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1. The evolution of the probability density function of any component of the position of a particle

relative to its initial position is governed by a diffusion equation:

∂ρ

∂t
(x, t)−D

∂2ρ

∂x2
(x, t) = 0.

The second moment of any component of the position of a particle relative to its initial position

increases proportionally to the elapsed time:

x2 = 2Dt.

2. In the case of spherical particles, the diffusion coefficient can be expressed as follows as a function

of experimentally observable quantities:

D =
RT

N

1

6πka
.
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■ Under normal conditions, in a liquid, a particle will suffer about 1021 collisions per second, Thus,

there is a slow time scale associated with the effects of inertia of the particle and friction between

the particle and the fluid and a very fast time scale associated with the molecular collisions.

■ Because the forces exerted by molecular collisions on a particle happen on a much faster time

scale than the effects of inertia of the particle and friction between the particle and the fluid, one can

argue that these forces exerted by molecular collisions on a particle can be appropriately modeled

as a white noise, and therefore as the time derivative of a Wiener process.

■ This leads to the following stochastic differential equation (SDE) for (one component of the) motion

of a Brownian particle, called the Langevin equation,

dV

dt
m
dV

dt
(t)

dV

dt
︸ ︷︷ ︸

inertia

=
dV

dt
− µV (t)

dV

dt
︸ ︷︷ ︸

friction

+
dV

dt
σ
dW

dt
(t)

dV

dt
︸ ︷︷ ︸

white noise
molecular collisions

,

where V is (the considered component of) the velocity of the particle, m is the mass of the particle,

µ is the friction coefficient (µ = 6πka in the case of a spherical particle and when Stokes’s law is

applicable), σ represents the magnitude of the forces exerted by the molecular collisions forces, and

{W (t), t ∈ R
+} is the (scalar-valued) Wiener process.

■ This is still a rather phenomenological model. The intermolecular interactions between the

particle and the fluid molecules are not modeled explicitly; instead, their entire complexity is lumped

into the friction coefficient µ, the magnitude σ, and the white-noise assumption.
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■ A first-order linear ordinary differential equation (ODE) with constant coefficients reads as

du

dt
(t) = au(t) + b(t).

The theory of ODEs requires the right-hand side to be sufficiently regular, for example, the theorem

of Cauchy-Lipschitz requires b to be a continuous function of time, among other conditions.

■ The initial-value problem du
dt
(t) = au(t) + b(t) with u(0) = u0 can be written in integral form as

u(t) = u0 +

∫ t

0

au(s)ds+

∫ t

0

b(s)ds.

Both the Riemann and Lebesque theories of integration require integrands to be sufficiently regular,

for example, continuity as a sufficient condition for Riemann integrability and measurability as a

necessary condition for Lebesque integrability.

■ The solution to du
dt
(t) = au(t)+ b(t) with initial condition u(0) = u0 has the analytical expression

u(t) = exp(at)u0 +

∫ t

0

exp
(
a(t− s)

)
b(s)ds,

a result known in the literature as Duhamel’s formula.



Stochastic calculus

ULg, Liège, Belgium MATH0488 – Lecture 1 (part B) 6 / 20

■ Unfortunately, sample paths of white noise processes are not continuous or measurable

functions. Hence, SDEs involving white noise, such as the Langevin equation, cannot be studied

within the theory of ODEs or by means of Riemann or Lebesque integrals.

■ Still, SDEs involving white noise have found widespread use in many applications, for example,

signal processing, biology, and finance, most often for modeling phenomena that happen on much

faster time scales than other phenomena in the problem.

■ The need for a rigorous framework for studying SDEs has led to the development of the theory of

stochastic calculus, with important contributions from Kiyoshi Itô and many others.
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■ Stochastic calculus defines a notion of stochastic integral that allows a rigorous meaning to be

given to integrals involving white noise. Here, we will not look at this notion in its full generality, but

we will limit ourselves to the definition of the stochastic integral of a continuous function of time, say,

f , with respect to a white noise, that is, we will limit ourselves to a stochastic integral of the form
∫ t

0

f(s)
dW

ds
(s)ds,

which stochastic calculus also denotes alternatively (and more concisely) as follows:
∫ t

0

f(s)dW (s).

