

ECOFORUM ussels Motor Show January 16, 2018

SOCIETAL MEGATRENDS & TRENDS IN VEHICLE TECHNOLOGIES

P. Duysinx

LTAS - Aerospace and Mechanical Engineering Department University of Liege

- Introduction: From societal megatrends to automotive trends
- Alternative fuels
 - CNG and LNG
 - Electric and hybrid vehicles
 - Fuel cell and hydrogen
- Autonomous Driving
- Conclusion

INTRODUCTION From societal megatrends To automotive trends

WORLD IS CHANGING DEEPLY & QUICKLY

Urbanization

Individualization of Mobility Needs

Population ageing

Climate change

Accident

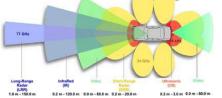
Congestion

Criminality

Air pollution

Artificial Intelligence

Digitalization



Healthcare

Sensors and big data

Connectivity

Limited Resources

3D printing

4

Waste et recycling

 Acceleration factor of Technologies and ubiquitous presence of Digital World with a growing importance of Health

Demand for security

- Health, wellness and wellbeing
- eHealth

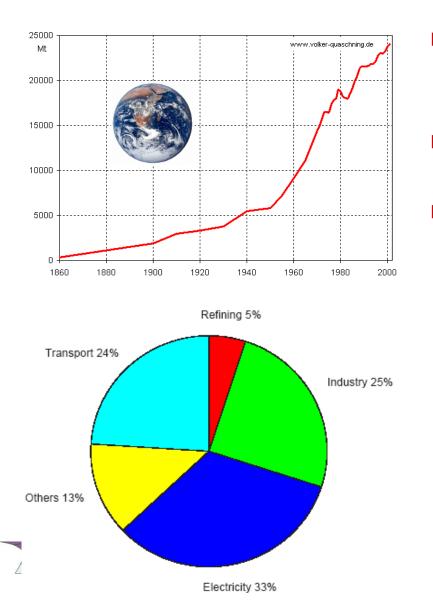
AUTOMOTIVE TRENDS

Continued focus on Energy Efficiency and growth of Digital World with impact on Mobility

ENERGY EFFICIENCY

- Low emission regulation
- Powertrain electrification
- Renewable energy
- E-vehicle as a smart grid component
- Lightweight materials
- Recycling

CONNECTED CAR


- Big data
- Safety and remote services
- Navigation, location based services
- Infotainment services
- Mobility services
- Payment and e-commerce services

MOBILITY

- Multimodal mobility
- Car sharing
- Car pooling
- Autonomous driving
- Integrated mobility ecosystems
- Low emission zones

REDUCING CO₂ EMISSIONS

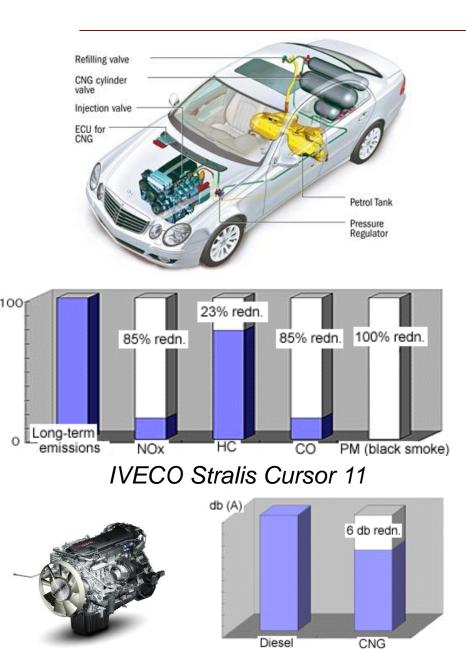
- Global warming related to human activities and use of fossil fuels
- Transport is one major contributors to CO₂ emissions
- Reduction of emissions by 50% by 2030 (ERTRAC):
 - Substituting petrol fuels by fuels with low carbon emissions or fuels with low LCA emissions (biofuels)
 - Improve the powertrain fuel efficiency
 - Reduce the mass, which often antagonistic with the demand for greater safety, comfort, etc.
 → 6% to 12% per 10%

AIR POLLUTION IS AND REMAINS A WORLD WIDE ISSUE

AQI – Thursday 07th Nov., 2016– 09:14 French Time Extract from AQICN website - www.aqicn.org

Air pollution is now considered by OMS "the world's largest single environmental health risk," with more than three million people dying every year as a result.

