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Abstract—The subject of this paper is the investigation of
the stability of a Voltage Source Converter (VSC) undergoing
a sudden decrease of the Short Circuit Capacity of the AC
system to which it is connected. A case study is reported on
a simple system including an HVDC terminal and a Thévenin
equivalent. First, a small-signal stability analysis is performed
showing that the PLL-based vector control may become unstable
at powers lower than the theoretical static stability limit. Dynamic
simulations demonstrate that the stability limit may further
decrease depending on the disturbance. The need for a fast
instability detection method is highlighted.

Index Terms—High Voltage Direct Current (HVDC), stability
limit, Voltage Source Converter, weak AC grid.

I. INTRODUCTION

During the recent years, power systems have been under-
going a gradual decommissioning of conventional power plants
in favor of converter-interfaced renewable generation units. In
combination with the opposition against installation of new
AC lines, this is expected to lead to weaker AC systems, i.e.
systems with lower Short-Circuit Capacity (SCC) values.

In addition, more High Voltage Direct Current (HVDC)
connections are planned, to encourage bulk power transfer
over long distances and the integration of distant renewable
sources. The majority of these HVDC connections are based
on Line Commutated Converters (LCC). LCC-based connecti-
ons require to be connected to a strong system with a large
enough SCC. However, connections based on Voltage Source
Converters (VSC) have been gaining momentum, due to better
flexibility and control capabilities. VSC-based connections do
not necessarily have such an SCC requirement as discussed in
[1]. However, as noted in various publications (e.g. [2] and [3])
the so-called vector control scheme of the VSC may become
unstable when connected to a weak or a very weak AC grid.

The stability of a VSC connected to a weak AC grid has
been the subject of several works in the literature. For instance,
the work in [3] focuses on the destabilizing effect of the Phase
Locked Loop (PLL) of the VSC. It is shown that the maximum
theoretical limit of power transfer can be approached only with
considerable slowing down of the PLL response.

The same problems with PLL-based vector control were
identified in [2]. In this work, the authors propose the Power
Synchronization Method (PSM) to control the VSC. By emu-
lating the way the synchronous machines are synchronized

with the network, it was shown that stable operation of the
VSC even in very weak grid conditions can be achieved.
Nevertheless, a backup PLL is still required to avoid loss of
synchronism and limit the VSC overcurrent during AC faults.
The PSM was also used in [4] with additional terms to provide
damping and self synchronization.

An adaptive vector control is proposed in [1] to ensure stable
VSC behavior in weak AC grid conditions. Instead of the PLL,
the authors focused on the outer loops of the VSC, which
control the VSC power and AC voltage to their respective
reference values. By introducing cross-coupling terms between
these controllers, with gains adapting depending on the opera-
ting condition of the VSC, stable operation even in very weak
conditions was achieved.

A robust vector control is described in [5]. An AC voltage
controller is synthesized including the PLL and AC voltage
dynamics enabling power transfer for weak AC grid.

The maximum stable power transfer was increased in [6]
by virtually connecting the VSC to a stronger point of the
AC grid. This was achieved by introducing a term in the PLL
compensating a part of the network impedance.

Nevertheless, in the aforementioned works, the investigation
is limited to a VSC initially operating on a weak AC grid. The
system response to a sudden large drop of the SCC, i.e. when
an initially strong grid becomes suddenly weak, has not yet
been investigated. This is the subject of this paper.

To this purpose, a case study is presented on a simplified
system. A small-signal analysis is used to identify the impact
of the various control parameters on stability. Then, dynamic
simulations in phasor mode are performed to assess the system
stability following a large decrease of SCC, taking into account
the compliance of the VSC with grid code requirements.

The rest of the paper is organized as follows. Section II
describes the VSC modeling. Results of the small-signal
analysis are presented in Section III. Section IV investigates
the VSC response to large disturbances using time-domain
simulations. Concluding remarks are offered in Section V.

II. TEST SYSTEM

A. Overall system structure

The system that will be investigated is shown in Fig. 1.
It consists of a point-to-point HVDC link and a simplified
representation of the AC system by a Thévenin equivalent
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Figure 1. Test system of case study

involving an ideal voltage source (with magnitude E) and a
small reactance Xs, in parallel with a larger reactance Xw.

