A comparative study of branch-and-price algorithms for a vehicle routing problem with time windows and waiting time costs

Stefano Michelini¹, Yasemin Arda¹, Hande Küçükaydın²

¹HEC Liège, Université de Liège

²MEF International School, Istanbul

February 1, 2018

- Computational experiments
- 4 Conclusions and future work

Table of Contents

Foundation

2 The algorithms

- 3 Computational experiments
- 4 Conclusions and future work

VRP with Time Windows — variant

- Objective is the total route duration.
- Route start time is a decision variable.
- Maximum duration defined for each route.

Subject of study

- Branch-and-Price (BP): Branch-and-bound + Column Generation (CG)
- Master Problem: Set Partitioning

Set Partitioning Model

$$\begin{split} \min \sum_{r \in \Omega} c_r y_r \\ \text{s.t.} \sum_{r \in \Omega} a_{ir} y_r &= 1 \\ y_r \in \{0, 1\} \\ \end{split} \qquad \qquad \forall i \in \mathcal{N}, \\ \forall r \in \Omega. \end{split}$$

- Pricing Problem: Elementary Shortest Path Problem with Resource Constraints (ESPPRC)
- ESPPRC is NP-hard!¹

¹Dror 1994.

Michelini, Arda, Küçükaydın (HEC Liège)

- Each label L_i represents a partial path ending at node i.
- L_i keeps track of the consumption of resources along the partial path.

²Feillet et al. 2004.

- Each label L_i represents a partial path ending at node i.
- L_i keeps track of the consumption of resources along the partial path.

²Feillet et al. 2004.

- Each label L_i represents a partial path ending at node i.
- L_i keeps track of the consumption of resources along the partial path.

²Feillet et al. 2004.

- Each label L_i represents a partial path ending at node i.
- L_i keeps track of the consumption of resources along the partial path.

²Feillet et al. 2004.

- Each label L_i represents a partial path ending at node i.
- L_i keeps track of the consumption of resources along the partial path.

• Keeping binary resources for every node ensures elementarity.

²Feillet et al. 2004.

- Each label L_i represents a partial path ending at node *i*.
- L_i keeps track of the consumption of resources along the partial path.

- Keeping binary resources for every node ensures elementarity.
- This makes label domination more difficult.

²Feillet et al. 2004.

New label structure

$$\overline{L}_i = (\delta_i, I_i, \alpha_i, A_i, D_i, \{e_i^k\}_{k \in \mathbb{N}})$$

- $\delta_i = \text{sum of dual prices}$
- I_i = latest feasible start time from the depot
- α_i = earliest feasible service time at *i*
- A_i = minimum possible duration of the partial path
- D_i = accumulated vehicle load

Foundation

- 3 Computational experiments
- 4 Conclusions and future work

Decremental State Space Relaxation (DSSR)³

• Maintain a set Θ of *critical* nodes on which elementarity is enforced.

DSSR					
Algorithm 1 DSSR					
1: Initialize Θ					
2: repeat					
3: $P = \text{LabelExtension}(\Theta)$					
4: $\Phi = MultipleVisits(P)$					
5: $\Theta = \Theta \cup \Phi$					
6: until <i>P</i> is elementary					

• We manipulate the state space in a *global* way.

³Righini and Salani 2008.

- Critical set initialization:
 - dssr_init_s: none, tca, hca, wtca, whca, mixed
 - dssr_init_n:]0,1[
- Critical set update rules:
 - dssr_path_s: all-paths, one-path, in-between
 - dssr_path_n:]0,1[
 - dssr_node_s: all-nodes, one-node, in-between
 - dssr_node_n:]0,1[

Define neighbourhoods
 N_i, ∀*i*.

NGRR extension

⁴Baldacci et al. 2010.

- Define neighbourhoods $N_i, \ \forall i.$
- E_i = set of unreachable nodes for path ending at *i*.

⁴Baldacci et al. 2010.

- Define neighbourhoods $N_i, \ \forall i.$
- E_i = set of unreachable nodes for path ending at *i*.
- When extending to j: $\forall k \in E_i$, insert k in E_j only if $k \in N_j$.

NGRR extension

⁴Baldacci et al. 2010.

- Define neighbourhoods $N_i, \forall i.$
- E_i = set of unreachable nodes for path ending at *i*.
- When extending to j: $\forall k \in E_i$, insert k in E_j only if $k \in N_j$.

NGRR extension

⁴Baldacci et al. 2010.

- Define neighbourhoods $N_i, \ \forall i.$
- E_i = set of unreachable nodes for path ending at *i*.
- When extending to j: $\forall k \in E_i$, insert k in E_j only if $k \in N_j$.

