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Abstract—This paper deals with the dynamic modelling of
distribution systems hosting a large amount of Inverter-Based
Generators (IBGs), more precisely their response to large distur-
bances in the transmission system. It is assumed that the indi-
vidual behaviour of IBGs and loads is reasonably well captured
by a parameterized model, but the values of its parameters are
uncertain. Monte-Carlo simulations involving random variations
of those parameters are performed. The dynamic response closest
to the average is extracted as being representative. A simple
procedure is described to stop the simulations as soon as sufficient
information is available. Detailed simulation results are provided,
relative to a distribution grid with 75 loads and 75 IBGs. The
latter are represented by a generic model that reproduces the
main requirements of typical grid codes.

Index Terms—active distribution networks, uncertain dynamic
systems, inverter-based generation, Monte-Carlo simulations

I. INTRODUCTION

Distribution networks are expected to host an increasing

amount of dispersed generation units exploiting renewable

wind or solar energy, and connected through power electronics

converters. In many countries, the grid codes are being updated

to request those Inverter-Based Generators (IBGs) to provide

services, such as supporting the grid voltage and remaining

connected in response to normally cleared faults. This will

further transform the traditional distribution systems into Ac-

tive Distribution Networks (ADNs).

Present in large numbers ADNs will modify the dynamics of

the combined transmission-distribution system. For instance,

it will no longer be justified to replace the distribution systems

by passive, equivalent loads when simulating faults in the

transmission grid. The first step towards reliable modelling is

to set up representative ADN dynamic models. The latter can

be used to simulate faults in the distribution grid. To simulate

faults occurring in the transmission system, the next step will

consist of building equivalents, i.e. reduced-order models of

the ADNs. In this paper the focus is on the first step.

One major issue when setting up a detailed ADN model

lies in the uncertainty affecting the behaviour of its compo-

nents. Their dynamic models involve parameters which are

not known accurately. This is a well-known fact for loads in

general. For instance, it is customary to include an equivalent

motor representing the cumulated effects of a population of

smaller motors, but its parameters are usually set to “typical”

values (e.g. [1]). This is also true for IBGs in so far as the

grid codes specify a range of admissible behaviours, leaving

the manufacturers with some freedom in the design of their

equipments. In this work, it is assumed that the individual

dynamic behaviour of IBGs, loads, etc. can be reasonably

well captured by a parameterized model, but the values of

its parameters are uncertain. Robust control schemes to deal

with such uncertainties have been proposed, e.g. in [2], [3].

A well-known approach to deal with such uncertainty

consists of performing Monte-Carlo (MC) simulations [4],

involving in this case random variations of the parameters.

Thus, for given disturbances and operating points, a set of

randomized time responses is generated [5]. The next step

is to extract from this large set one (or possibly several)

representative response(s). The parameters that yielded this

response are used in the final ADN model.

This objective bears similarity with the one of [6], where a

number of scenarios (obtained by varying load, IBG composi-

tion, fault location, etc.) were considered and the ADN active

and reactive power responses grouped into a small number of

clusters to reduce the computational effort for the derivation

of an ADN equivalent. In this paper, uncertainty affects the

parameters of the ADN model rather than the scenarios, and

a much larger set of randomized responses is considered.

The rest of the paper is organized as follows. The approach

for extracting a representative response and choosing the

number of MC simulations is given in Section II. The param-

eterized model used for each load and each IBG, respectively,

is presented in Section III, while the simulation results on a

test system are given in Section IV. Concluding remarks are

offered in Section V.

II. EXTRACTING A REPRESENTATIVE DYNAMIC RESPONSE

A. Generating the MC simulations

Consider a distribution network feeding nL loads and host-

ing nG IBGs. For simplicity, and without loss of generality,

the same “generic” model is used - though with different

parameter values - for each IBG and similarly for the loads.



Let πG (resp. πL) be the number of parameters of the IBG

(resp. load) model. Thus, the vector p of parameters of the

whole ADN model involves nG πG + nL πL components.