The Slave VSC is connected to the AC system through its
phase reactor with inductance L and resistance R. The VSC
controls the current Ī flowing through the phase reactor by
adjusting the voltage V̄m. In turn, the current is adjusted so
that the VSC controls its active power P , as well as the AC
voltage V at the connection point of the HVDC link. The
Master VSC is controlling the DC voltage at its DC bus by
adjusting its power, thereby ensuring the power balance of the
HVDC link. In this paper, the focus is on the AC side of the
Slave VSC, thus, the DC dynamics do not play a significant
role. This simplification should be revisited in case the study
would involve a disturbance in the AC grid of the Master VSC.
This is not further discussed in this paper.

The static limit of the active power that can be absorbed by
the AC system, is given by the well-known formula (e.g. [7]):

P st
max =

V E

Xeq
(1)

corresponding to a 90◦ phase angle difference and an equiva-
lent reactance Xeq between the voltage-controlled nodes.

Clearly, if some lines are tripped in the AC system, the
equivalent impedance Xeq seen by the VSC increases and the
maximum power is reduced. If the active power P that the
VSC seeks to inject is larger than the new reduced limit P st

max,
operation is impossible and instability will result.

B. VSC model

This section describes the generic model of the VSC and
its controllers. The model is of the Type 6 in [8]. It has been
set up based on various references (in particular [9], [10]).

1) PLL: All equations of the VSC are expressed in the
dq frame. This is provided by the PLL, which is used to
synchronize the VSC to the grid and provide the dq frame
required for the controllers.

The PLL aims to align the d axis with the terminal voltage
phasor V̄ as shown in Fig. 2. The x and y axes are the
orthogonal, rotating axes used to project all phasors. The xy
frame is rotating with speed ωref , whereas the dq frame of the
PLL with speed ω. In steady state, the voltage V̄ is aligned
with the d axis, and, thus, the components vd and vq of the
terminal voltage are equal to V and zero, respectively. In
addition, the angle θ is equal to δ, the component id of the
current flowing through the phase reactor is the active current,
and the component iq is the reactive current with opposite sign.
Following a transient, the PLL adjusts the speed ω accordingly,
until the d axis again coincides with the voltage phasor.
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Figure 2. xy and dq reference frames

A typical scheme relying on a PI controller is used to
achieve this synchronization. The controller drives to zero the
vq component of the terminal voltage V . The equations of the
PI controller are as follows:

ω = Kpωvq +Mω (2)

dMω

dt
= Kiωvq (3)

where Kpω , Kiω are the PI gains, and Mω the integrator
internal state. The angle θ of the PLL evolves according to:

dθ

dt
= ω − ωref . (4)

2) Phase reactor: The phase reactor equations expressed
in the dq frame are as follows:

did
dt

=
ωN

L

(
−Rid +

ωL

ωN
iq + vmd − vd

)
(5)

diq
dt

=
ωN

L

(
−Riq −

ωL

ωN
iq + vmq − vq

)
(6)

where vmd and vmq are the d and q components of voltage V̄m,
respectively, ωN and ω are the nominal angular frequency and
the angular frequency measured by the PLL. All parameters
and variables are in per unit, except ωN and ω, which are in
rad/s.

3) Current controllers: Each of the id and iq currents is
controlled to its reference irefd and irefq , respectively, by a
dedicated PI controller adjusting the voltage components vmd

and vmq of V̄m. Feedforward and decoupling terms are added
to ensure independent control of the currents [10]. This yields
the following set of equations:

vmd = vd −
ωL

ωN
iq +Kp

(
irefd − id

)
+Md (7)

dMd

dt
= Ki

(
irefd − id

)
(8)

vmq = vq +
ωL

ωN
id +Kp

(
irefq − iq

)
+Mq (9)

dMq

dt
= Ki

(
irefq − iq

)
(10)

where Kp, Ki are the proportional and integral gains of the PI
controllers, and Md, Mq the internal states of the integrators.



4) Outer controllers: The current references are provided
by the outer loops, which aim to control the active power
output P and the terminal voltage V of the VSC to their refe-
rence values P ref and V ref , respectively. Integral controllers
are used to this purpose corresponding to:

direfd

dt
= Kpi

(
P ref − P

)
= Kpi

(
P ref − vdid − vqiq

)
(11)

direfq

dt
= Kvi

(
V − V ref

)
= Kvi

(√
v2d + v2q − V ref

)
(12)

where Kpi,Kvi are the gains of the controllers. A proportional
term can be also added, but it was neglected for simplicity.

