Evaporation of colloids droplets containing PBS

A. Darras, N. Vandewalle, G. Lumay

GRASP, CESAM Physics Department, University of Liège

March 2018

A. Darras, N. Vandewalle, G. Lumay Superparamagnetic colloids

Table of contents

Introduction

- Motivations
- State of the art
- Colloids containing PBS

2 Experiment

- Dynamics observations
- Oynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Motivations State of the art Colloids containing PBS

Table of contents

Introduction

Motivations

- State of the art
- Colloids containing PBS

2 Experiment

- Dynamics observations
- Dynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Motivations State of the art Colloids containing PBS

★ 3 → < 3</p>

Colloids

Everyday life :

Particles suspension

$k_BT \gg \rho g R^4$

A. Darras, N. Vandewalle, G. Lumay Superparamagnetic colloids

Motivations State of the art Colloids containing PBS

Image: Image:

< ∃ →

э

Colloids

Everyday life :

Particles suspension

$k_B T \gg \rho g R^4$

Motivations State of the art Colloids containing PBS

Colloids

Everyday life :

< □ > < 同 >

< ∃ > <

$k_B T \gg \rho g R^4$

Motivations State of the art Colloids containing PBS

Everyday life :

Colloids

$k_B T \gg \rho g R^4$

Motivations State of the art Colloids containing PBS

Everyday life :

Colloids

ヘロト ヘヨト ヘヨト ヘ

$k_BT \gg \rho g R^4$

Motivations State of the art Colloids containing PBS

(日) (同) (三) (

Everyday life :

Colloids

Motivations State of the art Colloids containing PBS

Colloids

Everyday life :

(日) (同) (三) (

$k_BT \gg \rho g R^4$

Motivations State of the art Colloids containing PBS

BLOOD

< ロ > < 同 > < 回 > < 回 >

Everyday life :

 $k_B T \gg \rho g R^4$

Colloids

Motivations State of the art Colloids containing PBS

Colloids

Blood deposits : health indicator (?)

T.A. Yakhno et al., IEEE Eng. Med. Biol. Mag., <u>24(2)</u>, 96 (2005)

- Important parameters?
- Physical mechanisms ?
- ⇒ Study of colloids droplets evaporation

Motivations State of the art Colloids containing PBS

Colloids

Blood deposits : health indicator (?)

T.A. Yakhno et al., IEEE Eng. Med. Biol. Mag., <u>24(2)</u>, 96 (2005)

 Important parameters?

- Physical mechanisms ?
- ⇒ Study of colloids droplets evaporation

Motivations State of the art Colloids containing PBS

Colloids

Blood deposits : health indicator (?)

- Important parameters ?
- Physical mechanisms ?
- ⇒ Study of colloids droplets evaporation

Motivations State of the art Colloids containing PBS

Colloids

- Important parameters ?
- Physical mechanisms ?
- ⇒ Study of colloids droplets evaporation

< 17 ▶

- ∃ →

Motivations State of the art Colloids containing PBS

Table of contents

Introduction

Motivations

• State of the art

Colloids containing PBS

2 Experiment

- Dynamics observations
- Dynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Motivations State of the art Colloids containing PBS

< 一型

Coffee Ring

Dominant effect : coffee ring

Robert D. Deegan et al., Nature 3896653, p.827-829 (1997)

Coffee Ring

Motivations State of the art Colloids containing PBS

Pinning of contact line and evaporation profile Dominant effect : coffee ring

Robert D. Deegan et al., Nature 3896653, p.827-829 (1997)

Motivations State of the art Colloids containing PBS

Marangoni effect

Motivations State of the art Colloids containing PBS

Table of contents

Introduction

- Motivations
- State of the art
- Colloids containing PBS

Experiment

- Dynamics observations
- Dynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Motivations State of the art Colloids containing PBS

PBS properties

Phosphate-buffered saline (PBS) properties :

• pH Buffer (7.4)

Motivations State of the art Colloids containing PBS

PBS properties

Phosphate-buffered saline (PBS) properties :

- pH Buffer (7.4)
- Screen electrostatic repulsion

J.N. Israelachvili, Intermolecular and surface forces Academic press (2011).

Motivations State of the art Colloids containing PBS

PBS properties

Phosphate-buffered saline (PBS) properties :

- pH Buffer (7.4)
- Screen electrostatic repulsion
- Increase surface tension ($\frac{d\gamma}{d\kappa} \sim 10^{-4}~{
 m N/m})$

Dynamics observations Dynamics discussion Resulting Dried Drops

Table of contents

Introduction

- Motivations
- State of the art
- Colloids containing PBS

2 Experiment

- Dynamics observations
- Dynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Dynamics observations Dynamics discussion Resulting Dried Drops

э

PIV Movie

First, let's watch some movies!

