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Abstract Solar wind energy is transferred to planetary magnetospheres via magnetopause
reconnection, driving magnetospheric dynamics. At giant planets like Saturn, rapid rotation and internal
plasma sources from geologically active moons also drive magnetospheric dynamics. In both cases,
magnetic energy is regularly released via magnetospheric current redistributions that usually result in
a change of the global magnetic field topology (named substorm dipolarization at Earth). Besides this
substorm dipolarization, the front boundary of the reconnection outflow can also lead to a strong but
localized magnetic dipolarization, named a reconnection front. The enhancement of the north-south
magnetic component is usually adopted as the indicator of magnetic dipolarization. However, this
field increase alone cannot distinguish between the two fundamentally different mechanisms. Using
measurements from Cassini, we present multiple cases whereby we identify the two distinct types of
dipolarization at Saturn. A comparison between Earth and Saturn provides new insight to revealing the
energy dissipation in planetary magnetospheres.

1. Introduction

For any planet with a magnetosphere in the solar system, energy from solar wind is transferred to the mag-
netosphere via magnetopause reconnection and then stored in the magnetotail [Akasofu, 1980]. In addition,
reconnection in giant planetary magnetospheres could be a “drizzle-like” process, which forms a complex and
patchy network of reconnection sites [Delamere et al., 2015]. A magnetospheric substorm is a major space
weather event that explosively releases the energy stored in the nightside terrestrial magnetosphere [Akasofu,
1964; Hones, 1979; McPherron et al., 1973]. Studies indicate that this loading and unloading process also occurs
at other planets, e.g., Mercury [Slavin et al., 2010; Sun et al., 2015], Saturn [Jackman et al., 2013], and Jupiter
[Kronberg et al., 2005]. The most indicative feature of magnetospheric substorms is magnetic dipolarization in
planetary magnetotails.

At Earth, magnetic dipolarization is usually considered a consequence of the reconfiguration of magneto-
tail current system, i.e., the cross-tail current disruption [McPherron et al., 1973; Kan, 1991; Pu et al., 2001]. A
terrestrial substorm dipolarization process typically lasts for a few minutes to tens of minutes and is usually
accompanied by strong magnetic perturbations [e.g., Lui, 1996; Lui et al., 2008; Yao et al., 2012]. The substorm
dipolarization mechanism is under debate, in particular, its relation to near-Earth magnetotail reconnection
[Nakamura et al., 2009; Birn and Hesse, 2013]. Identification of substorm dipolarization from in situ magnetic
field data alone is not straightforward as dipolarized magnetic fields also often exist in reconnection out-
flows. [Sitnov et al., 2009; Fu et al., 2013]. The substorm flux pileup model suggests that the stopping of
reconnection outflows in the near-Earth magnetotail results in magnetic field dipolarization and eventually
triggers the onset of the substorm expansion phase [Baumjohann et al., 1999]. More recently, multiple studies
have reported the Earthward propagation (from midtail to near Earth) of magnetic dipolarization signatures
[Angelopoulos et al., 2008; Runov et al., 2011; Sergeev et al., 2009; Pu et al., 2010] using the Time History of Events
and Macroscale Interactions during Substorms (THEMIS) mission [Angelopoulos, 2009] that provides multiple
spacecraft located at varied radial distances.
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Nakamura et al. [2002] first used the term dipolarization front (DF) to describe the earthward propagating
magnetic dipolarization signature. The structure is usually considered as the front boundary of earthward
reconnection outflows [Angelopoulos et al., 2013; Yao et al., 2013, 2014], which is significantly different from
substorm dipolarization, although they are often observed together. Lui [2014] recently demonstrated the
differences in mechanisms and features between the two types of magnetic dipolarization. Each mech-
anism has a unique timescale, wave feature, and importance in substorm current formation. The signifi-
cance of the two types of dipolarization in driving large-scale magnetospheric dynamics is very different
[Lui, 2015].

Regarding the substantially different planetary environments at Earth and Saturn, we do not directly adopt
the terminology “substorm” in Saturn, although we still use “substorm” in introducing previous literature for
accurate interpretations. Moreover, we note here that the terrestrial substorm process is a loading-unloading
process, but the corollary is not true; a loading-unloading process is not always a substorm process. Most
dynamic processes in space plasmas can be considered as a loading-unloading process (e.g., magnetic recon-
nection and the development of plasma instability). Hence, and in keeping with the vast majority of planetary
studies, we do not refer to the loading-unloading processes in planetary environments as a substorm before
these processes are fully understood. In this study, we use current redistribution dipolarization (CRDD) to rep-
resent a magnetic topology change caused by large-scale magnetotail current redistribution and use transient
dipolarizing flux bundle (TDFB) for reconnection outflow structures that contain strong magnetic field and
are accompanied by depleted plasma [Liu et al., 2013a, 2013b].