AQI	PM2.5 concentration µg/m³	AQI category	
0 to 50	0 to 12	good	
51 to 100	12 to 35	MODERATE	
101 to 150	35 to 55	UNHEALTHY FOR SENSITIVE GROUPS	
151 to 200	55 to 150	UNHEALTHY	
201 to 300	150 to 250	VERY UNHEALTHY	
300 to 500+	250 to 500	HAZARDOUS	



ALTERNATIVE FUELS

NATURAL GAS (CNG & LNG)

- Natural Gas is an excellent alternative fuel:
 - Easy adaption of classic internal combustion engines
 - Large reserves of natural gas are available
 - Reduction of CO₂ emissions (-10%) and air pollution (PM: -95%)
- Target: optimization of engine efficiency: allows a reduction of 5 to 10% of CO₂ emissions compared to Diesel engine
- Target by EU: substitution: 10% in 2020

NATURAL GAS (CNG & LNG)

Energy per storage volume for common fuel

	Density kg/m ³	LHV kJ/kg	Energy MJ/m ³		Volume (for same energy)
Gasoline	750	42 690	32 020		
Diesel fuel	835	42 770	35 710	+11%	× 0.9
Gaseous methane 1013 hPa, 273 K	0.716	50 010	36	- 100%	× 889
Gaseous methane 20 Mpa, 293 K	173 (AGA8)	50010	8 652	- 73%	×3.7

Questions to be solved

- Emissions of CH₄ and development of specific after treatment to be developed
- Refueling station network still under construction: 68 stations in Belgium mostly in Flanders
- CNG (200/350/800 bar) Volume per unit of energy content still high → Limited autonomy: 300 to 400 km
- LNG (3 bars @ -143°C / 8 bars @-130°C): Volume reduced by 2.4 → Extension of autonomy to 700 to 800 km and over

(1 MPa = 10 bars)

ELECTRIC VEHICLES AND HYBRID ELECTRIC VEHICLES

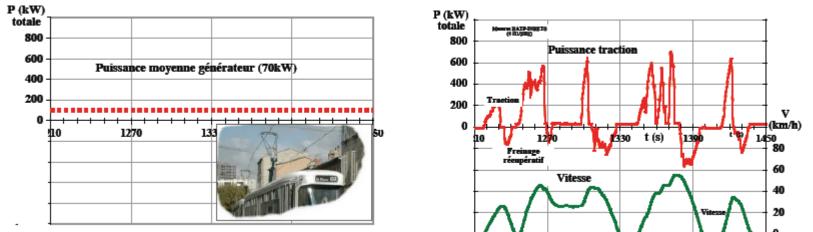
ELECTRIC VEHICLES

Advantages

- Nicely fitted to urban driving
 - Zero local emission
 - Great driving comfort
- High energy efficiency
 - Lower energy cost: 20 kWh/100 km
- Drawbacks: the batteries!
 - New customer habits to develop
 - Charge time (1 to 6 hours)
 - Autonomy between 130 km and 300 km (strongly dependent on the weather conditions)
 - Smaller size vehicles
 - Reliability is still to be fully demonstrated

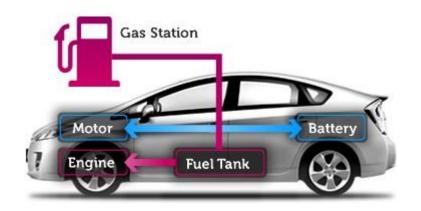
- Urban applications are targeted
 - Driving comfort and efficiency
 - Low emission zones (LEZ)
 - Night delivery
- Charging infrastructure is currently growing but still limited:
 - Public charging infrastructure v.s. company private charging stations
- Batteries: new developments
 - Temperature sensitivity
 - Recycling
 - Graphene batteries: +45% capacity / charging 12 times faster...
 - When will the technology be available??
- Future research:

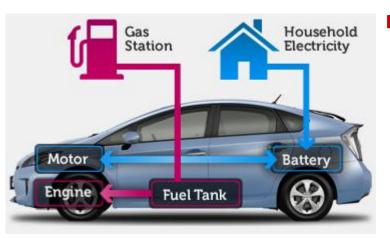
- Fast inductive charging
 - Electrified highway by Siemens



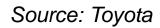
HIGHLY VARIABLE OPERATING CONDITIONS

- Major difficulty of propulsion systems: the highly variable operating conditions (torque, regime)
 - Target: sizing to average power consumption!
 - Approach: store the energy → Batteries
 - Recover energy : Two energy converters

