plasma membrane. Phylogenetic analysis showed that Lac 1 cloned from

S. avenaewas clustered into the same branch as other hemipterans. Thus, the Lac 1 gene is evolutionarily relatedwithin

insects andmay have similar physiological functions.

SaLac 1wasdetected in all developmental stages of S. avenae, suggesting that this enzymeplays critical roles in aphid

development. The expression of SaLac 1 reached the highest levels at the fourth and adult stages, which was possibly

related to increased food consumption. Aphids might improve the detoxifying abilities for secondary metabolites in

phloem sap by upregulating the expression levels of SaLac 1. Yang et al. (2017) also found that Lac 1 had the highest

levels of expression in the fourth instar and adult stage of B. tabaci.

Lac 1 transcripts have been detected in the salivary gland and midgut of A. pisum and B. tabaci (Liang, 2006; Yang

et al., 2017).NcLac1S andNcLac1G, two isoforms of Lac 1, were identified inN. cincticeps;NcLac1Swas expressed exclu-

sively in the salivary glands, whereasNcLac1Gwas detected in the cuticle, Malpighian tubules, and midgut, in addition
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to in the salivary glands (Hattori et al., 2010).Our results showed that SaLac 1wasmost highly expressed in the salivary

gland and midgut of S. avenae. The insect salivary gland and midgut are two important sites for detoxification of toxic

compounds; thus, the tissue expression patterns were consistent with predicted functions of Lac 1 as a detoxifying

enzyme.

To determine whether SaLac 1 was involved in interactions with wheat and the detoxification of toxic phenolic

compounds, the expression level of SaLac 1 in S. avenae was detected after feeding on aphid-resistant wheat variety

KOK1679. The contents of total phenol are positively correlated with wheat resistance to aphids, and research shows

that KOK1679 has high total phenol content as an antibiosis resistant cultivar (Chen et al., 1997). The expression of

SaLac1was significantly inducedafter feedingonKOK1679, indicating that Lac1of S. avenaewas involved in thedetox-

ification of phenolic compounds in wheat.

To further demonstrate the potentially important roles of Lac 1 in interactions with plants, we performed feeding-

based RNAi to knockdown the expression of SaLac 1 and then detected the effects of gene silencing on aphid survival.

The data presented in this study showed that oral delivery of gene-specific dsRNA successfully silenced the target

gene in S. avenae. In previous studies, catalase, odor-binding proteins and genes in guts of S. avenae were successfully

silenced by feeding on dsRNA (or siRNA) (Deng&Zhao, 2014; Fan et al., 2015; Zhang et al., 2013), indicating that RNAi

by oral feeding is a reliable and efficient method for the functional analysis of genes in S. avenae and further aphid

control.

RNAi induced by oral delivery of dsRNA is often less efficient than that induced through microinjection (Rajagopal,

Sivakumar, Agrawal,Malhotra, &Bhatnagar, 2002). Some studies suggest that dsRNA is degraded in artificial dietswith

salivary secretions and hemolymph, resulting in a low efficiency of gene silencing (Christiaens, Swevers, & Smagghe,

2014). In our study, knockdownof the target gene failed at the low concentration of dsRNAat day 1, but the expression

of SaLac 1was inhibited successfully when aphids were fedwith the high concentration of dsRNA for longer treatment

duration. The efficiency of oral feeding-based RNAi is associated with feeding time and dsRNA concentration (Baum

et al., 2007; Chen et al., 2010). Therefore, increased feeding times and high dsRNA concentrations may remedy the

effects of dsRNA degradation. However, studies also show that high concentrations fail to increase silencing (Atsushi

et al., 2007; Shakesby et al., 2009); therefore, the optimal concentration of dsRNA for high silencing efficiencymust be

determined.

We found that the survival rate of S. avenaewith Lac 1 silencingwas not affected after feeding on pure artificial diet,

but decreased significantly after feeding on aphid-resistantwheat KOK1679 at day 4. These results suggested that Lac

1 of S. avenaewas involved in interactions with wheat andwas essential for successful adaptation to wheat resistance.

In addition to thedetoxificationof phenolic compounds, Lac1maybe involved in the formulationof the stylet sheath

(Hattori et al., 2005). During the process of probing and feeding, aphids secrete saliva into plant cells, and a mixture of

saliva and phloem sap flows simultaneously into salivary glands. The salivary Lac 1 of S. avenae is hypothesized to use

phenolic compounds in wheat plants as substrate and promote the rapid oxidative gelling of the stylet sheath via the

quinine tanning reaction, which is a hypothesis worthy of further study.

In conclusion, Lac 1 was first cloned from S. avenae. High levels of expression were found in the fourth and adult

stages, and SaLac 1 was also highly expressed in the salivary gland and midgut of the aphid. The results of RT-qPCR

and RNAi indicated that SaLac 1 had a potentially important role in overcoming plant resistance by detoxifying toxic

phenolic metabolites.
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