Substorms (or CRDDs) at other planets are usually very different from terrestrial substorms, particularly in the
temporal scale. The terrestrial substorm usually lasts tens of minutes, while at Mercury the energy loading and
unloading process is usually completed within a few minutes [Slavin et al., 2010]. At Jupiter and Saturn, the
energy loading and unloading process can last for few hours to tens of hours [Mitchell et al., 2005; Kronberg
et al., 2005]. The TDFB type dipolarization at giant planet is also reported in previous studies [e.g., Kasahara
et al., 2011]. It is poorly understood whether the loading-unloading processes in different planets are driven
by solar wind or internal sources.

To identify the two types of dipolarization in Earth’s and Saturn’s magnetosphere, we consider the com-
bined signature of B𝜃 and Br . Figure 1 illustrates the expected magnetic components Bx and Bz for the two
types of dipolarization at Earth. As shown in the schematic plot in Figure 1 (top), the magnetic field topology
changed (from blue to red) due to the reduction of a current perpendicular to the plane. During this pro-
cess, a spacecraft near the current sheet region should observe a CRDD feature, with an increase in Bz and
decrease in Bx . Figure 1 (bottom) are adapted from a simulation paper [Sitnov et al., 2009]. The bottom multi-
line plot shows a temporal evolution of the magnetic field Bz distribution on the central current sheet. It clearly
demonstrates the growth of Bz magnitude in the reconnection outflow region. A spacecraft earthward of the
reconnection site should observe a sudden enhancement of Bz , as illustrated by the schematic plot in the right
bottom region of Figure 1. A spacecraft located away from the central plasma sheet should also observe an
enhancement of Bx accompanying the Bz increase. Generally speaking, from a single spacecraft measurements
(not exactly on the equatorial plane), a Bz enhancement is expected; however, the Bx variation shows opposite
trends for each type of dipolarization. We would like to point out that at Earth, there are much more support-
ing information to identify two types of dipolarization, e.g., the ground-based magnetometers and auroral
imagers; however, at other planets, the combination of all magnetic components and plasma measurements
becomes almost the only method we could rely on.

In addition to the two types of dipolarization that we have introduced, “negative” dipolarizations are often
reported at Saturn and Earth [Jackman et al., 2007; Li et al., 2014]. The negative dipolarization is suggested
to form in the tailward reconnection site, showing opposite magnetic field direction to the dipolarization. At
Earth, the negative dipolarization is called the antidipolarization front [Li et al., 2014] and is suggested to be an
early stage of the development of a plasmoid, which is also often observed at Saturn [Hill et al., 2008; Jackman
et al., 2011], Jupiter [Vogt et al., 2014], and Earth [Ieda et al., 1998].

With in situ measurements from Cassini in Saturn’s magnetotail, we clearly distinguished, for the first time,
CRDD and TDFB dipolarization events using both magnetic field and plasma measurements, and we present
two events for each type of dipolarization in this paper. We also compare measurements from THEMIS in
Earth’s magnetotail and Cassini in Saturn’s magnetosphere for each type of dipolarization. The magnetic

YAO ET AL. DIPOLARIZATION DYNAMICS AT SATURN 4349



Journal of Geophysical Research: Space Physics 10.1002/2017JA024060

Figure 1. Illustration of the two types of dipolarization. The simulation result is adapted from Sitnov et al. [2009].

field measurements in this paper are from THEMIS/fluxgate magnetometer (FGM) [Auster et al., 2009] and
Cassini/FGM [Dougherty et al., 2004]; electron measurements are from THEMIS/electrostatic analyzer (ESA)
[McFadden et al., 2008] and Cassini electron spectrometer [Young et al., 2004].

2. Results
2.1. Current Redistribution Dipolarization at Saturn and Earth
From top to bottom, Figures 2a–2d and 2e–2h present the three component magnetic fields in Kronographic
Radial-Theta-Phi (KRTP) coordinates and electron differential energy flux for two substorm magnetic dipo-
larization events on 20 September 2006 (Figures 2a–2d) and 7 August 2009 (Figures 2e–2h), respectively.
The enhancements of the north-south component of the magnetic field B𝜃 are indicated by purple arrows in
Figures 2b and 2f, respectively, for both events. An enhancement in B𝜃 has previously been used as the most
important criterion in determining a dipolarization event in Saturn’s magnetotail [e.g., Jackman et al., 2013].