Monte-Carlo simulations involve random variations of p

with p
min ≤ p ≤ p

max. The components of p are treated

as independent random variables. If no other information is

available, it makes sense to make p obey a uniform distribution

between the specified bounds p
min and p

max [5]. Alterna-

tively, the distribution can be centered around the middle of

the interval by assuming a truncated Gaussian distribution with

average µ = (pmin+p
max)/2 and (pmax−p

min)/6 as vector

of standard deviations.

Note that the parameters are randomized from one MC

simulation to another, but also from one bus to another inside

the same MC simulation.

Starting from the same initial operating point, a disturbance

is simulated with s instances of the same model corresponding

to the randomly drawn parameter vectors p1, . . . ,ps.

B. Identifying a representative instance of the model

The objective is to extract a simulation representative of the

set of s simulations. There is more than one interpretation of

the term “representative”. It may depend on the type of study,

it may not be the same for the distribution system operator as

for the transmission one, or it may even be of interest to keep

several representative simulations. In this work it has been

chosen to : (i) select one dynamic response corresponding to

one of the s parameter vectors, (ii) select the one closest to

the average of the s responses.

Furthermore, the representative response should not be

selected on the basis of a single disturbance, with the risk

of over-fitting that particular scenario. Instead, d different

disturbances are considered, and a single parameter vector p⋆

is going to be extracted for all of them together.

The dynamic simulations involve responses to large dis-

turbances (typically faults) taking place in the transmission

system. The variables of interest are the active and reactive

powers entering the ADN. Thus, the numerical simulation

of the j-th disturbance (j = 1, . . . , d) with parameters pi

yields two time series of n values, respectively P (pi, j, k) and

Q(pi, j, k), where k refers to the discrete times (k = 1, . . . , n).

Two methods were investigated to identify p
⋆, the instance

of p which fulfills the above requirements.

1) First method: The average power responses are com-

puted as (j = 1, . . . , d; k = 1, . . . , n):

P̄ (s, j, k) =
1

s

s
∑

i=1

P (pi, j, k) (1)

Q̄(s, j, k) =
1

s

s
∑

i=1

Q(pi, j, k) (2)

and p
⋆ is the parameter instance which yields the responses

closest to the averages, over all disturbances. It is the solution

of the discrete optimization:

min
pi∈{p1,...,ps}







d
∑

j=1

n
∑

k=1

[

P (pi, j, k)− P̄ (s, j, k)
]2

+

d
∑

j=1

n
∑

k=1

[

Q(pi, j, k)− Q̄(s, j, k)
]2







(3)

2) Second method: p
⋆ is directly identified as the param-

eter instance which yielded the response to which the other

responses have minimal dispersion. This amounts to solving:

min
pi∈{p1,...,ps}











s
∑

ℓ=1
ℓ6=i

d
∑

j=1

n
∑

k=1

[P (pi, j, k)− P (pℓ, j, k)]
2
+

s
∑

ℓ=1
ℓ 6=i

d
∑

j=1

n
∑

k=1

[Q(pi, j, k)−Q(pℓ, j, k)]
2











(4)

C. Number of Monte-Carlo simulations

The number of MC simulations must be large enough for

the randomly drawn sample to be representative, but not larger

owing to the computational burden. It is thus desirable to stop

generating randomized responses once sufficient information

is contained in the sample.

Keeping in mind that our aim is to extract the average

response, the approach consists of increasing the sample until

the average power responses, over all disturbances, do no

longer vary significantly. The detailed procedure is as follows.

1) Initialize: s = so, g = 0
2) Draw at random an initial set of so parameter vectors

(p1, . . . ,pso)
3) for each parameter vector, simulate the ADN response

to each of the d disturbances

4) compute the average power responses P̄ (so, j, k) and

Q̄(so, j, k)
5) generate a new random parameter vector ps+1

6) for this parameter vector, simulate the ADN response to

the d disturbances

7) compute the new average power responses P̄ (s+1, j, k)
and Q̄(s+ 1, j, k)

8) compare them with the previous averages by computing

the Euclidean distance over all the disturbances:

ε =
√

ε2P + ε2Q (5)

where:

ε2P =
1

dn

d
∑

j=1

n
∑

k=1

[

P̄ (s+ 1, j, k)− P̄ (s, j, k)
]2

(6)

ε2Q =
1

dn

d
∑

j=1

n
∑

k=1

[

Q̄(s+ 1, j, k)− Q̄(s, j, k)
]2

(7)

9) if ε ≤ δ then g → g + 1; else g = 0
10) If g = gmax then stop; else s → s+ 1. Go to Step 5.



