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Abstract 

 

Purpose: triple-negative breast cancer (TNBC) patients with residual disease after neoadjuvant 

chemotherapy have a poor outcome. We developed patient-derived xenografts (PDX) from residual 

tumors to identify efficient chemotherapies and predictive biomarkers in a context of resistance to 

anthracyclines and taxanes-based treatments. 

Experimental Design: PDX were established from residual tumors of primary breast cancer patients 

treated in neoadjuvant setting. TNBC PDX were treated by anthracyclines, taxanes, platins and 

capecitabine. Predictive biomarkers were identified by transcriptomic and immunohistological 

analysis. Downregulation of RB1 was performed by siRNA in a cell line established from a PDX. 

Results: residual TNBC PDX were characterized by a high tumor take, a short latency and a poor 

prognosis of the corresponding patients. With the exception of BRCA1/2 mutated models, residual 

PDX were resistant to anthracyclines, taxanes, and platins.  Capecitabine, the oral prodrug of 5-FU, 

was highly efficient in 60% of PDX with two models showing complete responses. Prior treatment of 

a responder PDX with 5-FU increased expression of thymidylate synthase and decreased efficacy of 

capecitabine. Transcriptomic and IHC analyses of 32 TNBC PDX, including both residual tumors and 

treatment-naïve derived tumors, identified RB and TYMP proteins as predictive biomarkers for 

capecitabine response. Finally, RB1 knockdown in a cell line established from a capecitabine-

responder PDX decreased sensitivity to 5-FU treatment. 

Conclusions: we identified capecitabine as efficient chemotherapy in TNBC PDX models established 

from residual disease and resistant to anthracyclines, taxanes and platins. RB positivity and high 

expression of TYMP were significantly associated with capecitabine response. 
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Translational Relevance 

Residual disease after neoadjuvant chemotherapy is associated with poor outcome in TNBC patients. 

There is no standard of care for adjuvant treatment for these patients, and chemotherapy in the 

metastatic setting is of limited efficacy. We established a panel of PDX from breast residual tumors 

after neoadjuvant chemotherapy. We identified capecitabine as effective chemotherapy in TNBC PDX 

with cross-resistance to anthracyclines, taxanes and platins. Prior treatment of PDX by 5-FU resulted 

in increased thymidylate synthase expression and decreased capecitabine efficacy. Molecular 

analyses identified RB and TYMP proteins as predictive biomarkers of capecitabine response. In 

addition, a pharmacodynamic analysis of post-treatment tumors showed strong inhibition of RB-

dependent genes in capecitabine responder tumors. These results suggest that RB and TYMP 

expression in residual breast tumors may help to identify patients more likely to respond to 

capecitabine in adjuvant or metastatic setting. 

 

 

 

 

 

 

Introduction 

Triple-negative breast carcinomas (TNBC), which are negative for estrogen/progesterone (ER/PR) 

receptor expression and lack HER2 overexpression, account for 15% to 20% of breast cancers. TNBC 

differ from other subtypes of breast cancer in terms of axillary lymph node involvement, locoregional 

recurrence, time to metastasis (these patients have a high risk of early relapse and much lower 

survival in the first three to five years after treatment) and patterns of distant recurrence (1). TNBC is 

emerging as a highly heterogeneous disease in terms of histological features, clinical behavior and 

sensitivity to systemic treatments (1). It constitutes a major clinical challenge, as there have been no 
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major improvements in the treatment of this subgroup of tumors, apart from chemotherapy 

(anthracycline- and taxane-based chemotherapy regimens), which has reduced mortality by about 

30% (2).  

Cytotoxic chemotherapy is currently the only treatment option for TNBC. For TNBC patients, a 

pathological complete response (pCR) to NAC is associated with prolonged overall and event-free 

survival times (3-5). Although the rate of pCR following standard NAC is significantly higher for TNBC 

as compared to the other breast cancer subtypes, more than 50% of TNBC patients treated in the 

neoadjuvant setting have residual disease and are associated to an increased risk of distant 

recurrence, particularly during the first three years after treatment, and a poor outcome.  This 

paradox may be explained by the presence of residual disease in more than half the patients (>60%). 

At present, there is no standard of care for adjuvant treatment in TNBC patients with residual disease 

after NAC, and chemotherapy in patients with metastatic disease is of limited efficacy. 

Preclinical studies focusing on residual tumors after NAC could provide an important tool to identify 

efficient therapies and predictive biomarkers in tumors showing resistance to NAC (6). In this study, 

we established patient-derived xenografts (PDX) from residual breast tumors after NAC and found 

that capecitabine was an effective chemotherapy agent in 60% of TNBC models.  We also identified 

the expression of thymidylate phosphorylase (TYMP) and RB as biomarkers predictive of the 

response to capecitabine.  

 

 

Materials and Methods 

Patient-derived xenografts 

Female Swiss nude mice were purchased from Charles River (Les Arbresles, France) and maintained 

under specific pathogen-free conditions. Their care and housing were in accordance with institutional 

guidelines and the rules of the French Ethics Committee (project authorization no. 02163.02). 

