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Quartier Polytech 1, Allée de la découverte, 10, 4000 Liège, Belgium. jjembrechts@ulg.ac.be

Abstract

A 16-microphones spherical array is used to localize
and identify reflections in room acoustics. By increas-
ing the number of microphones on the array, the spa-
tial resolution is expected to be improved, but at the
expense of cost and complexity. In this study, the
number of microphone positions is rather increased
by sequentially rotating the spherical array around
its vertical axis. We show how to combine the mi-
crophone signals measured at different positions of
the rotating table to increase the order of beamform-
ing and obtain better spatial resolutions. In partic-
ular, four optimized azimuthal positions are defined
and tested with three beamforming methods: PWD,
DAS and MVDR. The method combining beamform-
ing and antenna rotation is first tested with syn-
thetic plane waves at different frequencies. The re-
sults of sound source localization are compared with
the ones obtained with the original 16 microphone
positions. It is shown that some improvements are
obtained in the spatial resolution, depending on the
frequency and the beamforming method. The combi-
nation method is then tested with real sound fields.
Theoretical results are retrieved for 16 and 64 micro-
phone positions.

1 Introduction

The context of this study is the measurement of spa-
tial properties of the sound field in closed spaces
with microphone arrays. In particular, we are in-
terested in measuring directional room impulse re-
sponses (DRIR) [1].

Early experiments dedicated to these measure-
ments used rotating directional microphones [2, 3].
One of the first application of microphone array
for DRIR measurements was realized by Gerzon [4]
whose objective was to record concert hall acoustics
for posterity. More recently, Merimaa et al [5] used
pairs of intensity probes in each x-, y- and z-directions
to compute intensity vectors in a spectrogram-like
map.

Spherical arrays for room acoustics applications
were introduced in 2004 by Gover et al [6]: with
a 32-microphones array and MLS excitation signals,
they obtained DRIRs in a bandwith of 300 to 3000
Hz. The 16-microphones spherical array developed
in our laboratory has been inspired by a similar in-
strument described by Clapp et al [7], whereas a
32-microphones array has been experimented by Fa-
rina and Tronchin [8] to mimic virtual 4th-order car-
dioid microphones pointing in different directions.
With their measuring system, these authors can ob-
tain multichannel room impulse responses and plot a
colour map of the sound field spatial distribution, for
each 1ms time-window of the measured RIR.

Increasing the number of microphones on the ar-
ray increases the spatial resolution of DRIR measure-
ments. This would be the main interest of developing
32-microphones systems instead of 16. However, this
benefit is obtained at the expense of a greater number
of microphones and signals to process. This implies
that the sound cards used must be equipped with a
greater number of input channels and that the com-
puting facilities (PC or DSP) must be more powerful
in order to process the measured signals, sometimes



in real-time. Even if the material can be available to-
day for more and more channel processing, this can
be very (too) expensive for some developers.

Therefore comes the idea of increasing the num-
ber of microphone positions without increasing the
number of microphones and simultaneously processed
channels, simply by sequentially rotating the micro-
phone array or antenna. This idea is not new: for
example, Rafaely at al [9] have measured DRIRs in
an auditorium with an array consisting of 882 micro-
phone positions on an open sphere (in fact, a dual-
sphere with two radii). In order to obtain this high-
resolution spatial instrument (9 degrees aperture), a
single microphone is rotated and sequentially posi-
tioned at the 882 locations. The authors’ objective
was to achieve an accurate identification of early re-
flections in the room impulse response through an
efficient time and spatial separation of these reflec-
tions.

The objective of this paper is to study the oppor-
tunities and the difficulties of combining the beam-
forming results obtained with a 16-microphones ar-
ray positioned at several azimuthal locations. These
locations are obtained by sequentially rotating the
microphone antenna. Our study is particularly fo-
cused on the application of sound source localization
or early reflections localization in rooms. Some par-
ticular questions that will be addressed are: how to
combine the beamforming results obtained at differ-
ent azimuthal positions ? Is there an optimal set of
azimuthal positions ? Is there a significant impact
on the spatial resolution in sound source localization
tasks ?

Incident plane waves in free field will be used as
test sound fields, instead of complex sound fields in
enclosures: it is indeed much easier to interpret the
impact of such simple sound waves on a spherical
array. We guess that the scope of our study will not
be restricted by this choice since after all, given the
relatively small size of the sphere (20 cm) compared
to usual room dimensions, complex sound fields can
be viewed as a sum of contributions (reflections and
diffractions) which can be locally approximated by
incident plane waves.

The paper is organized as follows: in section 2,
we recall the basic equations used to reconstruct the

sound field on the spherical array, we briefly review
the beamforming methods applied in this study and
we describe our spherical microphone array. In sec-
tion 3, we propose a method to combine sets of 16
acoustic pressures measured by the array at several
azimuthal positions. An optimized combination is
found for four azimuthal positions. In section 4, this
method is tested at three different frequencies with
synthetic sound fields (theoretical plane waves inci-
dent on the array) and three beamforming methods.
In section 5, the method is applied to real sound fields
and compared with previous theoretical results. Fi-
nally, we conclude in section 6.

2 Description of the 16-
microphone array and beam-
forming methods

2.1 Source localization with a spheri-
cal array

The following section is inspired by several previ-
ous publications [1, 9, 10, 11]. In a first step of
sound source localization, the spherical array of mi-
crophones is used to approximate the soundfield on
its surface, through the spherical harmonics trans-
form (spherical Fourier transform).