■ Not unlike how the theory of Riemann integration defines the integral
∫ t

0
f(s)ds as limn→+∞

∑n−1

j=0
f(tj)(tj+1 − tj), stochastic calculus defines the stochastic integral

∫ t

0
f(s)dW (s) as

∫ t

0

f(s)dW (s) = lim
n→+∞

n−1∑

j=0

f(tj)
(
W (tj+1)−W (tj)

)
,

where the limit has to be understood in the sense of the mean-square convergence of second-order

random variables, and 0 = t0 < t1 < t2 < . . . < tn = t is any partition of the interval [0, t] such

that max0≤j≤n−1(tj+1 − tj) → 0 as n → +∞. Whereas taking the Riemann integral of a

continuous function returns a deterministic value, taking the stochastic integral of a continuous

function with respect to a white noise returns a second-order random variable.
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■ The motivation underlying the choice of the mean-square convergence and the way in which the

sum is formed, for example, the evaluation of f at tj rather than at the mid-point (tj+1 + tj)/2, is

beyond the scope of this course. It is a methodological choice that can be justified by the level of

generality of requisite regularity conditions, convenience for establishing theorems, adequacy to

applications in science and engineering, convenience in numerical calculations, etc.

■ The property that the Wiener process has bounded quadratic variation (Assignment 1) is key to

defining the limit in the sense of the mean-square convergence of second-order random variables.

■ The stochastic integral
∫ t

0
f(s)dW (s) has the following useful properties:

E

{∫ t

0

f(s)dW (s)

}

= 0 and E

{(∫ t

0

f(s)dW (s)

)2
}

=

∫ t

0

(
f(s)

)2
ds.
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Proof of the aforementioned properties:

E

{
∫ t

0

f(s)dW (s)

}

= lim
n→+∞

n−1
∑

j=0

E
{

f(tj)
(

W (tj+1)−W (tj)
)}

= 0,

E

{

(
∫ t

0

f(s)dW (s)

)2
}

= lim
n→+∞

n−1
∑

i=0

n−1
∑

j=0

E
{

f(ti)
(

W (ti+1)−W (ti)
)

f(tj)
(

W (tj+1)−W (tj)
)}

= lim
n→+∞

n−1
∑

i=0

(

f(tj)
)2
(tj+1 − tj)

=

∫ t

0

(

f(s)
)2
ds,

where the expectation operators and the limits may be interchanged by the continuity of the expectation

operator on the space of second-order random variables, and E{W (tj+1)−W (tj)} = 0 and

E{(W (ti+1)−W (ti))(W (tj+1)−W (tj))} is equal to (tj+1 − ti) if i is equal to j and 0

otherwise by the definition of the Wiener process.
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■ In order to give a rigorous meaning to the Langevin equation, stochastic calculus rewrites the

stochastic initial-value problem

m
dV

dt
(t) = −µV (t) + σ

dW

dt
(t), with V (0) = V0,

where V0 is a second-order random variable, in the integral form

V (t) = V0 +

∫ t

0

−
µ

m
V (s)ds+

∫ t

0

σ

m
dW (s),

where the last integral is defined in the sense of the stochastic integral. Stochastic calculus then

considers a stochastic process {V (t), t ∈ R
+} a solution if it solves this integral form.

■ It can be shown that this stochastic initial-value problem has a solution {V (t), t ∈ R
+} that is

unique up to probabilistic equivalence. This solution has the analytical expression

V (t) = exp
(

−
µ

m
t
)

V0 +

∫ t

0

exp
(

−
µ

m
(t− s)

) σ

m
dW (s),

where the integral is again defined in the sense of the stochastic integral (please note the

resemblance with Duhamel’s formula obtained in the deterministic case).
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Proof of analytical expression of solution to Langevin equation:

■ Let the stochastic process {V (t), t ∈ R
+} be the unique solution to

V (t) = V0 +

∫ t

0

−
µ

m
V (s)ds+

∫ t

0

σ

m
dW (s).