The complete structure of the VSC model and its controls
is shown in Fig. 3. vx and vy are the rectangular components
of the voltage phasor V̄ , and ix and iy those of the current
Ī injected into the grid, all in the xy reference frame. The
block Rdq→xy denotes the change of reference frame from dq
to xy and Rxy→dq the inverse operation. The transformation
of voltage coordinates from the xy to the dq frame is given
by the following equations:

vd = vx cosθ + vy sinθ (13)

vq = −vx sinθ + vy cosθ. (14)

5) AC grid equations: The phasor approximation is used
for the AC grid, as in standard AC system stability studies.
Therefore, the equations giving the voltage at the terminal of
the VSC in the xy frame are the following:

vx = E −Xeqiy (15)

vy = Xeqix. (16)

III. SMALL-SIGNAL STABILITY ANALYSIS OF VSC
CONNECTED TO WEAK AC SYSTEM

A. System reduction and linearization

The small-signal analysis is performed by linearizing the
system of differential-algebraic equations (5)-(16).

After algebraic manipulations and variable eliminations, the
following differential state vector xd and algebraic state vector
xa can be chosen:

xd =
[
id iq Md Mq θ Mω i

ref
d irefq

]T
(17)

xa = [ix iy vx vy]
T (18)

which satisfy the equations:
.
xd = f(xd,xa) (19)

0 = g(xd,xa). (20)

By linearizing the above nonlinear equations, the system is
brought in the form of[ .

∆xd

0

]
=

[
A B
C D

] [
∆xd

∆xa

]
(21)

where

A =
∂f

∂xd
, B =

∂f

∂xa
, C =

∂g

∂xd
, D =

∂g

∂xa
. (22)

The small-signal stability analysis is performed with the
eigenvalues of the reduced Jacobian, which is the Schur
complement of block D:

J = A−BD−1C. (23)

B. Parameters and operating point

The nominal active power of the VSC is selected as the
base power. The nominal frequency of the system is 100π
rad/s. The small-signal analysis is performed in the weak grid
configuration by choosing Xeq = Xw = 2 pu. For simplicity,
we take E = 1 pu, and we assume that the VSC also keeps
its terminal voltage equal to 1 pu. Hence, the static stability
limit is P st

max = 0.5 pu. Since the network resistance has been
neglected, the same limit applies for reverse power flow. In
this work, the VSC active power is considered positive for
inverter operation.

The inner loop controller gains have been tuned to have
a response time of 10 ms. In order to have a good time
decoupling between the inner and the outer loops, the response
time of the latter is chosen ten times slower [10]. The PLL has
been tuned to have a response time of 50 ms. The complete
set of parameters for these settings is given in Fig. 3.

C. Effect of operating point

A total of eight eigenvalues are involved. For instance, for
P ref = 0.4 pu the eigenvalues are the following:

s1,2 = −196.2 ± j242.7, s3,4 = −203.3 ± j215.2

s5,6 = −68.2 ± j18.4, s7,8 = −12.4 ± j29.6

Due to the non-linearities in (11), (12), (13), (14), the Jaco-
bian J and its eigenvalues change with the operating point.
The effect of changing progressively P ref on the dominant
eigenvalues (i.e. s7,8) is shown in Fig. 4. The eigenvalues are
located in the left hand plane indicating a stable system for low
P ref . However, as the power increases the eigenvalue moves
to the right. The system becomes unstable for P ref greater
than 0.44 pu.

Note that this limit is smaller than P st
max. In fact, the

system undergoes a Hopf bifurcation (growing oscillations) for
P ref = 0.45 pu. For P ref = 0.5 pu, it loses its equilibrium,
i.e. it undergoes a saddle-node bifurcation, easily identified by
the zero eigenvalue.

D. Effect of outer loops tuning

The effect of adjusting the active power and voltage con-
trol loops is now discussed. Unless otherwise specified, the
response time of the inner loops is 10 ms, of the PLL 50 ms,
and of the outer loops 100 ms. The analysis is performed
at the first unstable operating point identified in the previous
subsection, i.e. for P ref = 0.45 pu.
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Figure 5. Dominant eigenvalues when varying Kpi (P ref = 0.45 pu)

1) Effect of active power loop: The locus of the dominant
eigenvalues when varying the active power loop gain Kpi is
depicted in Fig. 5. It can be seen that accelerating the active
power control deteriorates stability by moving the eigenvalues
towards the right-hand plane.

2) Effect of voltage loop: In contrast, when the gain Kvi

is increased, the stability of the system is improved as de-
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Figure 6. Dominant eigenvalues when varying Kvi (P ref = 0.45 pu)

monstrated by the locus of the dominant eigenvalues shown
in Fig. 6. For low values of Kvi the system is unstable.

The results of Figs. 5 and 6 suggest that voltage control
should be faster than active power control to increase the
range of stable operating points, i.e. to make the dynamic limit
approach the static one (but, of course, never exceed it).