Patient-derived xenografts were established from primary breast cancer patients with residual 
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disease after neoadjuvant chemotherapy, with informed consent from the patient, in accordance 

with published protocols (7, 8). For two patients (#90 and #95) xenografts were established from a 

local breast cancer recurrence treated by NAC. These two patients were excluded frm the disease-

free survival analysis. 

Histology and immunohistochemistry status (ER, PR and HER2) was determined for the PDX and 

compared with that of the patient tumors, as described elsewhere (7, 9). The PDX derived from 

primary tumors have been described elsewhere (7, 8, 10).  

Adriamycin (DOX, doxorubicin, Teva Pharmaceuticals, Paris, France), docetaxel (Sanofi Aventis, 

Marly-la-Ville, France), cisplatin (CDDP, Teva) and cyclophosphamide (Endoxan, Baxter, Maurepas, 

France) were administered by the intraperitoneal (ip) route, at doses of 2 mg/kg, 20 mg/kg, 6 mg/kg 

and 100 mg/kg, respectively, every three weeks. Capecitabine (Xeloda, Roche Laboratories, Nutley, 

NJ) was administered per os at a dose of 540 mg/kg/day, q5d x 6 weeks. Paclitaxel (Fresenius Kabi 

France) was administered weekly, at a dose of 20 mg/kg (ip), and bevacizumab (Roche, Boulogne-

Billancourt, France) was administered at a dose of 10 mg/kg (ip) every three weeks. Trastuzumab 

(Roche) was administered weekly, at a dose of 10 mg/kg. Fluorouracil (5-FU) (Fresenius Kabi France) 

was administered at a dose of 50 mg/kg (ip) and navelbine (Pierre Fabre Laboratories, France) was 

administered at a dose of 3 mg/kg (iv) every two weeks. The doses for drug combinations were 

determined in tolerance studies, based on human equivalences (11) and clinical schedules.  

Relative tumor volumes (RTVs) and the percent tumor growth inhibition (TGI) were calculated as 

previously described (7). Kaplan–Meier survival analysis was performed on HBCx-95 xenografts 

treated with various chemotherapy regimens, with GraphPad Prism software (San Diego, CA). An 

event was defined as a quadrupling of tumor volume from the initial tumor volume (12).  

Percent change in tumor volume was calculated for each tumor as (Vf-V0/V0)*100 where V0 = initial 

volume (at the beginning of treatment) and Vf= final volume (at the end of treatment). Tumor 

regression (R) was defined as a decrease in tumor volume of at least 50% taking as reference the 
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baseline tumor volume; at least a 35% increase in tumor volume identified progressive disease (PD) 

and responses that were between +35% and -50%  were considered as stable disease (SD) (13). 

Categorical variables were analyzed with Fisher's exact test. The statistical significance of TGI was 

determined in Mann-Whitney U tests. 

 

Statistical analysis of the patients’ clinical data 

We analyzed the clinical parameters of 12 patients in the residual disease group (two patients 

receiving neoadjuvant chemotherapy for local breast cancer relapse were excluded) and 30 patients 

in the primary tumor group. 

The clinical data for the patients are expressed as  frequencies for qualitative variables or medians 

and associated range for quantitative variables. They were compared in Chi-squared or Fisher’s exact 

tests, as appropriate.  Disease-free probabilities were estimated by the Kaplan–Meier method, and 

survival curves were compared in log-rank tests. Analyses were performed with survival and ggplot2 

R libraries. 

 

Targeted next-generation sequencing  

DNA extraction and targeted next-generation sequencing of TP53, BRCA1 and BRCA2 were 

performed by the ICGex NGS platform of Institut Curie, as previously described (14). Germline BRCA1 

and BRCA2 mutations (BRCA1: p.E849X; BRCA2: p.T1282fs ) were present in both the initial tumors 

and the PDX. 

 

RNA extraction and RT-PCR analysis 

RNA extraction and RT-qPCR were performed as previously described (10, 15). For gene 

normalization, we used the human TATA box-binding protein (TBP, GeBbank accession no. 

NM_003194). We used protocols for cDNA synthesis and PCR amplification described in detail 

elsewhere (16, 17). The results are expressed as N-fold differences in target gene expression relative 
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to the TBP gene. In the pharmacodynamics analysis, these N-fold differences values for each 

xenograft were subsequently normalized to yield a median value of 1 for the control xenograft group.  

 

Microarray data analysis 

GeneChip Human 1.1 ST arrays were hybridized according to Affymetrix recommendations, using the 

Ambion WT Expression Kit protocol (Life Technologies) and Affymetrix labeling and hybridization kits. 

All analyses were performed with R software (version 3.3; R Core Team 2017) and Bioconductor 

packages (version 3.4) (18). Arrays were normalized according to the RMA normalization procedure 

from oligo package (19). Differential expression between PDX responding and resistant to 

capecitabine was assessed by a linear model method, with the Limma package (20). We used the 

false discovery rate (FDR) procedure to adjust for multiple testing. We considered log fold changes in 

expression > 1.5,  and p-values < 0.05 to be statistically significant. 