As it can be seen, the procedure starts by performing a set

of so MC simulations. Simulations are added one by one until

ε has remained smaller than the tolerance δ over the last gmax

simulations.

With this proposed stopping criterion, randomizing more

parameters does not necessarily increase the computational

burden.

III. LOAD AND IBG GENERIC MODELS

A. Load model

As shown in Fig. 1, each load is split into an equivalent

3rd-order induction motor (taking initially a fraction f of the

load active power) and a static part with exponential model.

The randomized parameters are:

• for the motor part: fraction f , three inductances, sta-

tor and rotor resistances, inertia constant, fraction of

quadratic mechanical torque, initial (capacitor compen-

sated) power factor, and load factor [1]. Different ranges

of values are assumed for industrial and residential mo-

tors;

• for the static part of the load: exponents α and β.

Vo

Po, Qo M
P = (Po − Pmot

o )
(

V
Vo

)α

Q = (Qo−Qmot
o )

(

V
Vo

)β

Initial

consumption :

Pmot
o = fPo

Qmot
o = fPo tanφm

Figure 1. Load composition

B. IBG model

The IBG generic model is given in block-diagram form in

Fig. 2. Instead of focusing on internal components, the model

aims at reproducing the IBG response to terminal voltage

changes required by most grid codes. These requirements and

a few other important characteristics are described hereafter.

For more details please refer to [7].

1) Low Voltage Ride-Through (LVRT): LVRT capability

is an important feature of IBGs, requiring them to remain

connected to the grid during a disturbance as long as the

voltage is above a reference curve, as shown in Fig. 3. The

curve can be adjusted to fit various grid requirements by

modifying T1, Tint, T2, Vmin, Vint and Vr. These parameters

were not randomized from one bus to another since it was

assumed that the rules in force in the ADN are obeyed by the

IBG units.

2) Reactive current injection: In low voltage conditions

IBGs are requested to inject reactive current into the grid

to support the terminal voltage. The injected current varies

linearly with the measured voltage magnitude at the terminal

bus, as shown in Fig. 4. Since grid codes usually do not specify

one value for the slope kRCI but only a range of values, this

parameter has been randomized between 2 and 6, as stated in

[8]. On the other hand, m and VS1 were not randomized but

set to m = 0 and VS1 = 0.9 pu.

3) Active power restoration: When the IBG is called to

support the grid voltage as explained in the previous section, it

may happen that the active current is reduced to leave room for

its reactive counterpart without exceeding the inverter current

limit. Once the voltage has recovered to normal values, the

IBG gets back to normal operation and, hence, restores its

active current. This cannot take place too rapidly but it should

not take too much time either, to avoid a power imbalance.

This is why some grid codes specify a range of allowed values

for the rate of increase of the active current (see e.g. [9]).

To account for this dispersion, the rate of change has been

randomized between 20 and 50 % of the rated power per

second, in accordance with [8].

4) Other randomized parameters: The following parame-

ters, not referred to in grid codes, have been randomized:

• the gain kPLL of the Phase-Locked Loop (PLL) (see

Fig. 2), which influences its response time;

• the voltage threshold VPLL below which the PLL is

frozen (see Fig. 2);

• the equivalent time constant Tg (see Fig. 2);

• the IBG rated current, to reflect the fact that installed

capacities are not known accurately.

The voltage measurement time constant Tm is not varied.

IV. SIMULATION RESULTS

A. Test system and disturbances

The 75-bus 11-kV network considered in [10] has been re-

used in this study. Its one-line diagram is given in Fig. 5.