■ Consider then the stochastic process {Y (t), t ∈ R
+} such that

Y (t) = V (t) exp
( µ

m
t
)

.

It can be shown that the sample paths of {V (t), t ∈ R
+} and therefore also those of

{Y (t), t ∈ R
+} are continuous functions of time; hence, we have

Y (t) = V (0) exp
( µ

m
0
)

︸ ︷︷ ︸

=1

+
n−1∑

j=0

(

V (tj+1) exp
( µ

m
tj+1

)

− V (tj) exp
( µ

m
tj

))

,

where 0 = t0 < t1 < t2 < . . . < tn = t is any partition of the interval [0, t] such that

max0≤j≤n−1(tj+1 − tj) → 0 as n → +∞.
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Proof of analytical expression of solution to Langevin equation (continued):

■ Recall the bivariate Taylor series of a function (v, t) 7→ g(v, t):

g(v+∆v, t+∆t)=g(v, t)+
∂g

∂v
(v, t)∆v+

∂g

∂t
(v, t)∆t+

1

2

∂2g

∂v2
(v, t)∆v2+

∂2g

∂v∂t
(v, t)∆v∆t+

1

2

∂2g

∂t2
(v, t)∆t2+. . .

■ With the help of a bivariate Taylor series of the function (v, t) 7→ v exp
(
µ
m
t
)

up to the second

order about (V (tj), tj), we obtain

V (tj+1) exp
( µ

m
tj+1

)

= V (tj) exp
( µ

m
tj

)

+ exp
( µ

m
tj

) (
V (tj+1)− V (tj)

)

+ V (tj)
µ

m
exp

( µ

m
tj

)

(tj+1 − tj)

+
µ

m
exp

( µ

m
tj

) (
V (tj+1)− V (tj)

)
(tj+1 − tj)

+
1

2
V (tj)

( µ

m

)2

exp
( µ

m
tj

)

(tj+1 − tj)
2

+ remainder.
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Proof of analytical expression of solution to Langevin equation (continued):

■ Because V (tj+1)− V (tj) =
∫ tj+1

tj
− µ

m
V (s)ds+ σ

m

(
W (tj+1)−W (tj)

)
, it follows from the

definitions of the Riemann integral and the stochastic integral that

lim
n→+∞

n−1
∑

j=0

exp
( µ

m
tj

)

(

V (tj+1)− V (tj)
)

=

∫ t

0

−

µ

m
V (s) exp

( µ

m
s
)

ds+

∫ t

0

σ

m
exp

( µ

m
s
)

dW (s),

lim
n→+∞

n−1
∑

j=0

V (tj)
µ

m
exp

( µ

m
tj

)

(tj+1 − tj) =

∫ t

0

µ

m
V (s) exp

( µ

m
s
)

ds

and that the sums of the second-order terms and the remainder tend to 0 as n → +∞.

■ Putting everything together, we get

Y (t) = V (0) +

∫ t

0

σ

m
exp

( µ

m
s
)

dW (s),

and therefore, since Y (t) = V (t) exp
(
µ
m
t
)
, and upon dividing by exp

(
µ
m
t
)
,

V (t) = exp
(

−
µ

m
t
)

V (0) +

∫ t

0

exp
(

−
µ

m
(t− s)

) σ

m
dW (s).
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■ Let the random variable V0 representing the initial velocity be statistically independent of the Wiener

process whose derivative represents the molecular collisions. Then, by the properties of the

stochastic integral stated previously, we obtain for the mean and variance of the velocity:

E{V (t)} = exp
(

−
µ

m
t
)

E{V0},

E
{

(

V (t)− E{V (t)}
)2
}

= exp
(

−2
µ

m
t
)

E
{

(V0 − E{V0})
2
}

+

∫ t

0

exp
(

−2
µ

m
(t− s)

)( σ

m

)2

ds

= exp
(

−2
µ

m
t
)

E
{

(V0 − E{V0})
2
}

+
σ2

2mµ

(

1− exp
(

−2
µ

m
t
))

.

