Non-ferrous scrap metals classification by hyperspectral and multi-energy X-ray transmission imaging

PICKIT Project

Braibant, L.; Barnabé, P.; Leroy, S.; Dislaire, G.; Pirard, E.

Speaker – Lorraine Braibant

8th International Conference on Sensor-Based Sorting & Control March 6th, 2018

Contents

• Non-ferrous scrap metals : input stream

PICKIT project : multi-sensor approach

 Classification of alloy fragments using perClass toolbox

Challenges & perspectives

Non-ferrous scrap metals: input stream

Nickeled Brass 24 pieces

Aluminum 58 pieces

Zinc 49 pieces Brass 53 pieces Copper 50 pieces

PICKIT: multi-sensor approach

PICKIT: multi-sensor approach

3D + VNIR sensors + X-ray multi-energy sensor

Classification using perClass toolbox

Classification based only on visible-NIR spectra in a limited sample of 234 pieces of zinc (20.9%), copper (21.4%), aluminum (24.8%), brass (22.6%), and nickeled brass (10.2%)

alloys

alloys		VNIR decisions, pixel level				
		Aluminum	Copper	Zinc	Brass	Brass Ni
True labels	Aluminum	74%	1%	15%	5%	6%
	Copper	3%	82%	0%	12%	2%
	Zinc	6%	0%	89%	1%	4%
	Brass	8%	21%	2%	61%	7%
	Brass Ni	20%	4%	15%	9%	52%

		VNIR decisions, object level				
		Aluminum	Copper	Zinc	Brass	Brass Ni
True labels	Aluminum	91%	0%	4%	0%	4%
	Copper	0%	100%	0%	0%	0%
	Zinc	3%	0%	97%	0%	0%
	Brass	5%	5%	0%	85%	5%
	Brass Ni	8%	0%	8%	17%	67%

Classification using perClass toolbox

X-ray transmission (XRT) measurements in 5 energy bins in the [40,160] keV range

- Virtually impossible to discriminate zinc, copper, brass based on XRT
- Problematic overlap between the XRT measurements of aluminum alloys and zinc/copper/brass alloys despite their different atomic number (Z)

		Decisions XRT		
		Heavy	Light	
rue	Heavy	95%	5%	
Tr lab	Light	8%	92%	

Classification using perClass toolbox

Brass

Brass Ni

9%

4%

Cascade classification: (i) separation between low-Z aluminum alloys and higher-Z alloys based on XRT, (ii) classification of high-Z zinc, copper, and brass alloys based on visible-NIR spectra.

spectia.		Cascade decisions, pixel level				
		Aluminum	Copper	Zinc	Brass	Brass Ni
labels	Aluminum	96%	0%	2%	1%	2%
	Copper	8%	79%	1%	12%	1%
	Zinc	8%	0%	88%	2%	1%

4%

17%

64%

13%

24%

3%

3%

62%

		Cascade decisions, object level				
		Aluminum	Copper	Zinc	Brass	Brass Ni
True labels	Aluminum	100%	0%	0%	0%	0%
	Copper	3%	97%	0%	0%	0%
	Zinc	0%	0%	100%	0%	0%
	Brass	2%	5%	2%	90%	0%
	Brass Ni	0%	0%	8%	25%	67%

Challenges & perspectives

 Multi-class sorting in a larger and more complex sample representative of the nonferrous metal fraction of shredder output

Alloys	Fragments	Mass (kg)	
Grey zinc	414 (24.2%)	7.82 (26%)	
Dark zinc	46 (2.7%)	1.36 (4.5%)	
Iridescent zinc	55 (3.2%)	1.04 (3.4%)	
Cast aluminum	227 (13,2%)	2.72 (9.1%)	
Wrought aluminum	79 (4.6%)	0.44 (1.5%)	
Copper	165 (9.6%)	1.2 (4%)	
Brass	216 (12.6%)	5.30 (17.7%)	
Nickeled brass	186 (10.9%)	3.01 (10%)	
Stainless Steel	3 (0.2%)	0.12 (0.4%)	
Heavies (Pb, Sn, Ag)	13 (0.8%)	0.765 (2.5%)	
Magnesium	2 (0.1%)	0.025 (0.1%)	
Waste + PCB	17 (1%)	0.282 (0.9%)	
Coated	109 (6.4%)	1.32 (4.4%)	
Alloy mixture	157 (9.2%)	4.27 (14.2%)	
Soldered copper	25 (1.5%)	0.34 (1.1%)	
		Total 20 kg	

Total = 30 kg

Challenges & perspectives

- Multi-class sorting in a larger and more complex sample representative of the nonferrous metal fraction of shredder output
- Optimize classification to produce purified streams for classes of interest

Challenges & perspectives

- Multi-class sorting in a larger and more complex sample representative of the nonferrous metal fraction of shredder output
- Optimize classification to produce purified streams for classes of interest
- Detect imperfectly shredded scraps, composed of several alloys

Any questions?

We acknowledge the financial support from the Region Wallonne (Belgium) and we thank our industrial partner, Comet Traitements.