Let P (k, θ, φ) be the sound pressure on the array
surface, at any angular position defined by the usual
pair of spherical coordinates (θ, φ). k is the wavenum-
ber. The spherical harmonics representation of this
pressure field is:

P (k, θ, φ) =

∞∑
n=0

n∑
m=−n

Pnm(k)Y mn (θ, φ) (1)

Y mn are the spherical harmonics functions [11] and
Pnm are the spherical harmonics coefficients, which
are obtained by the inverse transform:

Pnm(k) =

ˆ π

0

sinθdθ

ˆ 2π

0

P (k, θ, φ)Y m
∗

n (θ, φ)dφ

(2)
In this formula, the symbol ∗ represents the com-

plex conjugate operation.
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The spherical harmonics coefficients can be evalu-
ated if the sound pressure has been measured at the
positions of the microphones. Suppose that there are
J microphones on the sphere, then, according to [9]:

Pnm(k) '
J∑
j=1

αjP (k, θj , φj)Y
m∗

n (θj , φj) (3)

This formula is in fact an approximation of the in-
tegral (2) by a linear combination of integrand’s val-
ues known at specific angular positions (θj , φj). The
coefficients of this combination αj are determined by
the choice of these positions on the sphere.

This formula and the choice of microphone posi-
tions is a key point in the study of this paper. In this
work, we have used the positions defined by Fliege
in his paper on cubature formulae for the sphere, as
suggested by [7]. The Fliege positions define a nearly-
uniform spatial sampling on the sphere.

The spatial sampling of the sound pressure field on
the sphere would be exact (equality in equation 3) if
the following was true ∀n, n′,m,m′:

J∑
j=1

αjY
m′

n′ (θj , φj)Y
m∗

n (θj , φj) = δn−n′δm−m′ (4)

However, this condition (which is a modified ver-
sion of the orthogonality property of the spherical
harmonics functions) can only be approached in prac-
tice for a limited number of values of the indices n
and n′. In general, increasing the number of micro-
phone positions will increase this limit.

As a consequence, the coefficients Pnm can only be
recovered for the values of the index n ≤ N : this de-
termines the order N of the sound field reconstruc-
tion in (1). Typically, we should have (N + 1)2 ≤
J . Therefore, with 16 microphones located at the
Fliege’s positions, the order can be extended to N =
3.

Equation (3) of course does not prevent to calculate
the spherical harmonics coefficients for higher indices,
but the accuracy of the sound field reconstruction will
not be guaranteed in this case.

m: -3/3 -2/2 -1/1 0
n=0 - - - 0.000
n=1 - - 0.001 0.001
n=2 - 0.001 0.001 0.001
n=3 0.336 0.345 0.345 0.162

Table 1: Maximum absolute errors in equation (4)
for the 16 Fliege microphone positions, if N=3. The
maximum errors are identical for corresponding pos-
itive and negative values of the index m

To illustrate this, we have computed the left part
of equation (4) and compared it with the right part
(1 or 0 according to the values of the indices n, n’,
m, m’). The difference between left and right parts
(we call it an ’error’) is a complex number whose
maximum absolute value is given in table 1: in this
table, the maximum for all n′,m′ is given, for each
pair n,m (n ≤ 3 and n′ ≤ 3). It can be seen that
(4) is nearly perfectly verified if n ≤ 2, which means
that if the sound field is extended in (1) until order
2, then its reconstruction will be close to exact. It is
also concluded that we can have significant errors on
some P±3m if the sound field is developed until order
3.

The situation is even worse for N=4, since
it can be shown in that case that equation
(4) is only perfectly verified if n ≤ 1, some
absolute errors being as high as 0.78 for n ≥ 3.

After reconstruction of the sound field on the
sphere, the second step of sound source localization
is the beamforming operation: the incident sound
field corresponding to a particular ’look-up’ direction
(θL, φL) is obtained by applying a set of weights Wnm

to the spherical harmonics coefficients. The output
(response) of the array is:

Q(k, θL, φL) =

N∑
n=0

n∑
m=−n

Pnm(k)W ∗nm(k, θL, φL)

(5)
These weights depend on the frequency and on

the look-up direction. There exists several methods
of beamforming. In this paper, we will apply only
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three of them: the plane-wave decomposition method
(PWD), the delay-and-sum method (DAS) and the
minimum-variance distortionless response (MVDR)
described in [12].

The PWD method is described in [9, 10, 11]. The
weights can be expressed as:

W ∗nm(k, θL, φL) =
dn
bn(k)

Y m
∗

n (θL, φL) (6)

with dn = 1 (for PWD) and bn depends on the
sphere boundary. For the rigid sphere with radius r:

bn(k) = 4πin
(
jn(kr)− j′n(kr)

h′n(kr)
hn(kr)

)
(7)

In (7), jn and hn are the spherical Bessel and Han-
kel functions, j′n and h′n their derivatives.

The choice dn = 1 leads to a regular beam pattern
in (5), if the sound field is created by a plane wave in-
cident along the direction Ω0 = (θ0, φ0): see an exam-
ple of a regular beam pattern in figure 4. This beam
pattern approaches the Dirac function δ(Ω0 − ΩL)
as N → ∞, which confirms that a single incident
wave is collected by the antenna in this limiting case.

The DAS method consists in applying a different
delay (or phase shift) to each output of the individual
microphones such that the signals become in-phase
for a plane wave coming from the look-up direction.
It is shown in [11] that the weights are still defined
by (6), with dn = |bn(k)|2.

Finally, the MVDR method belongs to the class
of optimal beamforming techniques: the weights are
such that they minimize the contributions of other di-
rections than the look-up one in the array’s response.
The weights have a more complex expression, which
is also given in [11] and will not be discussed here.

The result of the beamforming will be expressed in
this paper by a diagram showing the spatial distri-
bution of Q(k, θL, φL) as a function of both angles.
Figure 1 is an example. In this diagram, a simple es-
timation of the sound source direction is given by the
pair of angular values corresponding to the maximum
output magnitude |Q|.
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Figure 1: Example of the spatial distribution of the
array’s output magnitude, for all look-up directions
around the sphere: φL is the azimuth in the horizon-
tal plane and θL is the elevation angle. If we imagine
the spherical array as being the head of a listener,
positive azimuth angles are associated with look-up
directions to the left and θL = 0 is the look-up di-
rection to the top. The array’s output magnitude
is normalized such that the maximum value for all
look-up directions is equal to 1.

2.2 The spherical microphone array

The spherical array of microphones used in this study
has been designed and build to allow for the mea-
surement of directional room impulse responses [1].
Figure 2 shows a picture of the array.