A. Darras, N. Vandewalle, G. Lumay Superparamagnetic colloids

Dynamics observations Dynamics discussion Resulting Dried Drops

Schematic view

A. Darras, N. Vandewalle, G. Lumay

Superparamagnetic colloids

Dynamics observations Dynamics discussion Resulting Dried Drops

・ロト ・ 一下 ・ ・ ヨト ・

э

Schematic view

Dynamics observations Dynamics discussion Resulting Dried Drops

Table of contents

Introduction

- Motivations
- State of the art
- Colloids containing PBS

2 Experiment

- Dynamics observations
- Oynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Dynamics observations Dynamics discussion Resulting Dried Drops

(日) (同) (三)

Dynamics observations Dynamics discussion Resulting Dried Drops

< □ > < A > >

< ∃ >

э

Dynamics observations Dynamics discussion Resulting Dried Drops

Marangoni transition

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

Image: Image:

∃ → < ∃</p>

Dynamics observations Dynamics discussion Resulting Dried Drops

Marangoni transition

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

< D > < P > < P > < P >

Dynamics observations Dynamics discussion Resulting Dried Drops

Marangoni transition

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

< □ > < A > >

< ∃ >

Dynamics observations Dynamics discussion Resulting Dried Drops

Marangoni transition

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$\bigtriangleup \kappa \sim \kappa_m - \kappa_0 = \kappa_0 (\frac{V_0}{V} - 1)$$

< D > < P > < P > < P >

Dynamics observations Dynamics discussion Resulting Dried Drops

Marangoni transition

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$igtriangleq \kappa \sim \kappa_m - \kappa_0 = \kappa_0 (rac{V_0}{V} - 1)$$
 $Ma = rac{rac{d\gamma}{d\kappa} \ igtriangleq \kappa \ t_f}{\eta \ R}$

< □ > < A > >

< ∃ >

Dynamics observations Dynamics discussion Resulting Dried Drops

Marangoni transition

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$\Delta \kappa \sim \kappa_m - \kappa_0 = \kappa_0 \left(\frac{V_0}{V} - 1\right)$$
$$Ma = \frac{\frac{d\gamma}{d\kappa} \ \Delta \kappa \ t_f}{\eta \ R}$$

$$\Rightarrow$$
 Ma \sim 10 2 \sim Ma $_c$

< □ > < A > >

< ∃ >

Dynamics observations Dynamics discussion Resulting Dried Drops

< □ > < 同 > < 三 > .

э

Outward flow transition

Dynamics observations Dynamics discussion Resulting Dried Drops

< D > < P > < P > < P >

Outward flow transition

Dynamics observations Dynamics discussion Resulting Dried Drops

Outward flow transition

$$v_r = v_{CR} + v_{Ma}$$

H. Hu, and R.G. Larson. Langmuir 21, p.3972-3980 (2005)

< □ > < A > >

Dynamics observations Dynamics discussion Resulting Dried Drops

Outward flow transition

$$v_r = v_{CR} + v_{Ma}$$

$$rac{v_{CR}}{v_{Ma}}\sim rac{R^2}{Ma\ h^2}$$

< D > < P > < P > < P >

Dynamics observations Dynamics discussion Resulting Dried Drops

Outward flow transition

$$egin{aligned} & v_r = v_{CR} + v_{Ma} \ & rac{v_{CR}}{v_{Ma}} \sim rac{R^2}{Ma \ h^2} \ & \Rightarrow v_{CR} \gg v_{Ma} \Leftrightarrow rac{R^2}{h^2} \gg Ma \end{aligned}$$

(日)

Dynamics observations Dynamics discussion Resulting Dried Drops

Outward flow transition

$$v_r = v_{CR} + v_{Ma}$$

 $rac{v_{CR}}{v_{Ma}} \sim rac{R^2}{Ma \ h^2}$
 $\Rightarrow v_{CR} \gg v_{Ma} \Leftrightarrow rac{R^2}{h^2} \gg Ma$
Motion until $h \sim 10^{-6}$ and $R \approx 10^{-3}$,
 $Ma \sim 10^2$

(日)

Dynamics observations Dynamics discussion Resulting Dried Drops

Effect of PBS concentration

A. Darras, N. Vandewalle, G. Lumay

Superparamagnetic colloids

Dynamics observations Dynamics discussion Resulting Dried Drops

Table of contents

Introduction

- Motivations
- State of the art
- Colloids containing PBS

2 Experiment

- Dynamics observations
- Dynamics discussion
- Resulting Dried Drops

3 Conclusions and prospects

Dynamics observations Dynamics discussion Resulting Dried Drops

Effect of PBS concentration

Bright field pictures of dried drops :