 

RB1 silencing and cell proliferation assays  

The HBCc-12A cell line was established from the residual TNBC PDX HBCx-12A by mechanical 

dissociation and removal of cellular debris and erythrocytes. The HBCc-12A cell line and the HBCx-

12A PDX were genotyped with the GenePrint® 10 System (#B9510, Promega) that allows 

coamplification and three-color detection of nine human loci. The cell line was grown at 37°C in 

DMEM Glutamax medium supplemented with 10% Fetal Bovine Serum, 1% Penicillin Streptomycine, 

1% Hepes Buffer, 1% Sodium Pyruvate and 10 µg/ml Insulin (Sigma) . 

HBCc-12A cells were transfected with 20 nM siRNA against RB1 (SI00007091, QIAGEN) and AllStars 

siRNA as negative control (SI03650318, QIAGEN) using INTERFERin reagent (POL409-50, Ozyme) in 

Opti-MEM medium (Life Technologies), according to the manufacturers’ instructions. 

Cells were plated in duplicate into 96-well culture plates at a density of 7x103 cells per well and left 

overnight. siRNA and 5-FU were added 24H and  30H after seeding and on day 5 cell proliferation was 
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determined by MTT assay  (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide ) (MTT; M-

2128, Sigma). 

 

Western blot 

For western blot analyses, 115x 103 HBCc-12A cells were plated into 6-well culture plates. siRNA and 

5-FU were added at the same concentrations and timelines of MTT proliferation assays.  Proteins 

were extracted as described previously (8). Lysates were resolved on 4–12% TGX gels (Bio-Rad®), 

transferred into nitrocellulose membranes (Bio-Rad®) and  immunoblotted with rabbit antibodies 

against GAPDH (#2118, Cell Signaling Technology, Leiden, The Netherlands ), Rb (#9309, Cell Signaling 

Technology), P-Rb (#9308, Cell Signaling Technology). After washes, membranes were incubated with 

the appropriate secondary antibodies horseradish peroxidase-conjugated affinity-purified goat anti–

rabbit (111-035-045, Jackson ImmunoResearch Laboratories, Inc., Interchim). 

 

 

IHC  

Xenografted tumors were fixed in 10% neutral buffered formalin, embedded in paraffin and stained 

with hematoxylin and eosin.  Immunostaining was performed on a Discovery XT Platform (Ventana 

Medical System, Tucson, Arizona, USA, part of Roche Diagnostics) (17).  The slides were incubated 

with a polyclonal rabbit antibody against TYMP (#HPA001072, Sigma, St. Quentin, France), a 

monoclonal mouse antibody against RB (#9309, clone 4H1, Cell Signaling Technology, Leiden, The 

Netherlands) and a monoclonal rabbit antibody against TYMS (#9045, Ozyme, Saint-Quantin Yvelines, 

France). Slides immunostained with mouse and rabbit IgG were used as negative controls. Slides 

were incubated with anti-rabbit/mouse secondary antibodies (horseradish peroxidase complex) and 

DAB (3,3′-diaminobenzidine tetrahydrochloride) as the substrate for color development 

(ChromoMap Kit with Anti rabbit OmniMap, Ventana Medical System). TYMP immunostaining was 

assessed by determining the intensity and distribution of stained cancer cells, as previously described 
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(21). Immunostaining intensity was scored as follows: 0, negative staining; 1, weak staining; 2, 

moderate staining; and 3, strong staining. Immunostaining intensity scores were grouped into three 

classes, as follows:  1) ≤33% of the tumor cells stained; 2), 33-66% of the tumor cells stained; and 3) 

66-100% of the tumor cells stained.  Summed scores were also obtained by adding the scores for two 

parameters (21).  

 

 

Results 

Residual tumors are characterized by high take rates and poor survival of the corresponding 

patients 

We established 22 PDX by transplanting 53 breast tumors from patients with residual disease after 

NAC. The take rates for the ER+, HER2+ and triple-negative subtypes were 23%, 22% and 78%, 

respectively (Supplementary Table 1). When compared to PDX derived from treatment-naïve primary 

tumors, previously reported (7, 9), take rates of residual tumors were higher for ER+ and triple-

negative subtypes (Fig. 1A and Supplementary Table S1). In the TNBC group, median PDX latency 

after engraftment was 67 days for residual tumors, versus 160 days for treatment-naïve primary 

tumors (Fig. 1B). With a high tumor take and a short latency, residual TNBC PDX may provide an 

opportunity for preclinical testing of anticancer agents prior to relapse in patients. We therefore 

retrospectively compared the metastasis-free survival (MFS) of the patients with the latency periods 

of the 14 PDX established from the residual tumours (Fig. 1C). Ten of these patients presented a 

recurrence of metastatic disease, three remain metastasis-free and one died five months after 

mastectomy (HBC-12A, an 89-year-old patient). PDX latencies were considerably shorter than MFS 

for eight patients (p=0.021, paired t-test).  

The clinical characteristics of patients in the residual disease and primary tumors groups are 

summarized in Supplementary Table 2 and Supplementary Figure 1. Prognosis was worse in the 
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residual disease group of patients, for whom survival was 28% at 25 months, versus 75% for the 

patients in the primary tumor group (p=0.048, log-rank test) (Fig. 1D).  

These results highlight the aggressive phenotype of residual tumors, with high tumor take rates, a 

short tumor latency during PDX establishment and low survival of the corresponding patients. 