16 low-cost electret omnidirectional microphones
are slotted in the rigid sphere surface at the Fliege’s
position. In fact, the Fliege’s positions have been
slightly rotated by the same elevation angle of 10◦,
for practical reasons: to avoid the south pole region in
which the support is connected to the sphere and also
the north pole which lies on the separation between
the two hemispheres (see figure 2).

The sensitivity of the microphones is −42±3 dB (re
1V/Pa) and their frequency response is flat between
50 Hz and 20 kHz. Their SNR is 58dB. They are
connected to the 16 inputs of two soundcards Edirol
Firewire FA 101 (eight inputs each) which allow for
the recording of the signals at the sampling frequency
of 48 kHz.

As this measuring equipment is intended to be used
on-site and must be handy and portable, the size of
the sphere has been limited. Its radius has been de-
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Figure 2: Front face of the microphone array. Some
microphones appear on the picture and they are iden-
tified by their number. The vertical separation be-
tween two hemispheres corresponds to φL = 0.

termined after consideration of spatial aliasing errors,
which increase with frequency, phase errors (mainly
at low frequencies) and the optimization of the WNG
(white noise gain). With a radius of 10cm, these er-
rors are acceptable in the useful bandwith of [250-
4000] Hz and the WNG is optimum at 1623 Hz for
order N=3 (optimum at kr = N) [13, 14].

2.3 Optimum values of the αj coeffi-
cients

The coefficients αj in (3) are essential in the estima-
tion of the spherical harmonics coefficients. Initial
values are given by Fliege with more than ten signif-
icant digits: in fact, for the 16 Fliege’s positions, the
16 αj ’s values are all equal ( to 0.7557), except four
of them (= 0.8746).

In the following, we propose a method to optimize
these values without any reference to a particular
sound field (the method does not depend on partic-
ular values of the Pnm coefficients). The method is
based on equation (4). The optimum values of αj
are those which minimize the absolute differences be-
tween the left and right parts of the equality sign
in (4). The problem is a MSE (mean square error)
minimization, the cost to optimize being:

C =

orderN∑
n,n′,m,m′

∣∣∣∣∣∣
J∑
j=1

αjY
m′

n′,jY
m∗

n,j − δn−n′δm−m′

∣∣∣∣∣∣
2

(8)

m: -3/3 -2/2 -1/1 0
n=0 - - - 0.064
n=1 - - 0.064 0.064
n=2 - 0.063 0.068 0.058
n=3 0.307 0.308 0.308 0.152

Table 2: Maximum absolute errors in equation (4)
for the 16 Fliege microphone positions, if N=3, and
for the optimum αj ’s values. The maximum errors
are identical for corresponding positive and negative
values of the index m

In this expression, the following simplifications
have been adopted: first, the symbol

∑orderN
n,n′,m,m′ rep-

resents a quadruple sum, in which the indices n and
n′ take the integer values from 0 to N , and the index
m (resp. m′) the integer values from −n to n (resp.
−n′ to n′). Secondly, the spherical harmonics func-
tion Y m

′

n′,j and Y m
∗

n,j are both evaluated at the position
of microphone number j in (θj , φj).

This MSE minimization leads to a simple linear
system of 16 equations which is solved to give the
optimum values of the αj coefficients. If this is done
with the 16 Fliege’s positions and N = 3, the op-
timum αj ’s are not very different from the initial
values proposed by Fliege: all optimum values are
equal (to 0.7304), except four of them (= 0.7498).
The optimum cost C = 1.0217 is not significantly dif-
ferent from the cost calculated with the initial αj ’s
(C = 1.1389).

This result suggests that there’s no special inter-
est to replace the initial coefficients of Fliege by the
optimum ones. Moreover, if we detail the optimum
solution by computing the maximum absolute errors
for different values of the indices n,m, we obtain the
results in table 2. It is indeed seen that there’s a small
decrease of the errors for n = 3 (compared with ta-
ble 1), which are the most significant. But this is
obtained at the expense of non-zero errors for n < 3.
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3 Increasing the number of mi-
crophone positions by rotat-
ing the sphere

3.1 New coefficients αj

The number of microphone positions is here simply
increased by rotating the sphere around its vertical

axis
−→
oZ. The rotation is defined by the azimuthal

angle ψ (see figure 3). In this figure, a microphone is
moved from its original position P to the new position
P ′. The new position (θ′j , φ

′
j) in the axis system XYZ

is such that:

θ′j = θj (9)

φ′j = φj + ψ (10)

The initial number of microphone positions is
therefore doubled and, if the measurements of the
sound field are repeated at the new microphone po-
sitions, the results can be combined with the ones
performed at the initial positions to form a new set
of pressures P (k, θj , φj) to estimate the spherical har-
monics coefficients Pnm. However, the new set con-
taining twice the number of microphone positions
does not lead to a ’nearly-uniform’ spatial sampling,
according to Fliege, which means that we must find
a new definition for the coefficients αj in (3).

This definition is the following: the values of αj
will be those which minimize the cost function (8),
for the new set of microphone positions (including
the initial and new ones). Indeed, if this cost could
be reduced to zero, then the reconstruction of the
sound field would be exact at the order N .

Of course, it must be checked that the sound
field P (k, θ, φ) is constant during the two mea-
surements, such that the two sets of results can
be combined as if they were obtained at the
same time, and not sequentially. This prop-
erty of the sound field is assumed in the fol-
lowing: it will be discussed later in section 5.3.1.

The new coefficients αj will of course depend on
the rotation angle ψ. Furthermore, we are not re-
stricted to just one additional ψ angle, but we can

Figure 3: P is the original position of a microphone
on the sphere. After azimuthal rotation around the
Z axis by an angle ψ, the new position is in P’.

imagine several rotations of the sphere, repeating the
sound field measurements at each angular position: if
Nψ is the number of angular positions of the sphere
(including the initial one), this will create at the end
Nψ.J = Jψ microphone positions for which we have
to optimize a similar number of coefficients αj .