NGRR extension

⁴Baldacci et al. 2010.

- Define neighbourhoods $N_i, \ \forall i.$
- E_i = set of unreachable nodes for path ending at *i*.
- When extending to j: $\forall k \in E_i$, insert k in E_j only if $k \in N_j$.
- Resulting path may **not** be elementary.

NGRR extension

⁴Baldacci et al. 2010.

- Define neighbourhoods $N_i, \ \forall i.$
- E_i = set of unreachable nodes for path ending at *i*.
- When extending to j: $\forall k \in E_i$, insert k in E_j only if $k \in N_j$.
- Resulting path may **not** be elementary.
- We manipulate the state space in a *local* way.

NGRR extension

⁴Baldacci et al. 2010.

- Neighborhood size ng_size:]0,1[
- Node metric ng_type: travel-time, cycle-risk, mixed
- Coefficient for the mixed metric ng_mix:]0,1[

- We can combine both algorithms in several ways.
- The straightforward combination uses both neighbourhoods and the set of critical nodes.

Global NG-DSSR

Algorithm 2 NG-DSSR-G

- 1: Initialize Θ , $N_i \forall i$
- 2: repeat
- 3: $P = \text{LabelExtension}(\Theta, N_i)$
- 4: $\Phi = \text{MultipleVisits}(P, \{N_i\}_i) // \text{Only takes nodes in invalid ng-cycles}$
- 5: $\Theta = \Theta \cup \Phi$
- 6: **until** *P* is ng-route

NGRR and DSSR

- Let us define *applied* neighbourhoods $\hat{N}_i \subseteq N_i \forall i$ to use throughout label extension⁵.
- When best path has invalid cycle *C*, update applied neighbourhoods of nodes in *C*.

⁵Dayarian et al. 2015.

NGRR and DSSR

- We can derive a different version of DSSR using this local approach⁶.
- Let us define local critical sets $\hat{\Theta}_i, \forall i$.
- When best path has cycle C, update critical sets of nodes in C.

Algorithm 4 DSSR-L 1: Initialize $\hat{\Theta}_i, \forall i$ 2: repeat 3: $P = LabelExtension({\hat{\Theta}_i}_i)$ 4: C = Cycle(P) 5: Update ($\{\hat{\Theta}_i\}_i, C$) 6: until P is elementary

⁶Martinelli, Pecin, and Poggi 2014.

- Global and Local ng-DSSR output ng-routes.
- We can continue execution with DSSR (DSSR-L) to obtain elementary routes.

Elementary Global (Local) NG-DSSR
Algorithm 5 NG-DSSR-G (L)-E
1: $P = \text{ng-DSSR-local}()$
2: if P is not elementary then
3: $P = DSSR-local(P)$
4: end if

- After solving the linear relaxation at the root node, solve the integer program with the available columns to obtain an upper bound.
- Branch on the most fractional arc.
- Parameters:
 - Maximum number of generated paths concat_stop:]0,10000]
 - Maximum number of paths inserted in the master problem num_col:]0,1[
 - Tree navigation strategy tree_nav:
 - Depth-first search
 - Breadth-first search
 - Best-first search

- NGRR
- NG-DSSR-G *ng*-routes
- NG-DSSR-L
- DSSR
- DSSR-L

- Elementary routes
- NG-DSSR-G-E
- NG-DSSR-L-E

Parameter	DSSR	NGRR	NG-DG	NG-DL	DSSR-L	NG-DG-E	NG-DL-E	Range
tree_trav	×	×	×	×	×	×	×	{breadth, depth, best}
n_conc	×	×	×	×	×	×	×]0, 10000]
n_col	×	×	×	×	×	×	×]0, 1]
dssr_init_s	×		×		×	×		{hca, tca, whca, wtca, mix}
dssr_init_n	×		×		×	×]0, 1[
dssr_path_s	×		×	×	×	×	×	{1_path, in_btw, all_paths}
dssr_path_n	×		×	×	×	×	×]0,1[
dssr_node_s	×		×			×		{1_node, in_btw, all_nodes}
dssr_node_n	×		×			×]0,1[
ng_type		×	×	×		×	×	{tt, ccr, mix}
ng_size		×	×	×		×	×]0, 1[
ng_mix		×	×	×		×	×]0,1[

Table: Parameters choices

Foundation

- Computational experiments
 - 4 Conclusions and future work

- Tune the parameters with the irace package⁷
- The tuning set is derived from the Gehring & Homberger instances for the VRPTW.
- Set of 6 instances, one per type (clustered, random, random-clustered) and per size (25 and 50 customers).
- Tuning budget of 5000 experiments for each algorithm, time limit TL = 3 hours per experiment.
- Measure of performance for configuration θ on instance *i*:

 $t'(i,\theta) = \begin{cases} t(i,\theta) & \text{if } t(i,\theta) < TL \text{ seconds (3 hours)}, \\ TL + UB(i,\theta) & \text{if root node solved and TL reached,} \\ M & \text{otherwise} \end{cases}$

- Run the best configuration of each algorithm on the Solomon instances.
- Perform Friedman test + post-hoc Wilcoxon signed rank test on the results.