Among the 75 MV buses, 38 feed Low-Voltage (LV)

distribution grids hosting small residential Photo-Voltaic (PV)

units. The corresponding load is 4.7 MW and the production

is 1.9 MW. Each MV bus injection is modeled as shown in

Fig. 6.a with a lumped load and a lumped PV unit behind an

impedance Re + jXe accounting for the MV/LV transformer

and the LV feeder(s). Both Re and Xe are randomized. At

the remaining 37 MV buses, the injection is modeled by an

industrial load and a large PV unit behind a transformer, as

shown in Fig. 6.b. These IBGs have fault-ride-through and

reactive current injection capabilities, while the ones in the

LV grids do not. The parameters of the respective fault-ride-

through characteristics are given in Fig. 3. The corresponding

load is 24.7 MW and the production is 19.2 MW.

The disturbances considered are severe voltage dips, caused

typically by faults, and applied on the transmission side of the

main transformer. They are characterized by a duration ∆T
and a depth ∆V , as shown in Fig. 7. The values of ∆T and

∆V are given in the same figure for the eight disturbances

considered in this paper. ∆T = 0.10 s has been chosen to

account for faults cleared by primary protections, and ∆T =
0.25 s for faults cleared by back-up protections.

Simulations were performed with RAMSES, a software for

time simulation in phasor mode, developed at the Univ. of

Liège [11]. The algorithms presented in Section II were

implemented in MATLAB.
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Vint

Vmin

0 T1 T2

Vr

V (pu)

timeTint

V (pu)

Fig. 6.b Fig. 6.a

Vr 0.9 pu 0.9 pu

Vint 0.7 pu 0.8 pu

Vmin 0.2 pu 0.8 pu

T1 0.2 s 1.5 s

Tint 0.7 s = T1

T2 1.5 s = T1

Figure 3. Parameterized LVRT characteristic (fault occurring at t = 0)

B. Results with uniform distributions of parameters

MC simulations with uniform distribution of the random

parameters (in the specified intervals) are first considered.

Vm

iQsup

m Inom

kRCI

0

VS1

Figure 4. Parameterized characteristic of reactive current injection

The procedure of Section II-C with so = 100 initial

simulations, a tolerance δ = 0.01 MVA and gmax = 10 led to

generate s = 757 randomized responses to each of the eight

disturbances.

Figures 8 and 9 show the 757 time evolutions of, re-

spectively, the active and reactive powers received by the



Figure 5. One-line diagram of the 75-bus 11-kV distribution network

Re Xe

M

IBGMV bus

M

MV bus

equivalent LV feeder
industrial load

with large IBG

IBG

a. b.

Figure 6. MV bus injection model: (a) equivalent LV feeder; (b) industrial
load combined with a large PV unit

distribution grid at bus 1100 in response to disturbance No 1.

Note that all responses correspond to the same operating point;

hence, all curves start from the same value. The corresponding

curves for disturbance No 8 are given in Figs. 10 and 11.

The reactive current injection during the fault by the IBGs

at MV level can be seen in Figs. 9 and 11, with the power

flow changing from import to export. But the most striking

fact is the sharp increase of both the active and the reactive

power immediately after fault clearing, even sharper for the

voltage dip No. 8, which is deeper and lasts longer. The

reason is twofold. First, the motors draw additional power

when re-accelerating after fault clearing. Second, during the

fault, the active currents of IBGs at MV level have been

reduced, if not canceled, owing to the priority given to reactive

currents for voltage support. The active power restoration of

IBGs takes between one and two seconds and is clearly seen

in the progressive reduction of the imported active power.

Finally, it is noted that active power does not return to its pre-

disturbance value. One reason is the tripping of the PV units

connected to LV grids, allowed by their more permissive LVRT

characteristic (see Fig. 3). Another reason is the randomization

∆V

∆T

t

V

disturb. No ∆V (pu) ∆T (s)

1 0.5 0.10
2 0.5 0.25
3 0.6 0.10
4 0.6 0.25
5 0.7 0.10
6 0.7 0.25
7 0.8 0.10
8 0.8 0.25

Figure 7. Disturbances considered in the simulations

�

Figure 8. The 757 active power responses to disturbance No 1 (uniform
distribution of parameters)

�

Figure 9. The 757 reactive power responses to disturbance No 1 (uniform
distribution of parameters)

of the kRCI parameter (see Fig. 4) resulting in smaller voltage

support by some IBGs at MV level and, hence, a higher

probability for the voltage to cross the LVRT characteristic.