3.2 Results with 64 microphone posi-
tions

The objective of multiplying the number of micro-
phone positions is to increase the order N of a correct
reconstruction of the sound field by spherical harmon-
ics decomposition. In practice, if order N = 3 can be
expected with 16 microphones, as explained in the
last sections, we would like to increase the order to
N = 4. An estimation of the required number of mi-
crophone positions is Jψ ≥ (N + 1)2 = 25 [11, 14].
However, this lower bound could possibly be reached
if the new distribution of microphone positions was
nearly-uniform, which is not the case if we simply
rotate the sphere around its vertical axis.

We therefore created a function which optimizes
the cost (8) for a given number Nψ of azimuthal po-
sitions of the sphere. This function returns:

• The optimum set of azimuthal positions ψl, for
1 ≤ l ≤ Nψ,
• The corresponding optimum values of the coeffi-

cients αj ,
• The optimum value of the cost function,
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m: -3/3 -2/2 -1/1 0
n=0 - - - 0.023
n=1 - - 0.021 0.029
n=2 - 0.041 0.037 0.032
n=3 0.046 0.046 0.041 0.041

Table 3: Maximum absolute errors in equation (4)
for the 64 optimum microphone positions (11) and
their optimum αj ’s values, if the sound field is re-
constructed at order N = 3. The maximum errors
are identical for corresponding positive and negative
values of the index m

m: -4/4 -3/3 -2/2 -1/1 0
n=0 - - - - 0.023
n=1 - - - 0.049 0.029
n=2 - - 0.052 0.037 0.032
n=3 - 0.072 0.070 0.086 0.108
n=4 0.095 0.087 0.078 0.086 0.108

Table 4: Same as table 3, if the sound field is recon-
structed at order N = 4.

• The maximum absolute errors in equation (4) re-

sulting from this new set of microphone positions
associated with their optimum αj .

Applying this function, it has been shown that a min-
imum of four azimuthal positions was necessary to
obtain a good reconstruction of the sound field at
order N = 4. The optimum set of four azimuthal
positions (in fact, there’s an infinity of optimum so-
lutions) can be expressed as the following:

[ψ1, ψ1 + 30◦, ψ1 + 160◦, ψ1 + 310◦] (11)

In this solution, the angle ψ1 can take any value.
The new set of 64 microphone positions is not optimal
at order N = 3: as shown in table 3, the combina-
tion is better that what can be obtained with only 16
microphone positions (compare with table 2), espe-
cially for the computation of P±3m, but other sets of
azimuthal positions can do better and reach practi-
cally negligible errors at order 3. These solutions will
not be detailed here since we are interested to reach
order N = 4.

Precisely, table 4 illustrates the maximum abso-

lute errors in (4) for the 64 optimum microphone po-
sitions, associated with their optimum αj ’s. These
errors seem acceptable: approximately less than 0.05
for Pnm(n ≤ 2) and less than 0.11 if n ≤ 4. The
optimum cost function’s value is Copt,N=4 = 0.578,
which can be compared with the corresponding result
obtained with the 16 Fliege’s position: CFliege,N=4 =
19.449.

Another significant difference between the opti-
mized set of 16 versus 64 microphone positions is that
the 64 optimum αj ’s are no longer positive and ap-
proximately equal, as it was the case for 16 positions.
Indeed, the coefficients’ values are now comprised be-
tween −3 and +3, which will create some problems
that will be discussed later.

3.3 Changing the cost function ?

The cost function (8) attributes the same weight to
the errors in equation (4), according to the orders
n,m, n′,m′. Can this choice be justified ?

If we develop equations (1-4), it can be shown that
the approximate value of the spherical harmonics co-
efficient P̂nm computed by (3) is:

P̂nm = Pnm +

∞∑
n′=0

n′∑
m′=−n′

Pn′m′εn,n′,m,m′ (12)

in which εn,n′,m,m′ is the error in (4). It seems
therefore that a deeper analysis of the kind of sound
field to reconstruct could give some information on
the magnitude of the coefficients Pn′m′ and possible
corresponding weights in the cost function.

In room acoustics, we can consider that the sound
field at a microphone position is locally represented
by a sum of plane waves arriving from different di-
rections, amplitudes and delays. The contribution of
any early reflection can therefore be assimilated with
the contribution of a plane wave. The spherical har-
monics coefficients of a plane wave of unit amplitude,
incident upon a rigid sphere with a diameter of 20cm,
along the direction Ω0, are the following [11]:

Pnm = bn(k)Y m
∗

n (Ω0) (13)
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with bn(k) given by (7). Computing these coeffi-
cients for several frequencies and several directions of
incidence has shown that:

• at 250 Hz, the Pnm are negligible (less than 0.02,
compared to P00 = 3.22) if n > 2,

• at 1623 Hz, the Pnm are comprised between 1 and

3 if n ≤ 3, start to decrease from n = 4 and reach
values less than 0.1 if n > 5,

• at 3000 Hz, the Pnm magnitudes only decrease

from n = 10.

This information about the spherical harmonics coef-
ficients of a plane wave sound field shows that there’s
no particular reason to weight the contributions of
the errors εn,n′,m,m′ in (8) differently, if we want to
reconstruct the sound field at different frequencies
until order N = 4.

4 Testing the optimized 64 mi-
crophone positions with syn-
thetic sound fields

4.1 At the frequency 1623 Hz

As explained earlier, this frequency has first been cho-
sen because it corresponds to the optimum value of
the WNG for the reconstruction of the sound field at
N = 3.

A great number of simulations have been done, ap-
plying the three beamforming methods presented in
section 2.1 to theoretic sound fields created by plane
waves incident on the spherical antenna. The spheri-
cal harmonics coefficients Pnm are determined at the
order 3 or 4, using the 16 Fliege microphone posi-
tions or the 64 optimized ones. Then, beamforming
is applied through equation (5) for several look-up di-
rections around the sphere. Also, several directions
of plane wave incidence have been analysed.