E. Effect of PLL tuning

The effect of adjusting the PLL parameters is shown in
Fig. 7. The gains Kpω and Kiω are tuned based on [11] in
order to satisfy a desired response time τω as follows:

Kpω =
10

τω
and Kiω =

25

τ2ω
(24)

The locus of the dominant eigenvalues when varying τω
from 5 ms up to 500 ms is shown in Fig. 7. It is shown that
the system is stable for very slow and very fast PLL response
times, whereas it becomes unstable for intermediate values.

IV. LARGE-DISTURBANCE ANALYSIS

In this section, the response of the system following the
sudden tripping of the short reactance is investigated. Before
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the disturbance (i.e. short reactance still in operation), the
AC system is adequately strong to absorb the full power of
the VSC. Therefore, the power transferred through the VSC
before the disturbance can be even above the SCC of the post-
disturbance weak grid. If the power transfer is above the sta-
bility limit indicated by the analysis in Section III, instability
is certain unless emergency actions are taken. Nevertheless,
it will be shown that stability even for lower powers is not
guaranteed, but depends on the disturbance conditions.

The system is subject to a large disturbance requiring to
consider its non-linear behavior. Therefore, upper and lower
limits on irefd , irefq , vmd, vmq and ω have been included in
the following analysis (not shown in Fig. 3). Furthermore,
the analysis should also consider changes of control logic.
Namely, since the tripping of a line is usually preceded by a
fault, it is important to include the low voltage behavior of the
VSC, detailed in the next sub-section.

A. Low voltage behavior of VSC

In order to avoid sudden disconnection of multiple con-
verters, many grid codes require Fault-Ride-Through (FRT)
capability by the VSCs [12], [13]. In addition, during the
duration of the fault, the VSC is required to boost its reactive
current injection in order to support the voltage, while limiting
the active current is needed to avoid exceeding the nominal
current. Then, after fault clearing, the VSC should ramp up its
active power back to its pre-disturbance value. For example,
the German grid code specifies that the active power should be
restored with a gradient of at least 20% of its nominal value
per second [14]. Other grid codes, e.g. in UK [15], are even
more constraining by demanding faster active power recovery.

This behavior is modeled as shown in Fig. 8 relative to the
outer loops of the VSC.

In normal operation both the active power and the voltage
loops correspond to (11) and (12), respectively, and priority
is given to the active current, which can increase up to the
maximum VSC active current αImax, α being the fraction
of the maximum current Imax allocated to active current.
Namely, the upper limits shown in Fig. 8 are given by:

Imax
d = αImax and Imax

q =

√
(Imax)

2 −
(
irefd

)2
. (25)
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Figure 8. Outer loops of VSC including low voltage support

In case the voltage drops below 0.9 pu the priority goes to
reactive current, i.e.

Imax
d = α

√
(Imax)

2 −
(
irefq

)2
and Imax

q = Imax (26)

and the voltage control loop is replaced by a proportional
controller with gain Kv . It is noted that the iq contribution
of the voltage control before the fault is kept and added
as a constant term to the contribution of that proportional
controller. In addition, the voltage control integrator is frozen
to prevent windup during the fault.

After fault clearing and the subsequent recovery of the
voltage above 0.9 pu, the integral voltage control is restored in
operation and priority is once again given, albeit gradually, to
the active current. This is achieved by ramping up the active
current limit Imax

d .

B. Simulation results

1) Case 1 - Tripping of short reactance with fault: The
disturbance considered is a solid three-phase fault in the
middle of the short reactance (Xs = 0.1 pu), cleared after
five cycles (0.1 s) by disconnecting the reactance Xs. Kv

is set equal to 2.5 pu and the active power recovery rate is
20 %/s. The response times of the inner loops, the PLL and
the outer loops are 10, 50 and 100 ms, respectively. Imax has
been set equal to 1 pu and α = 1. All dynamic simulations
were performed with RAMSES, a time simulation software
developed at the Univ. of Liège [16], using the techniques
described in [17].

Figures 9, 10 and 11 show the evolution of respectively
the VSC terminal bus voltage V , the active P and the
reactive power Q. Three initial operating points are considered:
(i) P ref = 0.44 pu (marginally small-signal stable point),
P ref = 0.45 pu (marginally small-signal unstable point) and
P ref = 0.8 pu (unstable point).

Following the fault, the VSC voltage drops below the
threshold of 0.9 pu, as shown in Fig. 9, and the VSC enters
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the reactive support mode by giving priority to the reactive
current. Since, the full capability of the VSC is devoted to
reactive power the active power drops to 0 pu during the fault.