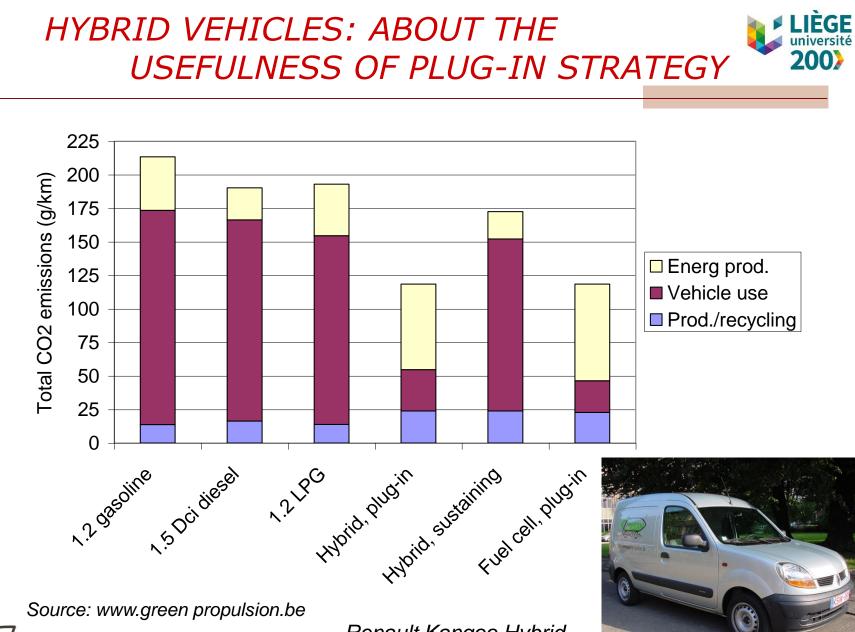

Source G. Coquery, INRETS


Hybrid vehicles combine two sources of energy, energy storage, and energy conversion systems.

HYBRID ELECTRIC VEHICLES: CHARGE SUSTAINING VS PLUG-IN



- Charge sustaining:
 - Energy is produced onboard by engine only.
 - Easy adaptation of users
 - Limited energy efficiency improvement
 - Petrol dependency



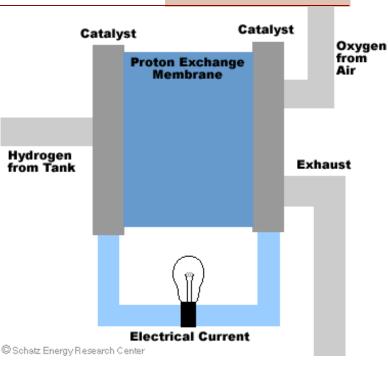
Plug-in hybrid:

- Energy is either produced onboard or by using plug-in capacity to the network.
- Long range and low emission performance
- Energy consumption: I/100km and kWh/100km → access to renewable energy sources

100 KS

Renault Kangoo Hybrid Green Propulsion

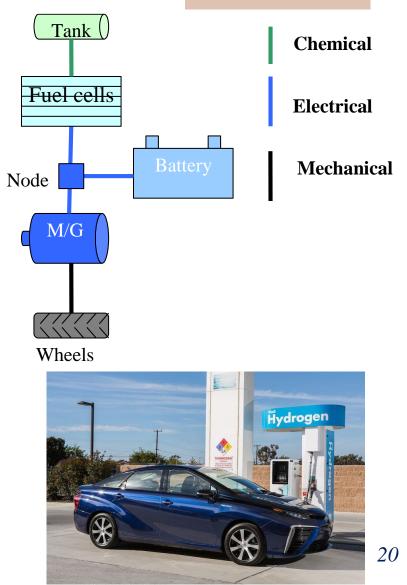
FUEL CELL VEHICLE



FUEL CELL PRINCIPLE

- Fuel Cell carries out a direct conversion of the fuel chemical energy into electrical energy
- Electrochemical reaction (oxidereduction) without flame
- The hydrogen H₂ O₂ fuel cell: inverse reaction of water electrolysis
- High fuel efficiency (>50%)
- Major issues:
 - Cost related of electrodes made of precious metal, membranes
 - Reliability

Hydrogen technology: a real start?