■ Thus, we obtain limt→+∞ E{V (t)} = 0 and limt→+∞ E
{(

V (t)
)2
}

= σ2

2mµ
; in other words,

the mean kinetic energy of the particle tends to become constant as t → +∞:

lim
t→+∞

E

{

m
(
V (t)

)2

2

}

=
σ2

4µ
.

■ Note that because of the definition of the stochastic integral in the analytical expression of the so-

lution, because the increments of the Wiener process are Gaussian, because the sum of Gaussian

random variables is Gaussian, and because convergence in mean square implies convergence in

distribution, we have that if V0 is either deterministic or Gaussian, then V (t) will be Gaussian at any

t, and if V0 is random but not Gaussian, then V (t) will tend to become Gaussian as t → +∞.



Solution to Langevin equation

ULg, Liège, Belgium MATH0488 – Lecture 1 (part B) 15 / 20

■ So far we have not dealt with temperature. However, we can intuitively expect that the kinetic

energies of the particles and the fluid molecules will increase with temperature.

■ In fact, in solutions of particles in fluids, the collisions will tend to lead to kinetic energy transfer

from particles and fluid molecules with higher kinetic energy to those with lower kinetic energy. As a

result, over time, a thermal equilibrium will tend to set in, wherein all the particles and fluid

molecules will tend to have on average the same kinetic energy, dependent on temperature.

■ In ideal solutions of particles in fluids, the thermal equilibrium is characterized by a linear relation

between the mean kinetic energy and the (absolute) temperature (in Kelvin). Specifically, the mean

kinetic energy associated with any component of motion is 1

2
kBT , so that the mean kinetic energy

associated with all components involved is 3

2
kBT ; here, kB is the Boltzmann constant, which is

related to the ideal gas constant R and Avogadro’s number N as kB = R
N

.

■ This “law of equipartition of kinetic energy” is consistent with the long-time behavior of

Langevin’s equation, which provides us in turn a way of calibrating the coefficient σ, namely,

σ2

4µ
=

1

2
kBT =⇒ σ =

√

2kBTµ.

■ We note that this “law of equipartition of kinetic energy” is intimately related to Van ’t Hoff’s law for

the osmotic pressure that suspended particles develop in fluids, which Einstein used in his paper.

Both laws hold under the same idealized conditions.
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■ Numerically approximating sample paths of the solution {V (t), t ∈ R
+} to the Langevin equation

typically entails seeking to approximate its values at discrete time instants. We thus set tn = n∆t,
with n the index of the time instant and ∆t the time step.

■ We let Vn denote the approximation to V (tn) at tn. The simplest time integration method, namely,

the explicit Euler method, involves marching forward in time as Vj+1 = Vj +
(
− µ

m
Vj

)
∆t

+ σ
m

(
W (tj+1)−W (tj)

)
, with j = 0, 1, 2, . . ., where each term on the right-hand side

approximates the corresponding term on the right-hand side of the integral form on Slide 10/20.

■ Thus, given a sample path {w0, w1, w2, . . .} of the values taken by the Wiener process at the

discrete time instants t0, t1, t2, . . ., one begins with setting v0 and then proceeds with computing

the corresponding sample path {v0, v1, v2, . . .} of approximations to the values taken by the

solution to the Langevin equation at the discrete time instants t0, t1, t2, . . . as follows:

vj+1 = vj +
(

−
µ

m
vj

)

∆t+
σ

m
(wj+1 − wj), j = 0, 1, 2, . . . ,

■ The explicit Euler method is convergent in that accuracy increases with a decrease in the time step

∆t when integrating over finite intervals of time.