This big amount of results is summarized in the
following. As the general conclusions are not really
influenced by the direction of incidence, only the di-
rection (θ0, φ0) = (90◦, 0◦) has been presented.
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Figure 4: Spatial distribution of the array’s out-
put magnitude, for all look-up directions around the
sphere, obtained by the PWD beamforming with
N = 3 and 16 microphone positions.
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Figure 5: Same as figure 4 with N = 4.

−180−140−100−60−202060100140180
−90

−60

−30

0

30

60

90  

φ
L
 [°]

 

90
−

θ L [°
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6: Same as figure 4 with N = 4 and 64 opti-
mized microphone positions.
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4.1.1 PWD beamforming

Figures 4 and 5 illustrate the results of the PWD
method for an incident plane wave along the direc-
tion (θ0, φ0) = (90◦, 0◦), for a reconstruction of the
sound field at respectively N = 3 and N = 4, with 16
Fliege microphone positions. For N = 3, the source
position is identified at the maximum output value
in (θL, φL) = (86.4◦, 0◦), just above the exact value,
and the central lobe of sensitivity (at −10dB from
maximum) is approximately ±30◦ wide. For N = 4,
the quality of the results significantly deteriorates,
due to the errors in the Pnm calculations with 16 mi-
crophones, as shown in figure 5.

On the other hand, the quality is improved with
64 optimized microphone positions. For N = 3, we
obtain approximately the same results as in figure
4, except that the source position is now correctly
identified in (θL, φL) = (90◦, 0◦) and the main lobe of
sensitivity is perfectly centred and symmetric. This
is also the case for N = 4 in figure 6 (which can be
compared with figure 5), the source position is still
correct and the main lobe width has been slightly
reduced to ±25◦.

4.1.2 DAS beamforming

The DAS beamforming is not subject to the same
sensitivity to Pnm errors than PWD. This is shown in
figure 7 for N = 4 and 16 microphones at the Fliege’s
positions. For the DAS beamforming method, using
64 instead of 16 microphone positions does not bring
significant improvements. Therefore, the results will
not be illustrated here.

4.1.3 MVDR beamforming

Figures 8 and 9 illustrate the results of the MVDR
method with 16 microphone positions. For N =
3, the maximum output value is in (θL, φL) =
(86.4◦, 0◦) and the main sensitivity lobe is thinner
than with PWD (approximately ±10◦ at −10db). For
N = 4 and 16 microphones, the main lobe is now per-
fectly centred, but somewhat wider than with N = 3.

The quality is once again improved with 64 opti-
mized microphone positions. For N = 3, the main
lobe of sensitivity is perfectly centred and thinner
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Figure 7: Spatial distribution of the array’s out-
put magnitude, for all look-up directions around
the sphere, obtained by the DAS beamforming with
N = 4 and 16 microphone positions.

−180−140−100−60−202060100140180
−90

−60

−30

0

30

60

90  

φ 
L
 [°]

 

90
 −

 θ
L [°

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8: Spatial distribution of the array’s out-
put magnitude, for all look-up directions around the
sphere, obtained by the MVDR beamforming with
N = 3 and 16 microphone positions.

than ±1◦ at −10db. It is also the case for N = 4 (see
figure 10), though the main lobe is still somewhat
wider than with N = 3. However, the improvement
compared with 16 microphones is outstanding (com-
pare figures 9 and 10).

4.2 At the frequency 250 Hz

A similar analysis has been done at the low frequency
bound of the microphone array’s bandwith. The
main conclusions are the following:

• the results of the PWD beamforming already de-
teriorates from N = 3 with 16 microphones. At
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Figure 9: Same as figure 8 with N = 4.
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Figure 10: Same as figure 8 with N = 4 and 64 opti-
mized microphone positions.
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Figure 11: Spatial distribution of the array’s output
magnitude at 250 Hz, obtained by the PWD beam-
forming with N = 3 and 64 microphone positions.
The plane wave is still incident along the angular co-
ordinates (θ0, φ0) = (90◦, 0◦).
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Figure 12: Spatial distribution of the array’s output
magnitude at 250 Hz, obtained by the DAS beam-
forming with N = 4 and 64 microphone positions.

this frequency, the 64 optimized microphone posi-
tions don’t bring any improvement: the results are
even worse, as shown in figure 11. This case will
be analysed in the following.
• the DAS beamforming results provide a correct

detection of the source angular position, but with
a low spatial resolution as can be seen in figure
12. With this beamforming method, the results
obtained with 16 or 64 microphone positions are
similar, as for 1623 Hz.
• with the MVDR beamforming, the direction

of incidence is correctly detected at 250 Hz,
with a very good resolution (not shown), similar
to the one obtained at 1623 Hz. The reso-
lution obtained with 16 microphones is even
somewhat better than with 64 microphones in
this case, but the differences are not significant.

Now, what is the reason of the bad performance of
the PWD method at low frequency ? As explained in
section 3.3, the plane wave can be reconstructed at
250 Hz with only low order Pnm’s, so we would ex-
pect that errors on these coefficients for n > 3 would
have little impact on the accuracy of the array’s out-
put. This is obviously not the case as shown in figure
11. The reason clearly appears if we look at equation
(6) which gives the weights multiplying the Pnm’s in
the expression of the array’s output (5). For PWD
beamforming, these weights are proportional to 1

bn(k)
,
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Figure 13: Inverse of bn(k) (absolute value) for sev-
eral orders n and several frequencies;

a ratio that is illustrated in figure 13: this ratio sig-
nificantly increases with the order n at low frequen-
cies, resulting in a great amplification of the errors
on Pnm. For the 64 optimized microphone positions,
these errors are small for n ≤ 3, but not zero as seen
in tables 3 and 4, and these errors are so amplified
that they completely deteriorate the accuracy of the
results in figure 11.

This problem is greatly attenuated at 1623 Hz,
since the weights Wnm are much smaller at this fre-
quency, as shown in figure 13.