Dynamics observations Dynamics discussion Resulting Dried Drops

Effect of PBS concentration

Conclusion

 Important parameters ? Ionic concentration is one

 Physical mechanisms ? Competition Marangoni-Bénard vs Coffee-Ring

- ∃ →

< 口 > < 同 >

Conclusion

- Important parameters? Ionic concentration is one
- Physical mechanisms?
 Competition Marangoni-Bénard vs
 Coffee-Ring

< ∃ >

< 口 > < 同 >

Conclusion

- Important parameters ? Ionic concentration is one
- Physical mechanisms?
 Competition Marangoni-Bénard vs Coffee-Ring

- High PBS keeps Marangoni "honeycomb" patterns after drying
- Could it keep other structures ? e.g. self-assembled superparamagnetic colloids ?

< ∃ >

Prospects

A. Darras, N. Vandewalle, G. Lumay

Superparamagnetic colloids

Thanks for your attention !

A. Darras, N. Vandewalle, G. Lumay Superparamagnetic colloids

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

< ∃ >

ヨート

$$\bigtriangleup \kappa \sim \kappa_m - \kappa_0 = \kappa_0 (\frac{V_0}{V} - 1)$$

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$egin{aligned} & \bigtriangleup \kappa \sim \kappa_m - \kappa_0 = \kappa_0 (rac{V_0}{V} - 1) \ & \sim \kappa_0 (rac{t_f}{t_f - t} - 1) = \kappa_0 rac{t}{t_f - t} \end{aligned}$$

< ∃ >

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$egin{aligned} & \bigtriangleup \kappa \sim \kappa_m - \kappa_0 = \kappa_0 (rac{V_0}{V} - 1) \ & \sim \kappa_0 (rac{t_f}{t_f - t} - 1) = \kappa_0 rac{t}{t_f - t} \ & \sim 10^{-3} \end{aligned}$$

< 同 ト < 三 ト

$$\kappa \equiv \frac{C_i}{C_i(PBS)}$$

$$\kappa_0 \sim 10^{-2}$$

$$\kappa_m = \kappa_0 \frac{V_0}{V}$$

$$\Delta \kappa \sim \kappa_m - \kappa_0 = \kappa_0 (rac{V_0}{V} - 1) \ \sim \kappa_0 (rac{t_f}{t_f - t} - 1) = \kappa_0 rac{t}{t_f - t} \ \sim 10^{-3}$$

$$\Rightarrow$$
 Ma \sim 10² \sim Ma_c

< ∃ >

Λ

Outward flow transition

э

Outward flow transition

$$v_r = v_{CR} + v_{Ma}$$

H. Hu, and R.G. Larson. Langmuir 21, p.3972-3980 (2005)

Introduction Conclusions and prospects

Outward flow transition

$$v_r = v_{CR} + v_{Ma}$$

 $v_{Ma} \sim \frac{Ma \ h \ h_0}{R \ t_c}$

R t_f

(日) (同) (三) (

э

A. Darras, N. Vandewalle, G. Lumay Superparamagnetic colloids

Outward flow transition

$$v_r = v_{CR} + v_{Ma}$$

< D > < P > < P > < P >

э

$$V_{Ma} \sim rac{Ma \ h \ h_0}{R \ t_f}$$

 $V_{CR} \sim rac{2 \ h_0 \ R}{h \ t_f}$

Outward flow transition

 $v_r = v_{CR} + v_{Ma}$

$V_{M_2} \sim$	Ma h h ₀
- ivia	$R t_f$ 2 ho R
$v_{CR} \sim$	$\frac{2}{h} \frac{h_0}{t_f}$
VCR ~	
VMa	Ma h ²

(日) (同) (三) (

э

Outward flow transition

$$v_{r} - v_{CR} + v_{Ma}$$

$$v_{Ma} \sim \frac{Ma \ h \ h_{0}}{R \ t_{f}}$$

$$v_{CR} \sim \frac{2 \ h_{0} \ R}{h \ t_{f}}$$

$$\frac{v_{CR}}{v_{Ma}} \sim \frac{R^{2}}{Ma}$$

$$\Rightarrow v_{CR} \gg v_{Ma} \Leftrightarrow \frac{R^{2}}{h^{2}} \gg Ma$$

< D > < P > < P > < P >

э

Outward flow transition

< 同 ト < 三 ト