⁷López-Ibáñez et al. 2016.

- The Friedman test reports a *p*-value $p < 2.2 \times 10^{-16}$, denoting statistically significant difference among the data
- Post-hoc test reports that DSSR-L outperforms DSSR, NGRR, NG-DSSR-G, and NG-DSSR-G-E with a *p*-value $p < 1.0 \times 10^{-7}$
- DSSR-L, NG-DSSR-L and NG-DSSR-L-E are statistically equivalent

	DSSR	DSSR-L	NG	NG-D-G	NG-D-L	NG-D-G-E	NG-D-L-E
C1–25	(5, 1, 3)	(6, 3, 0)	(5, 4, 0)	(5, 2, 2)	(5, 4, 0)	(5, 1, 3)	(5, 3, 1)
R1–25	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)
RC1-25	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)
C1–50	(4, 0, 5)	(6, 0, 3)	(6, 0, 3)	(4, 0, 5)	(5, 1, 3)	(5, 0, 4)	(6, 1, 2)
R1–50	(5, 6, 1)	(9, 3, 0)	(7, 5, 0)	(6, 6, 0)	(9, 3, 0)	(5, 7, 0)	(10, 2, 0)
RC1-50	(0, 6, 2)	(1, 7, 0)	(1, 7, 0)	(1, 7, 0)	(1, 7, 0)	(1, 7, 0)	(1, 7, 0)

Table: Solved Solomon instances, 3 hour time limit

$$(n_s, n_p, n_u)$$

• $n_s = \#$ of solved instances

- $n_p = \#$ of partially solved instances (at least the root node)
- $n_u = \#$ of unsolved instances

- We run the best four algorithms on the Solomon instances for 6 hours, on 25, 50, 75 and 100 customers
- The Friedman test reports a *p*-value $p = 5.093 \times 10^{-5}$
- Post-hoc reports that NGRR is rejected with *p*-value *p* < 0.01 by the other algorithms

	DSSR-L	NG-DSSR-L-E	NG	NG-DSSR-L
C1–25	(7, 2, 0)	(6, 3, 0)	(6, 3, 0)	(7, 2, 0)
R1–25	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)	(12, 0, 0)
RC1–25	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)	(8, 0, 0)
C1–50	(6, 1, 2)	(6, 1, 2)	(6, 0, 3)	(6, 1, 2)
R1–50	(9, 3, 0)	(10, 2, 0)	(8, 4, 0)	(9, 3, 0)
RC1–50	(2, 6, 0)	(1, 7, 0)	(1, 7, 0)	(1, 7, 0)
C1–75	(5, 1, 3)	(5, 1, 3)	(5, 0, 4)	(5, 0, 4)
R1–75	(3, 9, 0)	(4, 8, 0)	(4, 8, 0)	(4, 8, 0)
RC1–75	(0, 8, 0)	(0, 8, 0)	(0, 8, 0)	(1, 7, 0)
C1–100	(5, 0, 4)	(5, 0, 4)	(4, 0, 5)	(5, 0, 4)
R1–100	(2, 2, 8)	(3, 1, 8)	(2, 2, 8)	(3, 1, 8)
RC1–100	(0, 2, 6)	(0, 2, 6)	(0, 3, 5)	(0, 5, 3)

Table: Solved Solomon instances, 6 hour time limit

		DSS	R-L			NG-DS	SR-L-E	
	gap	root gap	time	nodes	gap	root gap	time	nodes
C1-25	0.17%	0.17%	7547.5	51.0	0.13%	0.13%	9236.3	54.8
C1-50	0.01%	0.01%	8333.8	2.1	0.01%	0.01%	7604.8	2.0
C1-75	0.07%	0.07%	11974.3	1.6	0.10%	0.10%	10592.8	1.2
C1-100	0.0%	0.0%	10653.5	0.6	0.00%	0.00%	10130.8	0.6
R1-25	0.42%	0.56%	12.1	7.8	0.42%	0.56%	23.1	14.5
R1-50	0.84%	0.94%	6546.3	167.8	0.76%	1.03%	6600.6	539.2
R1-75	1.02%	1.03%	16213.6	77.2	0.92%	1.05%	16041.1	257.2
R1-100	0.42%	0.50%	19520.2	93.4	0.39%	0.48%	18881.6	93.8
RC1-25	1.15%	1.15%	11.2	25.5	1.15%	1.15%	24.3	13.5
RC1-50	5.67%	5.70%	18819.6	8677.4	5.60%	5.71%	19051.6	8616.4
RC1-75	3.12%	3.14%	21600	1587.3	3.03%	3.10%	21600	2717.1
RC1-100	1.27%	1.78%	21600	261.6	1.72%	1.72%	21600	366.1