As shown in Figures 2a and 2e, a clear decrease in Br is accompanied with the B𝜃 increase for both events.
Learning from the signature of two types of dipolarization that we have described in Figure 1 (top), we con-
sider the decrease in Br as a strong evidence of current sheet expansion. We also note that the magnetic field
B𝜙 component also decreases simultaneously, which we suggest to be a consequence of global magnetic
reconfiguration.

Figures 2d and 2h show the spectrum of electron differential energy flux for both dipolarization events. A
significant flux enhancement was observed during the magnetic dipolarization for both events. The enhance-
ment of electron flux is strong evidence of the current sheet expansion. Before dipolarization, Cassini was in
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Figure 2. CRDD events at Saturn and Earth. (a–c) The three components of magnetic field in KRTP coordinates for the Saturn dipolarization event on
20 September 2006, (d) the electron differential energy flux spectrum on 20 September 2006, (e–h) the magnetic field and electron differential energy flux
spectrum for the dipolarization event on 7 August 2009, with the same format as Figures 2a–2d. The measurements from THEMIS spacecraft for the Earth event
on 25 Feb 2008. (i) The THEMIS pseudo AE index, (j) the vector magnetic components observed by THEMIS D, and (k) the electron differential energy flux
observed by THEMIS D.

the outer plasma sheet or magnetotail lobe region, while after the expansion of the current sheet, Cassini
detected enhanced electron flux, indicating that Cassini was in the inner plasma sheet. Here we would like to
remind the reader that inner/outer plasma sheet refers to distances with respect to the central plasma which,
while inner/outer magnetosphere refers to distances with respect to the planet.

In summary of the two CRDD dipolarization events at Saturn, we found that (1) B𝜃 increase was accompanied
by Br decrease and B𝜙 decrease. (2) Electron energy flux was enhanced in the dipolarized field region. (3) The
dipolarization in the first event last for ∼1 h, while it lasts for 2–3 h in the second event.

Figures 2i–2k show measurements of a typical CRDD event at Earth on 25 February 2008, with THEMIS pseudo
auroral ejection (AE) index [Mende et al., 2008; Russell et al., 2009], magnetic components in geocentric solar
magnetospheric (GSM) coordinate system, and electron differential energy flux. The AE index increases from
∼100 nT to ∼250 nT in ∼30 min, indicating that the measurements were made during a substorm period. The
in situ magnetic field measurements from THEMIS D, located at [−10.7, 0, −2.4] RE in GSM coordinates, show
two distinct Bz increases, at ∼10:00 UT and ∼10:30 UT, respectively. Both Bz increases are accompanied by
Bx decreases. The electron flux shown in Figure 2k was also clearly enhanced at both Bz enhancements. The
energy for main population also increased from ∼1–2 keV to ∼5–10 keV. As shown by Figure 2k, the elec-
tron energy and differential energy flux simultaneously increase, which suggests that the spacecraft is now
sampling the inner plasma sheet where the electrons are being accelerated. The measured electron number
density typically increases during such an event, due to the expansion of the current sheet. In this case, the
number density increased from ∼0.1 cm−3 to ∼0.3 cm−3(not shown here). A significant increase in density is
only observed when the spacecraft is initially sampling the outer plasma sheet (e.g., the events we present
for Saturn and Earth in this paper), which has a very low density prior to dipolarization and current sheet
expansion. The Bx decrease, Bz increase, and electron density enhancement are typical signatures expected
in a CRDD event, the same as we have presented for the previous Saturn events.
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We would like to point out two very interesting differences between Saturn’s CRDD and Earth’s CRDD from in
situ measurements.

1. An Earth CRDD is followed by a long-term recovery phase and then the next growth phase, and magnetic
field Bz and plasma characteristics slowly evolve to the preonset condition [Pulkkinen et al., 1992, 1994;
Baumjohann et al., 1991]. However, as we see from the two CRDD events at Saturn, the magnetic field B𝜃 and
electron flux suddenly drop (as quick as their enhancements) to background level. The suddenly change
after dipolarization is explained as a consequence of Saturn’s rotation [Yao et al., 2017b].