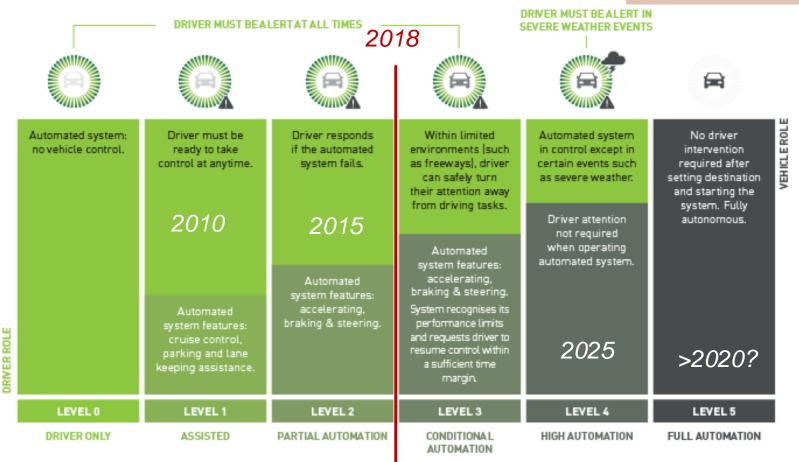
Viessmann-Panasonic domestic FC

FUEL CELL POWERED VEHICLES

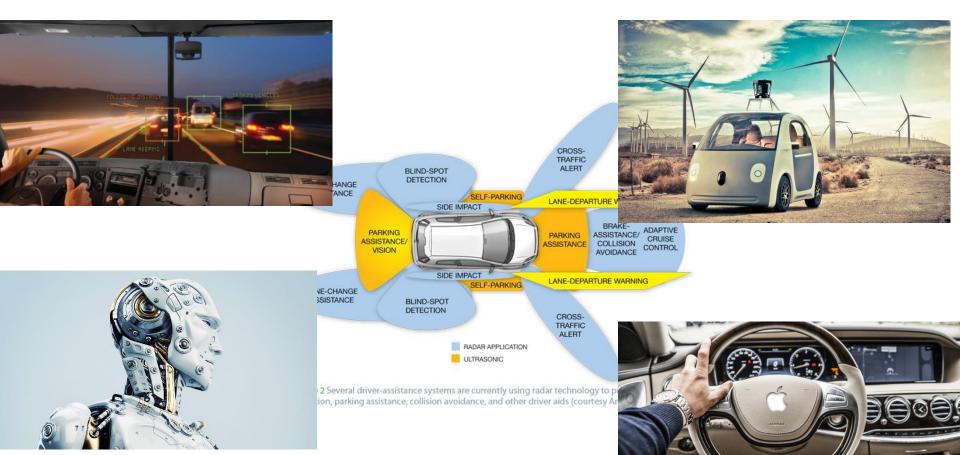
- Zero emission vehicle:
 - No pollutant emission except H₂O
 - Nearly silent operation
- Powertrain layout based on series hybrid architecture
 - Energy storage based on batteries or supercaps
 - Recovery of braking energy
 - Autonomy of 400 to 500 km
- Hydrogen production & distribution
 - H₂ or plug-in hybrid on electrical network
 - H₂ production and distribution?