4.3 At the frequency 2500 Hz

Another problem appears at high frequencies, i.e.
spatial aliasing. This is illustrated in figure 14
which shows the array’s output computed by PWD
beamforming with 16 microphones (N = 3). Sec-
ondary lobes appear, in particular around (θL, φL) =
(120◦, 170◦). In the following, the improvements
brought by the optimized 64 microphone positions
are described:

• with the PWD beamforming and 64 microphones
positions, the main lobe is perfectly centred and
the aliasing disappears at N = 3 and N = 4: see
figure 15.
• the same improvement is observed with the DAS

beamforming. With 64 microphone positions, the
main lobe is perfectly centred at N = 3 and N = 4,
the aliasing disappears and the width of the main
lobe decreases (±22◦ for N = 4), which is new

−180−140−100−60−202060100140180
−90

−60

−30

0

30

60

90  

φ
L
 [°]

 

90
 −

 θ
L [°

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 14: Spatial distribution of the array’s output
magnitude at 2500 Hz, obtained by the PWD beam-
forming with N = 3 and 16 microphone positions.
The plane wave is still incident along the angular co-
ordinates (θ0, φ0) = (90◦, 0◦).
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Figure 15: Same as figure 14 with N = 4 and 64
microphone positions.
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compared with the frequency 1623 Hz.

• the same improvement is observed with MVDR

beamforming, but what is more significant here is
the centering and the thinning of the main lobe
as a result of combining 64 microphone positions
instead of 16 (this was already the case at 1623
Hz).

4.4 Summary

The improvements brought by the 64 optimized mi-
crophone positions, compared with the initial 16
Fliege’s positions, are listed below:

• the PWD beamforming method gives improved
source localization above 1 kHz (centering, sym-
metry of the main lobe and aliasing suppression).
However, the inherent small errors in the calcula-
tion of the coefficients Pnm are greatly amplified at
low frequencies, which lead to deteriorated results.

• the DAS method gives similar results with 16 and

64 microphone positions until 1623 Hz. At higher
frequencies, the aliasing observed with 16 micro-
phones disappears if 64 microphone positions are
used.

• the MVDR method gives similar results with 16

and 64 microphone positions at low frequencies,
but significant improvements have been observed
at 1623 Hz and 2500 Hz (in particular, the thinning
of the main lobe which leads to a very high spatial
resolution in the detection of the source direction).

5 Testing the optimized 64 mi-
crophone positions with real
sound fields

5.1 Measurement of the sound field

The objective of this part of the study is to check if
similar improvements in the source localization are
observed with 4x16 microphone positions and real
sound fields. In order to meet this objective, the
very simple sound field created by a unique source in
an anechoic room has been tested. The experimental

Figure 16: Plane view of the experimental setup in
the anechoic chamber. The microphone array (MA)
is situated at 4m from the loudspeaker (LS). ψ mea-
sures the azimuthal rotation of the sphere. (IF) is the
initial front direction of the microphone array (when
ψ = 0).

procedure is the following: the spherical microphone
stand is fixed on a rotating table and positioned at 4m
from a loudspeaker (see figure 16). At this distance,
it is supposed that the wavefronts reaching the micro-
phones can be locally approximated by plane waves.
This assumption is not absolutely necessary, except
if we want to compare with the results of theoretical
plane waves. Finally, the centres of the sphere and
the loudspeaker are at 1m50 from the floor, which is
also absorbing (full anechoic room).

In this experiment, pure tones are emitted by the
loudspeaker. Only the frequency 1623 Hz has been
analysed in the following.

The rotating table is first positioned at a given az-
imuth angle ψ. Then, the loudspeaker is fed with the
pure tone signal. After approximately ten to twenty
seconds, the recording starts simultaneously on each
microphone channels. The signals captured by the
microphones are sampled at 48 kHz, digitized and
stored as *.wav files (each file contains approximately
10 seconds of the signal).

Beamforming can be applied to 16 simultaneously
recorded files (corresponding to any ψ angle) or sev-
eral (usually four) measurements at different ψ angles
can be combined as explained in previous sections.
During post-processing, the sound files are read and

12



the samples are stored in 16 or 64 vectors P (k, θj , φj).
Then, the appropriate αj are applied to obtain the
spherical harmonics coefficients Pnm, following (3).
Finally, the beamforming method (PWD, DAS or
MVDR) is applied.

5.2 Results with 16 microphones

Figures 17 and 18 illustrate the results of the PWD
method for an incident plane wave along the direc-
tion (θ0, φ0) = (90◦, 0◦), the coefficients Pnm being
calculated with 16 Fliege microphone positions, until
respectively order N = 3 and order N = 4. These
figures are very similar to figures 4 and 5 obtained
with theoretical plane waves. For N = 3, the source
position is identified at the maximum output value
in (θL, φL) = (90◦, 0◦) and the central lobe of sensi-
tivity (at −10dB from maximum) is approximately
±30◦ wide. For N = 4, the PWD method leads to
deteriorated results.

The DAS method (not shown) gives nearly cor-
rectly centred main lobes for N = 3 and N = 4
(maximum output value in (θL, φL) = (93.6◦, 0◦)).
The central lobe of sensitivity (at −10dB from max-
imum) is approximately ±30◦ wide.

Finally, the MVDR method also gives very similar
output results to those presented in figures 8 and 9,
obtained with theoretic plane waves. The main lobe
width is identical and the maximum output value is
in (θL, φL) = (93.6◦, 0◦).

5.3 Results with 64 microphones

Measurements with 16 microphone positions have
therefore confirmed the results obtained with theo-
retical sound fields. Now, the next step is to analyse
the results obtained by combining the measurements
operated at several azimuths ψ. In this subsection,
we will use the combination of pressure signals mea-
sured at the four optimized azimuth angles defined
in (11) with ψ1 = 0, in order to identify the sound
source location at (θ0, φ0) = (90◦, 0◦).
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Figure 17: Spatial distribution of the array’s output
magnitude, obtained from measured acoustic pres-
sures by the PWD beamforming with N = 3 and 16
microphone positions.
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Figure 18: Same as figure 17 with N = 4.
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5.3.1 Preprocessing operations

Even if the same signal is sent to the loudspeaker at
each run, the amplitude and the phase of the waves
reaching the spherical array are not exactly the same
for two different azimuthal positions of the rotating
table. This is because the two sets of 16 recordings
are initiated at different times, at which the initial
phase of the wave is not necessarily the same. Also,
the wave amplitude can change, due to slightly dif-
ferent mechanical behaviours of the loudspeaker.