 

Residual tumor PDX are resistant to anthracyclines, docetaxel and cisplatin, but respond to 

capecitabine 

We determined the response to chemotherapy in 10 PDX derived from residual tumors, and 

compared this response with that of PDX derived from primary tumors (7). The chemotherapy 

regimens used were AC (adriamycin plus cyclophosphamide), docetaxel, cisplatin and capecitabine. 

Only 10%, 20% and 0% of residual TNBC PDX responded to AC, cisplatin, and docetaxel, with a TGI of 

at least 90%, whereas 50%, 52% and 10% of treatment-naïve TNBC PDX responded to these 

treatments (Fig.1E). Conversely, residual TNBC PDX displayed a higher frequency of response to 

capecitabine (60%) as compared to treatment-naïve PDX (36%). 

Table 1 summarizes the NAC administered to patients, tumor histology, status for BRCA1/2 and TP53 

mutations and response to chemotherapy, as assessed by tumor growth inhibition (TGI) and adapted 

RECIST criteria (13), for 10 residual TNBC PDX. 

Only one residual PDX responded to AC with a TGI≥ 90%,  none responded to docetaxel and two (one 

with a BRCA1 mutation and the other with a BRCA2 mutation) responded to cisplatin (with tumor 

regression observed in only one of these cases)(Table 1 and Supp. Fig. S2A).  

Six of the 10 residual PDX responded to capecitabine with a TGI≥90: four (HBCx-12A, HBCx-63, HBCx-

92 and HBCx106) with stable disease and 2 models with tumor regression (HBCx-39 and HBCx-95) 

(Table 1). Three of the four capecitabine-resistant PDX corresponded to metaplastic breast cancer. 

The drug response profiles of 3 capecitabine-responder PDX are illustrated in Figure 1F. Response to 

capecitabine was homogeneous in the different mice (Fig. 1G). HBCx-95 capecitabine-treated 

xenografts showed complete responses at day 40: the xenografts of this model were monitored for 
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10 months after the end of treatment. A Kaplan-Meier survival curve (Supp. Fig. S2B) showed that 

event-free survival was greater for animals treated with capecitabine than for animals receiving 

other types of chemotherapy (p=0.0004, log-rank test).  

 

The efficacy of capecitabine in PDX is decreased by prior treatment  

In the advanced setting, capecitabine is usually administered as a second or third line treatment. We 

hypothesized that prior treatment of tumors with a different chemotherapy regimen might affect the 

response to capecitabine. We tested this hypothesis in one residual TNBC PDX, through the 

sequential administration of chemotherapies administered to the patient in the adjuvant and 

metastatic settings. Patient #63 received FEC and docetaxel as NAC, followed by 5-FU and navelbine 

as an adjuvant treatment, then paclitaxel + bevacizumab (first line) and capecitabine (second line) in 

the metastatic setting (Fig. 2A). We administered the same treatments sequentially to the HBCx-63 

PDX, established from the residual tumor, and compared it to the efficacy of capecitabine in non-

pretreated tumor. Results are shown in Figure 2B: capecitabine given in xenografts pre-treated by 5-

FU + navelbine or by paclitaxel + bevacizumab resulted in progressive disease in 4/5 and 6/6 

xenografts (mean of 144% and 130%, respectively). By contrast, 7/9 xenografts treated with 

capecitabine without prior treatment displayed stable disease, one progressive disease and one 

tumor regression (mean=14%). Thus, prior treatment by 5-FU and navelbine decreased capecitabine 

efficacy.  

We next analyzed the expression of two enzymes whose expression may influence capecitabine 

response: thymidylate synthase (TYMS), the target enzyme for 5-FU, and thymidylate phosphorylase 

(TYMP), an enzyme involved in the metabolism of 5-FU and capecitabine (22). TYMS expression was 

increased after treatment by 5-FU and navelbine and this increase was maintained in xenografts 

treated by paclitaxel and bevaciuzumab (Fig. 2C). By contrast, TYMP expression was unchanged by 

the different treatments (data not shown). 
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Anti-tumor activity of capecitabine is significantly correlated with expression of RB and 

thymidylate phosphorylase proteins in a large panel of breast cancer PDX  

For the identification of markers predictive of capecitabine response, we combined the capecitabine 

response data for 10 residual TNBC PDX with those obtained from 22 primary tumor-derived TNBC 

PDX previously determined (unpublished data). The responses to capecitabine treatment of the 32 

TNBC PDX are represented as waterfall plots in Figure 3A: in 15 PDX, capecitabine treatment resulted 

in stable disease or tumor regression, whereas in the other 17 PDX, it resulted in progressive disease. 

To identify genes associated with the capecitabine response, we performed a differential analysis of 

gene expression microarray datasets available for 25 TNBC PDX (15 resistant and 10 sensitive). 

Hierarchical clustering based on 37 genes (17 upregulated and 20 downregulated in sensitive PDX) 

grouped 100% of sensitive PDX together (Fig. 3B). The 37 genes concerned are listed in 

Supplementary Table S3. Three of these genes encode proteins involved in cell-cycle regulation: RB1 

and CCND1, which were upregulated in responder models, and CDKN2A, which was upregulated in 

resistant models. Among genes implicated in capecitabine metabolism (TYMP, TYMS, TK1, DPYD), 

only TYMP expression was higher in responder models, although the fold change did not pass the 

threshold for global differential analysis (Supp. Fig. S3).  