2. A clear energization (from∼1 keV to∼4 keV) was accompanied with the CRDD process at Earth; however, the
energization at Saturn was not obvious. We suggest that dipolarization at Saturn could certainly contribute
to electron energization (at least adiabatic Fermi and Betatron acceleration), although the energization pro-
cess may not be as efficient as during the Earth dipolarization due to their very different environments
(e.g., magnetic topology, pressure gradient, and electrical current system). At Earth, the near-Earth dipolar-
ization is usually accompanied by plasma waves, Joule heating, and adiabatic accelerations, it is still poorly
understood whether these dynamics exist during Saturn’s dipolarization process.

2.2. Transient Dipolarizing Flux Bundles at Saturn and Earth
Although TDFB and CRDD both have the common feature of a B𝜃 enhancement, they represent fundamen-
tally different magnetotail dynamics. CRDD is a consequence of a global magnetic field reconfiguration, while
TDFB is a localized magnetic structure usually generated by bursty magnetotail reconnection [Fu et al., 2013].
Since reconnection usually generates fast speed, intense magnetic field, and low entropy plasma outflow
[Pontius and Wolf , 1990; Birn et al., 2011], the in situ measurements of a TDFB typically show depleted electron
densities accompanied by an enhanced magnetic field. Note that the density depletion exists at low energies,
while there is a density enhancement at high energies. Birn et al. [2014] used simulations to show that the
increase/decrease boundary sits at energies ∼10 keV. However, this boundary in energy may vary with event
and will also depend on the location of the observer.

We use the decrease/increase of electron flux as a cross validation to distinguish between TDFB and CRDD
events for Saturn. The high-energy population density enhancement associated with TDFB has three potential
sources: directly from magnetic reconnection site [Huang et al., 2015], the adiabatic acceleration related to
the magnetic reconfiguration when the flow moves toward the planet [Ashour-Abdalla et al., 2011], and the
accelerated population from the ambient plasma sheet [Gabrielse et al., 2012; Runov et al., 2015]. Moreover,
Runov et al. [2015] statistically demonstrated that adiabatic heating of the ambient plasma in the increased
magnetic field is the major factor in TDFB plasma heating. Considered a boundary between reconnection
outflow and the ambient plasma, TDFB is typically accompanied by quick density drop and particle heating,
while a CRDD does not correspond to a sharp boundary of plasma populations. The morphological difference
is similar to the comparison of antidipolarization and plasmoids presented in Li et al. [2014].

Figure 3 presents the magnetic field and electron differential energy flux with the same format as in Figure 2 for
two TDFB events on 7 September 2006 (a–d) and 25 August 2006 (e–h), respectively. The 7 September 2006
event was observed at ∼22 RS, near the equator and at postmidnight (2.2 LT), and the 25 August 2006 event
was observed at ∼45 RS, near the equator and at premidnight (23 LT). The enhancements of the north-south
magnetic field B𝜃 component (Figures 3b and 3f) are indicated by the red vertical lines in both figures. Unlike
the CRDD events, no significant Br decrease or B𝜙 decrease is expected to accompany the B𝜃 increase, as TDFB
does not correspond to a global reconfiguration of magnetic field topology that we have demonstrated in
section 1. In the 7 September 2006 event, two distinct dipolarizations were observed with a separation of
approximately half an hour, and for the first dipolarization in this event, a Br enhancement was detected with
the B𝜃 increases. In the 25 August 2006 event, the B𝜃 ramp was accompanied by a B𝜙 increase. The simultane-
ous enhancements in multiple components is an important feature of TDFB [Yao et al., 2015], which does not
exist in CRDD.

Magnetic reconnection may be driven by both the solar wind source or internal sources [Dungey, 1961;
Vasyliunas, 1983]. Since TDFB is a natural consequence of magnetic reconnection, we suggest that both inter-
nal and external drivers at Saturn may generate TDFB. From the locations of two events, we suggest that
the 25 August 2006 event that was observed at ∼45 RS and 2300 LT could be driven by the solar wind inter-
action [Cowley et al., 2004; Jia et al., 2012], while the 7 September 2006 event at ∼22 RS may be driven by
internal source.
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Figure 3. TDFB events at Saturn and Earth. (a–h) The observations of magnetic field and electron differential energy flux for two Saturn dipolarization events on
7 September 2006 and 25 August 2006, respectively. (i–k) The measurements of the Earth event on 27 February 2009 observed by THEMIS E. The format is the
same as Figure 2.