Table: Performance on Solomon instances, 6 hour time limit — 1

		Ν	IG			NG-D	SSR-L	
	gap	root gap	time	nodes	gap	root gap	time	nodes
C1-25	0.17%	0.17%	9125.1	189.3	0.43%	0.47%	8845.6	112.8
C1-50	0.01%	0.01%	7820.6	1.6	0.01%	0.01%	7817.9	1.9
C1-75	0.08%	0.08%	11607.5	1.4	0.08%	0.09%	11262.3	1.4
C1-100	0.00%	0.00%	12608.4	0.4	0.00%	0.00%	10545.3	0.8
R1-25	0.60%	0.78%	33.3	33.0	0.48%	0.69%	13.1	9.2
R1-50	1.00%	1.21%	8317.2	978.5	0.84%	1.04%	6823.3	333.6
R1-75	0.98%	1.08%	15062.0	196.5	1.01%	1.03%	15375.1	176.8
R1-100	0.38%	0.44%	19211.7	59.6	0.39%	0.56%	17823.0	120.5
RC1-25	1.97%	3.77%	1968.1	786.5	1.19%	1.19%	96.8	17.5
RC1-50	6.33%	6.72%	19907.2	10364.8	5.87%	6.14%	18992.2	10211.4
RC1-75	3.50%	3.65%	21600	3591.0	3.26%	3.27%	21101.7	3030.5
RC1-100	1.97%	1.97%	21600	470.8	2.05%	2.38%	21600	302.9

Table: Performance on Solomon instances, 6 hour time limit - 2

	n_col_root	conc_stop_root	n_col	conc_stop	tree_nav
DSSR-L					
Best	82%	2820	31%	9247	best-first
Avg	42%	3998	35%	8902	best-first (5)
Range	[10%,81%]	[2764,8481]	[22%,63%]	[7308,9867]	
NG-DSSR-L-E					
Best	27%	7910	42%	9845	depth-first
Avg	45%	5949	37%	8688	depth-first (6)
Range	[26%,98%]	[1003,8320]	[36%,42%]	[5234,9923]	
NG-DSSR-L					
Best	4%	8752	14%	3079	depth-first
Avg	10%	6900	24%	3540	depth-first (6)
Range	[1%,35%]	[5476,8752]	[11%,63%]	[1100,4519]	

Table: BP parameters

	init_str_root	init_n_root	ins_path_str_root	ins_path_n_root
DSSR-L				
Best	none	n/a	in-between	25%
Avg	none (6)		in-between (6)	38%
Range				[24%,47%]
NG-DSSR-L-E				
Best	n/a	n/a	one-path	n/a
Avg			one-path (6)	
Range				
NG-DSSR-L				
Best	n/a	n/a	all-paths	n/a
Avg			all-paths (5)	
Range				

Table: DSSR parameters, root

Parameter configurations

	init_str	init_n	ins_path_str	ins_path_n
DSSR-L Best Avg Range	none none (6)	n/a	in-between in-between (6)	39% 57% [38%,80%]
NG-DSSR-L-E Best Avg Range	n/a	n/a	in-between in-between (6)	98% 81% [72%,97%]
NG-DSSR-L Best Avg Range	n/a	n/a	in-between in-between (6)	35% 31% [26%,34%]

Table: DSSR parameters

	ng_type_root	ng_size_root	ng_type	ng_size
NG-DSSR-L-E Best Avg Range	travel-time travel-time (5)	6% 9% [4%,21%]	travel-time travel-time (6)	23% 24% [16%,45%]
NG-DSSR-L Best Avg Range	travel-time travel-time (6)	17% 17% [14%,24%]	travel-time travel-time (5)	88% 81% [50%,97%]

Table: NG parameters

Foundation

- 2 The algorithms
- 3 Computational experiments
- 4 Conclusions and future work

- These results are largely the same on the classic VRPTW
- We performed analysis on tuning sets of instances with different sizes
 - There is some evidence that including large instances gives the best results
- "Local" approach for treating elementarity resources seems the best approach
- It makes sense to parametrize differently the algorithm in the root node
- Best parameter values provided by tuning might be different than the ones suggested in the literature
- Future work: adapt to multi-trip extension of the problem

Thanks for your attention.