To validate RB at the protein level, we analyzed its expression by IHC in the 32 TNBC PDX.  RB protein 

was detected in all 15 (100%) responder PDX and in 6/17 resistant (35%) PDX (Fig. 3C and 3D). 

Positive and negative predictive values were 71% and 100%, respectively (p=0.0001, Fisher’s exact 

test).  

We then quantified TYMP protein expression in the 32 TNBC PDX by determining the IHC H-score 

(21). Examples of negative and positive TYMP IHC results are shown in Figure 3E. Thymidine 

phosphorylase IHC H-score was significantly higher in responder tumors (Fig. 3F). Median TYMP IHC 

H-score was 4.25 (range: 0–6): 80% of the responding PDX had TYMP expression scores ≥4.25 and 

76% of resistant PDX had scores < 4.25. Positive and negative predictive values were 75% and 81%, 

respectively (p=0.0038; Fisher’s exact test). Among the 6 RB positive PDX that did not respond to 
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capecitabine, 5 showed no or low expression of TYMP (data not shown). The combination of RB 

positivity and a TYMP score> 4.25 had a positive predictive value of 92% and a negative predictive 

value of 100%, accurately predicting response in 12/15 xenografts and resistance in 8/17. 

Finally, we assessed capecitabine efficacy in one PDX derived from a patient with HER2-positive 

breast cancer treated with trastuzumab in the pre-operative setting (HBCx-73). The xenograft was 

Rb-positive and expressed high levels of TYMP (Supp. Fig. S4A). Capecitabine had strong antitumor 

activity against this xenograft (TGI=99%), whereas trastuzumab did not arrest tumor growth (Supp. 

Fig. S4B). 

 

Tumor growth inhibition is correlated with a strong decrease in the expression of various RB-

dependent genes in capecitabine-treated xenografts 

RB plays a critical role in coordinating the expression of genes required for cell-cycle progression 

through interaction with the transcription factor E2F. We therefore looked at the correlation 

between capecitabine’s efficacy and the expression changes of 8 genes included in the “RB gene 

expression signature” and  involved in cell proliferation (CCNA2, CCNB1, TOP2A, TTK, PLK1 and 

AURKA ) and nucleotides metabolism (TYMS, TK1) (23). We analyzed control and post-treatment 

xenografts of 7 PDX, including both capecitabine-resistant and capecitabine-sensitive PDX (Fig. 4A). 

The expression levels of the eight genes, determined by RT-PCR, are shown in Supplementary Figure 

S5. A heat-map representing the fold-change difference between capecitabine-treated and control 

xenografts is shown in Figure 4B. All genes were strongly downregulated in the three RB-positive PDX 

with the highest levels of tumor growth inhibition (HBCx-63, HBCx-12A and HBCx-39), whereas no 

change was found in the three PDX in which capecitabine had little or no effect. The correlation 

between fold-change differences in gene expression and tumor growth inhibition by capecitabine is 

shown in Figure 4C and was statistically significant for all genes. 

 

Inhibition of RB1 gene decreases response to 5-FU in vitro 
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We tested whether RB1 inhibition could have an impact on capecitabine reponse in the HBCc-12A 

cell line, established from the RB positive HBCx-12A PDX (residual tumor derived PDX). This PDX 

responds to capecitabine with a TGI of 96% (stable disease with recist criteria) (Fig. 5A).  We 

performed a cell viability assay to determine the in vitro response of the cell line to 5-FU: the cell line 

showed a IC50 of 33 M (Fig. 5B). The cell line was then transfected with 2 different siRNA directed 

against RB1 or control (scramble siRNA) and exposed to 40 M of 5-FU for 120H. Western blot 

analysis demonstrated downregulation of RB protein in cell exposed to siRB1 and siRB2, with an 

increased inhibition for siRB1, in both untreated and 5-FU treated cells (Fig. 5C). Phosphorylation of 

RB protein was inhibited by 5-FU. Inhibition of RB1 decreased sensitivity to 5-FU of 40% as assessed 

by the MTT viability assay (the increased viability was greater for siRB1 as compared to siRB2) (Fig. 

5D). In summary, these results show that RB has a role in determining the cellular response to 5-FU 

treatment. 

 

 

 

Discussion 

We established a cohort of breast cancer PDX models by engrafting residual tumors after NAC. 

Residual TNBC PDX had a higher tumor take rate and a shorter latency than TNBC PDX derived from 

treatment-naïve breast cancers. Both these characteristics are suggestive of an aggressive 

phenotype. These results are similar to those reported by McAuliffe et al who showed that take rates 

were higher for breast cancers treated in the neoadjuvant setting (24). The aggressiveness of these 

tumors was confirmed by the poor outcomes of the corresponding patients. In more than half the 

TNBC patients, PDX latency was shorter than metastasis-free survival. The residual tumor PDX 

therefore becomes available for in vivo drug testing over a time frame compatible with clinical 

decision-making concerning first-line chemotherapy. Furthermore, residual TNBC PDX were resistant 

to anthracyclines and docetaxel-based chemotherapy. As these drugs were given to patients in the 
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neoadjuvant setting, in which they were of limited efficacy, the resistance phenotype of the patients’ 

tumors is maintained and reproduced in xenograft models. Residual tumor PDX were also resistant to 

cisplatin, with the exception of PDX established from BRCA1/2-mutated breast cancers. Despite the 

small size of this series of xenograft models, this finding indicates that residual tumors display a 

multidrug resistance phenotype extending to different chemotherapy classes, including 

anthracyclines, cyclophosphamide, docetaxel and cisplatin. It also suggests that patients with BRCA1- 

and BRCA2-mutated tumors may still respond to platin-based chemotherapies.  The patient with the 

BRCA1-mutated tumor has not yet relapsed, and the patient carrying the BRCA2-mutated tumor 

displayed a partial response to six cycles of first-line treatment with paclitaxel and carboplatin. 