To summarize (1) two TDFB events were detected by Cassini at ∼22 RS and ∼45 RS, respectively, (2) the
enhancements of B𝜃 were accompanied by enhancements in other components; electron fluxes at main
population energies dramatically decreased, while increasing at higher energies, which is likely caused by
reconnection acceleration or accelerated ambient plasmas. The two events may correspond to internal and
external drivers, respectively.

Figures 3i–3k show measurements of a typical TDFB event on 27 February 2009, in the same format as
Figures 2i–2k. During this event, the AE index (Figure 3i) was small (,100 nT), suggesting a geomagnetic quiet
time period. The magnetic field (Figure 3j) observed by THEMIS E, located at [−11.1, −1.7, −2.4] RE in GSM
coordinates, shows a sharp ramp at 07:54 UT. Meanwhile, an increase in Bx accompanies the Bz enhancement.
The electron flux in Figure 3k shows a significant decrease at the main population (∼400– 800 eV), with an
increase at higher energies (2–10 keV). The Bz increase, Bx decrease, and the decrease of electron flux in the
main population are typical features as we have shown for Saturn’s TDFB events in the previous section. Multi-
ple fronts are presented in TDFB events at both the Earth and Saturn, which may imply a pulsating behaviour
in magnetotail reconnection. The TDFB at Earth are usually associated with significant field-aligned currents
on a scale of ion gyroradius [Hwang et al., 2011; Fu et al., 2013; Yao et al., 2016, 2017a]. The high temporal reso-
lution of particle measurement from recently launched NASA/Juno mission [Bolton, 2010] may provide a good
opportunity to examine small-scale current systems at a giant planet system like Jupiter.

2.3. Summary
CRDD and TDFB dipolarizations have recently became well understood using measurements from multiprobe
missions (i.e., Cluster [Escoubet et al., 2001] and THEMIS) in Earth’s magnetosphere. It is very instructive and
useful for us to reexamine Cassini measurements at Saturn to discover if the fundamentally different dipo-
larization mechanisms also occur in Saturn’s magnetosphere. At Earth, the two types of dipolarization play
very different roles in driving magnetosphere-ionosphere coupling dynamics, which we believe could be sim-
ilar at Saturn. By analyzing Cassini measurements of Saturn’s magnetosphere, we have identified CRDD and
TDFB dipolarizations at Saturn, using the similar criteria adopted at Earth. Understanding CRDD and TDFB
dipolarizations in giant planetary magnetospheres is essential for revealing the auroral dynamics at Saturn
and Jupiter. Although the major dipolarization signatures (i.e., magnetic variation and electron enhancement)
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are similar at both Saturn and Earth, it is prudent to point out that there are several important differences
between the two magnetospheres. The energy and plasma source in Saturn’s magnetosphere does not only
come from solar wind, moon-induced plasma and centrifugal forces caused by Saturn’s fast rotation drive the
major magnetospheric dynamics [Kivelson and Southwood, 2005]. Solar wind-driven reconnection (like the
Earth) at Saturn may continue for a much longer period. For example, Arridge et al. [2016] reported a recon-
nection event that lasted for up to ∼6 h. In this study, the CRDD event on 7 August 2009 and the TDFB event
on 7 September 2006 are observed within 22 RS, a region dominated by centrifugal force [Arridge et al., 2007].
Hence, we suggest that the internally driven process alone can drive the two types of magnetic dipolarization.
Whether or not the solar wind can drive CRDD in Saturn’s magnetosphere is still unknown. The two types of
dipolarization at Earth are usually considered to be related, although the connection between the two is still
poorly understood. Liu et al. [2015] suggest that multiple TDFB contribute to a CRDD, while the calculation in
Lui [2015] implies that 50–1000 TDFBs are required to form a CRDD. The relation between TDFB and CRDD at
other planets might be different from at Earth, which deserves further investigation. However, we can con-
clude that at Saturn the TDFB represents a localized process that is generated by magnetic reconnection, and
the CRDD represents a global process that is due to current redistribution.

In this paper, we reveal two types of dipolarization at Saturn, which correspond to fundamentally different
processes. We have also compared magnetic dipolarization features between Earth and Saturn. The main
results are summarized below.

1. Both the reconnection generated TDFB and current sheet expansion generated CRDD exist in Saturn’s
magnetotail.

2. We have demonstrated clear criteria to identify the two types of dipolarization based on the measurements
of magnetic field and electron flux.

3. Internally driven processes could generate two types of dipolarization at Saturn.
4. The multiple fronts feature of TDFBs implies a pulsating nature of magnetotail reconnection.
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