Preprocessing operations are necessary to unify the
amplitudes and phases of the incident sound waves
among different measurements. One solution would
be to have a microphone recording the incident wave
at a fixed position, but we did not provide such a mi-
crophone during our experiments. However, the mi-
crophone number 1 is situated approximately at the
zenith of the spherical array, and therefore its posi-
tion is ’nearly’ fixed, i.e. its displacements are small
compared to the wavelength. Figure 19 shows the
uncorrected signals recorded at microphone nb.1 at
the four optimized azimuthal positions of the rotating
table: clearly, if the amplitude is approximately con-
stant, the phase differences are significant and should
be corrected. At 1623 Hz, the maximum distance be-
tween two positions of microphone 1 during rotation
is λ/6, which introduces maximum phase differences
of π/3. Some phase differences shown in figure 19 are
significantly greater and cannot be simply explained
by the displacements of microphone nb.1.

The method we have used to find the amplitude
and phase corrections is therefore based on the am-
plitude and phase variations measured at microphone
nb.1. This method is certainly not the best accurate.
Fortunately, after having tested several methods, we
have shown that the final result of the beamforming
methods and source localization was not really sensi-
tive to these corrections. The method we have used
is the following:

• calculate the amplitude A1(ψ) by auto-
correlation of the signal s1(ψ) recorded at micro-
phone nb.1 for the azimuth ψ of the rotating table.

The amplitude correction is A1(ψ1)
A1(ψ)

, with ψ1 = 0;

• compute the cross-correlation between s1(ψ) and
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Figure 19: Amplitude (relative units) of four pressure
measurements at microphone number 1 situated close
to the north pole of the sphere (θ1 = 0).

s1(ψ1) for several delays and find the delay Dψ that
maximizes the cross-correlation;
• for all microphones (including nb.1) and all ψ 6= ψ1,

apply the corresponding amplitude correction and
the delay Dψ.

5.3.2 Beamforming results

The application of the beamforming methods to the
measurements at 64 optimized microphone positions,
associated with the optimized values of the αj , don’t
give reliable results, as shown in figures 20 and 21 for
PWD and DAS (N = 4). Wrong source locations,
spatial aliasing and artifacts can be seen in these fig-
ures and they are also present for the MVDR beam-
forming method (not shown).

In this case, contrary to the measurements at the
16 Fliege’s positions, the results obtained for theo-
retic plane waves are not retrieved.

What may be the reasons of these discrepancies
between theory and measurements ? In addition to
inaccuracies related to the spatial discretization in
the calculation of the Pnm in equation (3), measure-
ments are affected by other errors, such as:

• the microphone are not exactly at the Fliege’s
positions on the sphere;
• the sphere is not perfectly rigid, therefore the mea-

sured pressures deviate from their theoretical val-
ues;
• instrumental errors are created by all the devices
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Figure 20: Spatial distribution of the array’s output
magnitude, obtained from measured acoustic pres-
sures by the PWD beamforming with N = 4 and 64
optimized microphone positions.
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Figure 21: Same as figure 20 for the DAS method.

in the recording channels.
All these additional inaccuracies are acceptable with
the measurements at 16 Fliege’s positions, but their
effect is amplified with the 64 optimized positions.
Not only because the number of measurements in-
creases, but also because of the greater absolute val-
ues of the αj coefficients which amplify the errors.
Indeed, a significant difference between the 16 versus
64 microphone positions is that the 64 optimum αj ’s
are no longer positive and approximately equal, as it
is the case for the 16 Fliege’s positions. As explained
in section 3.2, the coefficients’ values are comprised
between −3 and +3, instead of approximately 0.8.

5.4 Results with 64 microphones and
modified αj coefficients

The idea to solve the problem of amplified errors in
the calculation of Pnm from 64 measured acoustic
pressures P (k, θj , φj) is simply to extend the solution
offered by the 16 Fliege’s positions which was shown
to be satisfying with measured results in section 5.2.

We have defined earlier εn,n′,m,m′ as:

εn,n′,m,m′ =

J∑
j=1

αjY
m′

n′ (θj , φj)Y
m∗

n (θj , φj)−δn−n′δm−m′

(14)
A noticeable property of this ’error’ is that its ab-

solute value is not affected by a rotation ψ of the
spherical array around its vertical axis, if we keep
the same value of the coefficients αj :

εψn,n′,m,m′ =
(
ei(m

′−m)ψ
)
εψ=0
n,n′,m,m′ (15)

Therefore, if we combine the measurements at sev-
eral azimuth angles ψp (p = 1, Nψ) and choose the
same coefficients

αj
Nψ

at each rotation, then:

ε
Nψ
n,n′,m,m′ =

 1

Nψ

Nψ∑
p=1

ei(m
′−m)ψp

 εψ=0
n,n′,m,m′ (16)

Equation (16) shows that the absolute value of

ε
Nψ
n,n′,m,m′ is less with Nψ positions than with just one
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m: -4/4 -3/3 -2/2 -1/1 0
n=0 - - - - 0.000
n=1 - - - 0.000 0.000
n=2 - - 0.094 0.134 0.095
n=3 - 0.371 0.2380 0.296 0.383
n=4 0.371 0.238 0.191 0.296 0.383

Table 5: Maximum absolute errors in equation (4) for
the 64 optimum microphone positions (11) and αj =

αFliegej /4, if the sound field is reconstructed at order
N = 4. As usual, the maximum errors are identical
for corresponding positive and negative values of the
index m

azimuthal position, if this particular choice of coef-
ficients αj is adopted. As a consequence, the cost
function (8) is also decreased if we increase the num-
ber of azimuthal positions.