However, given the small number of cases, these results require confirmation in a larger cohort. 

Responses to capecitabine were observed in six of the 10 residual tumor-derived PDXs displaying 

cross-resistance to anthracyclines, docetaxel and cisplatin. Three of the four capecitabine-resistant 

PDX were established from metaplastic breast cancers, a histological subtype of TNBC known to be 

particularly aggressive and resistant to chemotherapy (25).  

These findings are of particular interest for several reasons. Firstly, they are consistent with the 

results of a recent clinical trial (CREATE-X) demonstrating the efficacy of adjuvant capecitabine 

treatment in TNBC patients with residual invasive disease after neoadjuvant chemotherapy (26). 

Secondly, capecitabine treatment is well tolerated and may be compatible with adjuvant treatment 

in patients with a high risk of tumor recurrence. The FinXX trial also reported beneficial effects on 

survival in TNBC patients treated with a capecitabine-containing regimen in the adjuvant setting (27). 

In the CREATE-X trial, TNBC disease-free survival was 69.8% in the capecitabine group, versus 56.1% 

in the control group (26). Thus, a large proportion of patients remained that did not benefit from 

adjuvant capecitabine treatment. Predictive biomarkers are crucial for identifying the patients most 

likely to benefit from treatment.  

Based on the analysis of transcriptomic data, we identified and validated RB as a biomarker 

predictive of the response to capecitabine in TNBC PDX. RB is a tumor suppressor protein that 
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regulates cell-cycle progression by preventing entry into the mitotic phase (28). It may be inactivated 

by hyperphosphorylation or protein loss, both of which disrupt its association with the transcription 

factor E2F, facilitating the expression of a transcriptional program leading to progression through S-

phase and mitosis (29). RB is also a key regulator of cell-cycle arrest upon DNA damage (30). The 

finding that capecitabine efficacy is correlated with RB expression may be explained by the role of 

this protein in cell-cycle control and the checkpoint response to chemotherapy. Consistent with this 

hypothesis, RB reconstitution in RB-deficient lung cancer cell lines re-establishes the regulation of 

REB/E2F target genes and restores the G1 checkpoint response to chemotherapy regimens including 

5-FU (31). Similarly, inactivation of RB1 gene by siRNA in a cell line derived from a capecitabine-

responder PDX decreased sensitivity to 5-FU, further supporting a role of RB in determining the 

response to 5-FU/capecitabine. 

 In addition to its role in canonical cell cycle-dependent regulation, RB also inhibits cell proliferation 

by regulating nucleotide metabolism by inhibiting enzymes involved in dNTP synthesis. The absence 

of functional RB leads to a deregulation of the expression of dNTP enzymes (such as TYMS) and 

antimetabolite resistance (32). Li et al. demonstrated that a lack of functional RB increases resistance 

to antimetabolite drugs in human sarcoma cells, by increasing the expression of the DHFR and TYMS 

genes, both of which are under the control of the E2F factor and targeted by antimetabolite 

chemotherapy (33). The expression of genes encoding proteins involved in nucleotide metabolism 

(TYMS) and the RB-dependent S-phase DNA damage response (CCNA2) (34) was strongly inhibited in 

RB-positive models treated with capecitabine, suggesting that the canonical and metabolic regulation 

of cell proliferation may together account for the observed antitumor effects of capecitabine. 

From the analysis of transcriptomic data, RB1 and CDKN2A expression appeared inversely correlated, 

a finding that is in line with previous reports (35). CDKN2A gene encodes the p16(INK4a) protein that 

plays an important role in cell cycle through the regulation of the cyclin-dependent kinase (CDK) 4/6 

and cyclin D complexes. Loss of p16(INK4a)  can occur by genetic or epigenetic mechanisms and 

results in Rb protein activation, leading to unchecked cellular proliferation (36). Evaluation of 
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p16(INK4a) expression by immunohistochemistry analyses in TNBC PDX will be necessary in order to 

validate it as potential biomarker of capecitabine resistance. 

Finally, an association has been found between the RB pathway and chemotherapy response in 

breast cancer patients (28). In metastatic breast cancer, mutations of the RB gene are associated 

with a poor response to anthracyclines (37, 38). RB pathway inactivation is predictive of resistance to 

DNA damage-based treatments in locally advanced breast cancer (39).  