Figures 8 to 11 also show the distributions of the 757 power

values at t = 0.5 s (resp. t = 1 s) for voltage dip No 1 (resp.

dip No 8). They are noticeably close to Gaussian distributions.

The shown average µ corresponds to P̄ or Q̄ in Eqs. (1,2), for

the disturbance and the discrete time considered.

The methods of Section II-B were applied to extract the

p
⋆ parameter vector. Both methods proved to identify the

same vector. The corresponding active (resp. reactive) power

evolutions are shown in Fig. 12 (resp. 13), together with the

averages P̄ (resp. Q̄) for the disturbance of concern. Apart
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Figure 10. The 757 active power responses to disturbance No 8 (uniform
distribution of parameters)

�

Figure 11. The 757 reactive power responses to disturbance No 8 (uniform
distribution of parameters)

from short lasting spikes, the curves coincide very well.

C. Results with Gaussian distributions of parameters

The same procedure was repeated assuming Gaussian dis-

tributions for the parameters. As mentioned in Section II-A,

the ranges of variation are the same for both distributions.

The procedure of Section II-C, with the same so, δ and

gmax settings, led to generate s = 577 randomized responses,

i.e. significantly less than for the uniform distributions.

Figures 14 and 15 show the 577 time evolutions of, re-

spectively, the active and reactive powers received by the

distribution grid in response to disturbance No 8 (shown

alone, due to space limitations). The figures also show the

distributions of the 577 power values at t = 1 s. In almost all

cases, the responses are less dispersed around their averages,

which makes sense in so far as the Gaussian distribution has

a smaller standard deviation than the uniform one.

The power evolutions are similar. For the milder distur-

bances, the effect of active power recovery was found less

pronounced.

Once again, the methods of Section II-B identified the

same p
⋆ parameter vector. Figure 16 (resp. 17) compares

the corresponding active (resp. reactive) power evolution with
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Figure 12. Active Power: average response P̄ and evolution closest to this
average (disturbances No 1 and 8, uniform distribution of parameters)
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Figure 13. Reactive Power: average response Q̄ and evolution closest to this
average (disturbances No 1 and 8, uniform distribution of parameters)

the average evolution P̄ (resp. Q̄). Both coincide very well.

Furthermore, comparing Fig. 16 with Fig. 12 (resp. Fig. 17

with Fig. 13) shows that the representative responses obtained

respectively from the uniform and the Gaussian distributions

are not identical but very close to each other.

V. SUMMARY AND PERSPECTIVES

This paper reports on efforts towards setting up a real-

istic ADN model, for use in simulations of large voltage

disturbances in the transmission grid. It is assumed that the

individual dynamic behaviour of IBGs and loads can be

reasonably well captured by a generic model, but the values of

its parameters are uncertain. The parameters are randomized

in Monte-Carlo simulations, whose number is automatically

determined. The outputs of interest are the active and reactive

powers entering the ADN. Multiple disturbances are involved

for better representativeness of the results. Two methods have

been considered to identify the parameters which yield a

dynamic response representative of the whole set. The latter

was chosen to be the closest to the average evolution. In the

tests, both methods were found equivalent.

Other criteria to select dynamic responses are worth being

investigated. Let us quote, non exhaustively: choosing the

response with the largest rate of change of power, using other
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Figure 14. The 577 active power responses to disturbance No 8 (Gaussian
distribution of parameters)

�

Figure 15. The 577 reactive power responses to disturbance No 8 (Gaussian
distribution of parameters)

statistics than the average - such as the median - to build the

reference evolution, or searching for the response which causes

the largest stress to the transmission grid.

Another approach being investigated is the automatic clus-

tering [12], [13] of the responses according to their similarities,

with the objective of selecting one representative per cluster.

One issue, however, is the unclear separation of the dynamic

responses in the Monte-Carlo simulations generated so far.

The so obtained representative models will be subsequently

used to derive dynamic equivalents of the ADN.
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