As the Fliege’s αj values are particularly interest-
ing since they are approximately equal, positive and
bounded in absolute value, we decide in the following
to test the combination of four azimuthal positions

with αj =
αFliegej

4 at each rotation. As a first trial, we
keep the four azimuthal positions defined in (11). We
therefore obtain a cost function CN=4 = 3.544 which
is comprised between the values presented in section
3.2 for two other choices of coefficients, i.e. 0.578
(64 optimized αj , N = 4) and 19.449 (16 Fliege’s
αj , N = 4).

We consider this result as a fairly good value
for the cost function, especially since it has been
obtained without optimization. Now, if the errors
εn,n′,m,m′ are detailed in table 5 for a reconstruction
of the sound field at the order 4, we can see that
the Pnm are exactly reconstructed for n ≤ 1, which
is a characteristic of the Fliege’s coefficients. The
other maximum errors for n > 1 are greater than in
table 4, as expected, but they are still acceptable,
as will be seen in the following. As a comparison,
the errors |εn,n′,m,m′ | can be as high as 0.38(n = 2)
and 0.78(n > 2) for a reconstruction with the 16
Fliege’s positions and coefficients at order N = 4.

The figures 22, 23 and 24 show the array’s out-
put magnitude for N = 4 and this new choice of
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Figure 22: Spatial distribution of the array’s output
magnitude, obtained from measured acoustic pres-
sures by the PWD beamforming with N = 4, 64 mi-
crophone positions and αj = αFliegej /4. The source
incidence is still (θ0, φ0) = (90◦, 0◦).
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Figure 23: Same as figure 22 for the DAS method.
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Figure 24: Same as figure 22 for the MVDR method.
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Method 16 mic. ms. 64 mic. ms. 64 mic. th.
PWD ?? ±23◦ ±25◦

DAS ±30◦ ±30◦ ±30◦

MVDR ±16◦ ±9◦ ±3◦

Table 6: Central lobe width [◦] at −10dB around the
maximum value in the distribution of array’s output
values. The sound field is reconstructed at order N =
4 with 16 or 64 microphones positions, from measured
(’ms’) or theoretical (’th’) acoustic pressures at the
microphones.

coefficients. The source direction is exactly identi-
fied for DAS and MVDR (for PWD, maximum in
(θL, φL) = (93.6◦, 0◦)). The widths of the central
lobes of sensitivity (at −10dB from maximum) are
given in table 6 and compared with previous meth-
ods. PWD and MVDR beamforming methods re-
sult in an improvement of the spatial resolution at
N = 4, if 64 microphone positions are used instead
of 16. This was predicted by theoretical results, un-
less the improvement brought by MVDR is less than
expected. Furthermore, PWD with 64 microphone
positions and N = 4 is better than with 16 micro-
phones and N = 3. Finally, as predicted by theory,
the DAS method doesn’t increase the spatial resolu-
tion.

5.5 Further developments

The set of four azimuth angles (11) is not optimal

with the constraint αj = αFliegej /4. We have found
another combination of angles that leads to a cost
function value CN=4 = 2.732 instead of 3.544. This
combination has been tested, but it does not give
significant improvements in the spatial resolution.

We have also tried to increase the number of az-
imuth angles. First, with αj = αFliegej /6. The com-
bination of 6 azimuth angles has been arbitrarily set
to:

[0◦, 60◦, 120◦, 180◦, 240◦, 300◦] (17)

No significant improvement has been obtained with
these 96 microphone positions at order N = 4. If the

96 optimal αj ’s are used (those which minimize the
cost function (8) instead of the previous ones), there’s
no significant improvement at all, even if the cost
function in this case is equal to zero, which means
that the reconstruction of the sound field is exact at
order N = 4.

Furthermore, if the combination (17) is
used with 96 αj values optimized until order
N = 5, this does not provide better results.

Finally, we have tested intermediate αj ’s be-
tween the optimized ones and the solution
αj = αFliegej /Nψ, with Nψ = 4 or 6. Without success.

All these further developments show that the re-
sults presented in the previous section are probably
the best we can obtain with measurements operated
with 4 or 6 azimuth positions of the rotating table.

6 General conclusion

Increasing the number of microphones on the array
generally provides a better spatial resolution of the
antenna while detecting the location of sound sources,
but at the expense of greater cost and complexity. In
this paper, we have tested the solution of increasing
the number of microphone positions by rotating the
sphere around its vertical axis.

We have shown how to combine the sets of 16 pres-
sure measurements to obtain an estimation of the
spherical harmonics coefficients of the sound field. In
particular, four optimized azimuthal positions of the
rotating table have been defined for the 16 Fliege’s
microphone positions on the sphere, together with
corresponding optimized αj coefficients in equation
(3).

The first series of tests consisted in applying three
beamforming methods to theoretic pressures at the
64 microphone positions. We have shown that the
quality of detection and spatial resolution in the
source localization tasks is improved for the PWD
beamforming method above 1 kHz, compared with
16 microphone positions. For PWD, results are de-
teriorated at low frequencies. The MVDR method
gives similar results with 16 or 64 microphone posi-
tions at low frequencies, but significant improvements
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have been observed at 1623 Hz and 2500 Hz. Finally,
the DAS method provides improved results only at
2500 Hz.

During the second series of tests, the 64 optimized
microphone positions were tested with real sound
fields. Acoustic pressures generated by a loudspeaker
have been measured in anechoic conditions. Beam-
forming results obtained with the 16 Fliege’s posi-
tions correspond to theoretic sound fields’ results.
However, the improvements theoretically predicted
for 64 microphone positions are only retrieved if other
(non-optimized) sets of αj coefficients are used.

Further developments will test this method on
more complex sound fields, such as those existing in
closed spaces. In particular, the room impulse re-
sponses could be analysed with these beamforming
methods and the quality of early reflections’ local-
ization could be investigated by combining several
azimuthal positions of the spherical array.
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