Capecitabine is converted to 5-FU in cancer cells TYMP enzyme (40). Thymidine phosphorylase also 

activates 5-FU, by converting it to 5‑fluoro‑2'‑deoxyuridine, a precursor of FdUMP that inhibits the 

TYMS enzyme, responsible for de novo thymidylate synthesis (22). Accordingly, capecitabine-based 

chemotherapies have been reported to be more effective in tumors with high levels of TYMP (41-44). 

Expression of TYMP, as assessed by IHC, was significantly correlated with the response to 

capecitabine in the cohort of 32 TNBC PDX (including PDX derived from both residual and treatment-

naïve tumors). These results are consistent with those of various different clinical studies showing a 

correlation between TYMP expression and response to capecitabine in metastatic breast cancer 

patients previously treated with anthracyclines and taxanes (42, 45).  

The evaluation of TYMP and RB as predictive biomarkers could be translated into clinical practice. 

Immunohistochemical analyses of one of these two biomarkers on residual tumors at surgery could 

identify those patients likely to benefit from adjuvant capecitabine treatment. Retrospective 

validations of these biomarkers in clinical trials evaluating capecitabine against controls (like the 

CREATE-X study) could also be used to provide support for our results.  

Our results may also have implications for the advanced cancer setting, as capecitabine is usually 

given as a second- or third-line treatment in patients with recurrences after NAC (46, 47). The 

efficacy of capecitabine was decreased after pre-treatment of tumors with 5-FU and this was 

associated to increased expression of TYMS. The up-regulation of TYMS in 5-FU treated tumors is 

consistent with previous finding in cell lines and tumors and can be explained by the inhibition of a 

negative feedback mechanism in which TYMS protein inhibits the translation of TYMS mRNA (48).  
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When bound to the active metabolite of 5-FU (FdUMP), TYMS is not able to bind to its mRNA which 

results in increased protein expression (49). This constitutes a mechanism of acquired resistance to 

5-FU (50, 51).  This case suggests that capecitabine might be more effective if introduced earlier, as 

adjuvant or first line treatment, and raises the question of giving 5-FU prior to capecitabine. 

In conclusion, we have developed a panel of PDX models from breast cancer patients with residual 

disease after neoadjuvant treatment. These chemoresistant PDX provided us with an opportunity to 

identify effective treatment strategies that might improve the survival of patients with a high risk of 

relapse and poor prognosis. We showed that capecitabine was effective against 60% of TNBC PDXs 

derived from tumors previously treated with anthracyclines and taxanes, and we identified TYMP and 

RB expression as putative biomarkers predictive of the response to capecitabine.  
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Tables Legend 

Table 1: Histology, mutation and response to chemotherapy in TNBC PDX derived from residual 

tumors after neoadjuvant chemotherapy 

 

PDX 

Neoadjuvant 

treatment of 

TNBC 

patients 

Tumor 

Histology 

TP53 and 

BRCA1/2 

mutations 

PDX response: % TGI and RECIST criteria 

AC docetaxel cisplatin capecitabine 

HBCx-12A docetaxel IDC None 44 (PD) 28 (PD) 0 (PD) 96 (SD) 

HBCx-39 
EC + 

docetaxel 
IDC TP53 36 (PD) 0 (PD 16 (PD) 98 (R) 

HBCx-48 
FEC 

docetaxel 
IDC TP53 30 (PD) 0 (PD) 40 (PD) 37 (PD) 

HBCx-63 
FEC 

docetaxel 
IDC TP53 74 (PD) 30 (PD) 86 (PD) 96 (SD) 

HBCx-66 
FEC 

docetaxel 
MBC BRCA1 94 (R) 0 (PD) 98 (R) 41.4 (PD) 

HBCx-69 
FEC 

docetaxel 
MBC TP53 31 (PD) 50 (PD) 64 (PD) 55 (PD) 

HBCx-92 EC docetaxel IDC BRCA2 74 (PD) 30 (PD) 90 (PD) 93 (SD) 

HBCx-90 Paclitaxel MBC TP53 81 (PD) 35 (PD) 89 (PD) 0 (PD) 

HBCx-95 
FEC 

docetaxel 
IDC None 0 (PD) 32 (PD) 50 (PD) 100 (R) 

HBCx-106 
FEC 

docetaxel 
IDC TP53 75 (PD) 43 (PD) 69 (PD) 90 (SD) 

 

 

IDC: invasive ductal carcinoma, MBC: metaplastic breast cancer, TGI: tumor growth inhibition, AC: 

Adriamycin + cyclophosphamide; FEC: 5-FU, epirubicin, cyclophosphamide; PD: progressive disease; 

SD: stable disease; R: regression; CR: complete response 
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Figure legends 

 

Figure 1. Comparison between residual disease–derived PDX (RD) and primary tumors-derived PDX 

(PT).  A, Percent tumor take in nude mice for residual tumors (n=53) and primary tumors (n= 919), by 

breast cancer subtype. * p<0.01, *** p< 0.0001 , **** p<0.00001  (Fisher’s exact test). B, Latency of 

TNBC PDX defined as the number of days between transplantation of the tumor and first outgrowth. 