Toyota Mirai

AUTONOMOUS DRIVING

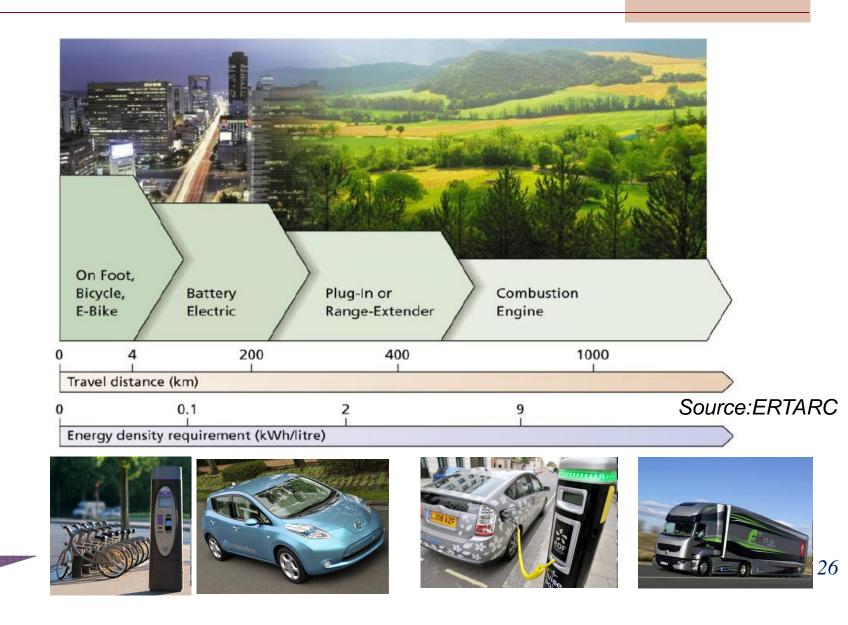

AUTONOMOUS VEHICLES: IN THE TRACK OF ADAS

AUTONOMOUS VEHICLES: THE CROSSROAD



AUTONOMOUS VEHICLES: THE NEW PLAYERS

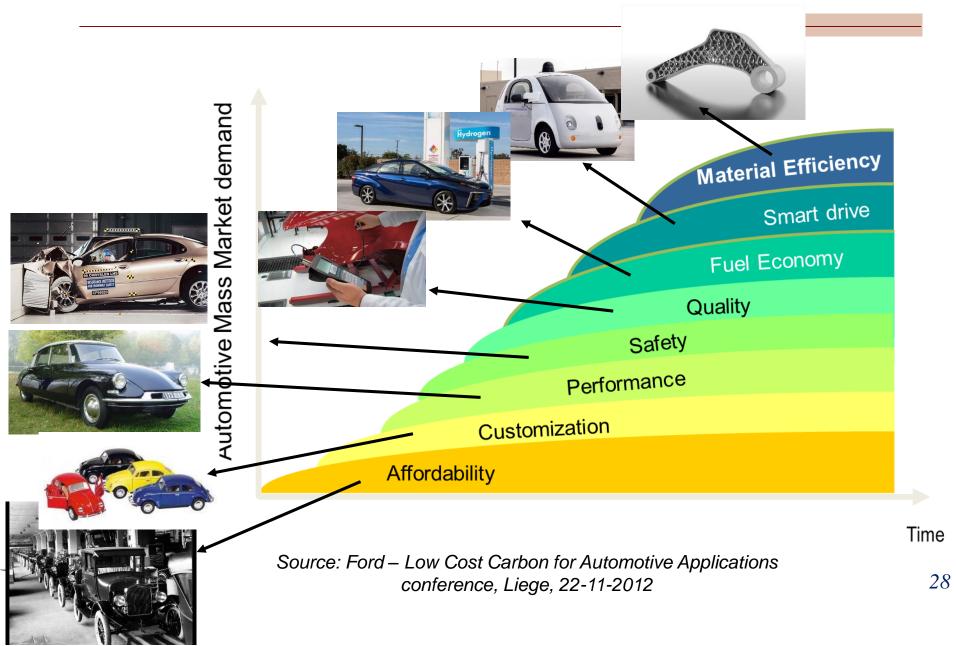
- Key element of autonomous vehicles: New technologies
 - Artificial intelligence, Machine learning algorithms,
 - Vision, mapping...
- Arrival of new players: Google, Apple...



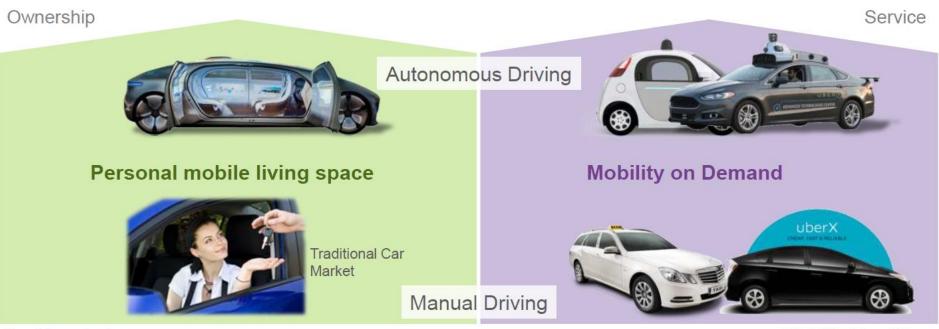
CONCLUSION

SOLUTIONS DEPEND ON USAGE PROFILE!

SHIFT IN POWERTRAIN TECHNOLGIES


Powertrain shift:

- Diesel drops but remains for low cost and long haul vehicles
- CNG and LNG provide an alternative fuel route
- EV gaining momentum first for urban applications waiting for new batteries
- Plug-In Hybrid Vehicles for premium


CHALLENGES IN AUTOMOTIVE INDUSTRY

CHANGING INDIVIDUAL MOBILITY

Car Manufacturers

Mobility Providers

- Mobility and ownership models will diversify
- New players are emerging

QUESTIONS

Pierre DUYSINX

LTAS - Automotive Engineering Department of Aerospace and Mechanical Engineering of University of Liège

Allée de la Découverte, 13A, building B52 4000 Liège Belgium

Email: <u>P.Duysinx@ulg.ac.be</u> Tel +32 4 366 9194 Fax +32 4 366 9159 url: www.ingveh.ac.be