After the clearing of the fault and the tripping of the
reactance, there is a large fast transient caused by the voltage
and phase angle variations. An overvoltage spike is observed
immediately after fault clearing due to the large reactive
current contribution during the fault. This is corrected by VSC
controls, which swiftly restore the voltage near its nominal
value. The spike is due to the reactive current, which reached
a high value during the fault and takes a short time to
decrease, combined with the large Thévenin reactance. One
cannot preclude that an overvoltage protection trips the VSC.
If not, the VSC enters the active power restoration mode
and ramps up its active power. As expected, in the unstable
case (P ref = 0.8 pu), the reference power is infeasible and
the attempt to recover it leads to collapse. As far as the
P ref = 0.45 case is concerned, the system becomes small-
signal unstable, as also predicted from Fig. 4. For P ref = 0.44
pu, the power experiences some oscillations, but eventually
reaches a stable steady state.

The angle θ of the PLL is shown in Fig. 12, for all cases.
For the stable case, the angle increases almost linearly, as the
power is ramped up and settles at 61◦. On the contrary, it
raises monotonically in the two unstable cases indicating that
the VSC cannot be resynchronized with the AC grid.

It is interesting to note that the results of Fig. 10 are in
agreement with the small-signal stability analysis of Fig. 4.
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This is mainly due to the active power reduction during the
fault and the gradual power restoration after. Hence, the system
is smoothly brought to its final equilibrium point, and the
stability limit is not influenced by non-linearities.

2) Case 2 - Tripping of short reactance without fault:
Whether the fault-ride-through behavior of the VSC is activa-
ted depends on the type of the disturbance, the system under
concern, etc., and is not a priori known.

In this case, the SCC is decreased without a fault. The
evolutions of the VSC voltage and active power are shown
in Figs. 13 and 14, respectively, for various initial operating
points. The short reactance is tripped at t = 0.6 s.

Figure 14 reveals that the case of P ref = 0.44 pu, identified
as marginally stable by both the small-signal analysis and Case
1, is no longer stable. In contrast, almost immediate collapse is
observed after the disturbance. Indeed, after an initial increase
caused by the sudden angle change and the time it takes for the
VSC to track the new angle, the voltage drops below 0.9 pu,
but not much. Thus, the magnitude of the reactive current iq
injected is smaller and leaves room for the whole active current
id. The latter is not reduced and the VSC attempts to force
the pre-disturbance active power immediately.

In order to identify a secure operating point, the pre-
disturbance power P ref was decreased in steps of 0.01 pu.
The first stable operating point was found for P ref = 0.37 pu.
However, as seen in Fig. 13, the voltage has dropped and
settled below the threshold of 0.9 pu, indicating that the VSC
has been locked in the reactive support mode. Nevertheless,
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since the active power is successfully restored, the operating
point is considered stable.

V. CONCLUSION

This paper has investigated the stability of a VSC when
connected to a suddenly weakened AC grid. First, a small-
signal analysis was conducted revealing that the stability of
the system is mainly affected by the tuning of the outer loop
parameters and the response time of the PLL.

Then time-domain simulations were performed to further
investigate the VSC response to large disturbances. It has
been shown that depending on the sequence of events leading
to the SCC decrease, the stability limit detected by small-
signal analysis may be optimistic, and further reduction of
the pre-disturbance VSC power would be required to ride
through the disturbance. In addition, it has been shown that
the system may undergo severe transients when subject to a
sudden decrease of the SCC. Therefore, various controls of the
VSC, in particular the switching to reactive support when a
low voltage is detected followed by the gradual restoration
of the active power, have to be taken into account when
conducting stability studies.

In view of the large transients, the adequacy of the generic
model used should be further investigated, as well as the
appropriateness of the phasor approximation in the AC system.
For instance, preliminary checks including the fast network
transients have shown that eigenvalues with high frequency

can become unstable, if the integral gain Kvi is increased so
much that the outer voltage and the inner current control loops
are no longer decoupled.

Envisaged future research concerns methods to detect the
imminent instability, as well as countermeasures, such as
fast power reduction or simply tripping of the HVDC link.
Preventive power adjustment of the HVDC link is not desired
because of the rarity of such events. Due to the speed with
which the phenomena evolve, relying on a communication
signal might not be desirable. This constitutes a challenge
since the emergency control should depend entirely on local
signals readily available to the VSC. Finally, the study will be
expanded to VSC control structures relying on different than
the PLL schemes for synchronization, such as the PSM.
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