** p< 0.001 (unpaired t-test). C,  MFS (metastasis-free survival) of patients compared to PDX 

latencies in the residual disease group. Metastasis-free survival (MFS) was defined as the time from 

surgery to the diagnosis of metastasis. D, Kaplan-Meier disease-free survival curves for patients in 

residual disease (RD) and primary tumors  (PT) groups. E,  Drug response of residual TNBC PDX as 

compared to primary tumors derived PDX: fraction of PDX models with a TGI  ≥ 90% or < 90% after 

two cycles of chemotherapy (AC, docetaxel, cisplatin and capecitabine, one cycle lasts three weeks). 

n=10 PDX and n= 22 PDX in residual disease and primary tumors groups, respectively. F, Drug 

response curves of 3 residual TNBC PDX (HBCx-12A, HBCx-95 and HBCx-39) treated by AC, docetaxel, 

cisplatin and capecitabine (two three-week cycles). Mean of relative tumor volume (8-10 xenografts 

per group) ± SD.  G,  Individual tumor growth curves in control and capecitabine-treated xenografts.  

 

Figure 2. Patient #63 history and PDX response to chemotherapy. A, Treatment of the patient and 

preclinical experiments on the HBCx-63 PDX. Patient #63 (59 years old) received four cycles of 

FEC100, followed by four cycles of docetaxel 100. At surgery, the HBCx-63 PDX was established from 

residual tumor tissue (Chevallier classification: grade 4). Lung metastasis were diagnosed 11 months 

after surgery: the patient was treated with three cycles of paclitaxel plus bevacizumab (first line). 

There was no response to treatment and the patient was switched onto second-line treatment with 

capecitabine (4 cycles). Metastatic disease progressed on capecitabine, with the occurrence of brain 

metastasis. The patient received carboplatin (third line) and then palliative care. The HBCx-63 PDX 

received the same sequence of treatment: 5-FU + navelbine, paclitaxel + bevacizumab, and 
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capecitabine. B, Waterfall plots representing the percent change in tumor volume for HBCx-63 PDX 

treated with 5-FU+ navelbine (adjuvant treatment), paclitaxel plus bevacizumab (first line) and 

capecitabine (second line).  Two additional groups were added: capecitabine treatment of xenografts 

without prior treatment (adjuvant) and capecitabine treatment in xenografts previously treated with 

5-FU + navelbine (first line). C, Immunohistochemistry analysis of TYMS (2.5X and 10X) in one 

representative xenograft of the control group, one xenograft treated by 5FU + navelbine and one 

xenograft treated by 5Fu+navelbine followed by paclitaxel + bevacizumab. The IHC analysis was 

performed on 3 different xenografts per group. 

 

Figure 3. Biomarker analysis of the capecitabine response in 32 TNBC PDX. A, Waterfall plot 

representing the capecitabine response in 32 TNBC PDXs (10 derived from residual tumors and 22 

from primary tumors). Each bar represents the median change in tumor volume from baseline in 

treated xenografts (n=8-10) after two three-week cycles of capecitabine treatment. Regression 

includes both partial responses and complete responses. B, Dendrogram (Ward linkage, Pearson 

distance) and heatmap based on genes differentially expressed between capecitabine-sensitive and 

capecitabine-resistant PDX. C, IHC analysis of RB expression in two resistant (HBCx-24 and HBCx-1) 

and  two responding (HBCx-12A and HBCx-106) PDX (20X). D, Waterfall plot representing the 

capecitabine response in 32 TNBC PDXs according to RB status E, IHC analysis of TYMP expression in 

three resistant (HBCx-1, HBCx-90 and HBCx-66) and three responding (HBCx-92, HBCx-63 and HBCx-

12A) PDX (20X). F, Association between TYMP H-score and the response to capecitabine in 32 TNBC 

PDX and combination of TYMP and RB biomarkers (Fisher’s exact test). 

 

Figure 4. Analysis of the correlation between tumor growth inhibition and changes in the expression 

of Rb-dependent proliferation-associated genes. A, tumor growth inhibition curves for seven TNBC 

PDX B, Percent TGI and heat-map representing fold-changes in normalized expression gene 

expression between control and treated xenografts (n=4) for eight Rb-dependent proliferation-
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associated genes: AURKA, PLK1, TTK, TOP2A, CCNB1, CCNA1, TK1 and TYMS. C, Plot of the correlation 

between fold-changes in gene expression and TGI. The Spearman correlation p-values obtained were 

as follows: 0.0056 (TK1), 0.0056 (TYMS), 0.0032 (CCNA2), 0.017 (CCNB1), 0.0032 (TOP2A), 0.0032 

(TTK), 0.0349 (PLK1) and 0.0246 (AURKA). 

 

Figure 5. siRNA-mediated inhibition of RB1 in a cell line established from the HBCx-12A PDX. A, In 

vivo response to capecitabine treatment of the residual HBCx-12A PDX. B, Cell viability assay of the 

HBCc-12A cell line treated by different concentration of 5-FU. The results are represented as the 

mean ± SD from experiments replicated three times. C, Western blot analysis of HBCc-12A cells 

treated with siControl and two different siRNA against RB1 and 5-FU (40 M). D, cell viability assay of 

HBCc-12A cells treated by 5-FU and transfected with siControl, siRB1 and siRB2 siRNA. Results of 5-

FU treated cells are normalized on siControl, siRB1 and siRB2 untreated cells and represented as fold 

change from siControl. Experiments were replicated three times. 
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