■ As in the case of ODEs, the use of the explicit Euler method for the time-integration of SDEs is only

conditionally absolutely stable. To have absolute stability, the time step must satisfy ∆t < 2m
µ

.
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■ So far we have dealt with the velocity but not yet with the displacement.

■ The displacement can be integrated by considering the system of SDEs







dU

dt
(t) = V (t),

m
dV

dt
(t) = −µV (t) + σ

dW

dt
(t),

with







d

d
U(0) = U0,

d

d
V (0) = V0.

■ It can be shown that this stochastic initial-value problem has a solution {(U(t), V (t)), t ∈ R
+}

that is unique up to probabilistic equivalence and that this solution has the analytical expression

[
U(t)
V (t)

]

= exp

([
0 1
0 − µ

m

]

t

)[
U0

V0

]

+

∫ t

0

exp

([
0 1
0 − µ

m

]

(t− s)

)[
0
σ
m

]

dW (s).

Please note that exp denotes here the matrix exponential (not the same as simply taking the

exponential of the entries), and please note again the resemblance with Duhamel’s formula.

■ It is interesting to compare the behavior of this system of SDEs with Einstein’s findings and Perrin’s

experiment, which pertained to the displacement. . . but let’s leave that to you for the assignment :)
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1. Determine the expression of the mean vector and the covariance matrix of the solution

(U(t), V (t)) at time t to the stochastic initial-value problem stated on Slide 17/20. Assume that the

“law of equipartition of kinetic energy” holds and interpret the expression you find for the variance of

U(t) in the light of Einstein having found that the second moment of any component of the position

of a particle relative to its initial position increases proportionally to the elapsed time.

2. It can be shown that the stochastic process {(U(t), V (t)), t ∈ R
+} that solves the stochastic

initial-value problem stated on Slide 17/20 is a Markov process. Explain in a few words what is

meant with the Markov property and why it is indeed to be expected that {(U(t), V (t)), t ∈ R
+}

possesses the Markov property. Use your results for Question 1 to determine the expression of the

transition probability density function, that is, the conditional probability density function of the

solution (U(t), V (t)) at time t to the system of stochastic differential equations stated on Slide

17/20 given that the solution takes the deterministic value (u(s), v(s)) at a preceding time s.

3. Implement the explicit Euler method stated on Slide 16/20. Set m = µ = σ = 1 and generate a

few sample paths of the solution with V (0) = 0. Carry out a few tests to verify that your results

make sense (suitability of the time step, correspondance with theoretical results about the mean and

the variance,. . . ). Change the values of m, µ, and σ. Interpret your results (role of m, µ, and σ).
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4. Extend the explicit Euler method on Slide 16/20 to the case of the system of SDEs on Slide 17/20.

For a few of the cases that you considered under Question 2, please repeat your simulation, this

time with (U(0), V (0)) = (0, 0), and generate a few sample paths of the displacement. Interpret.

5. Extract from Perrin’s paper values of m, µ, and σ that correspond to Perrin’s experiment. Use the

explicit Euler method implemented under Question 4 to generate for these values of m, µ, and σ a

few sample paths of the solution to the stochastic initial-value problem stated on Slide 17/20 with

(U(0), V (0)) = (0, 0) for a sufficiently short time interval. Explain how the stability restriction on

the time step prevents the explicit Euler method from being used with reasonable computational

cost for the simulation of sample paths up to 120 s as in Perrin’s experiment.

6. The availability of the analytical expression of the transition probability density function, which you

determined under Question 2, enables an alternative and less computationally costly simulation of

Perrin’s experiment. Read on https://en.wikipedia.org/wiki/Multivariate normal distribution the

section about drawing samples from a multivariate Gaussian probability density function. Imagine,

explain, and implement a method that uses draws of samples from the transition probability density

function to generate sample paths of the values taken at the time instants 0, 30 s, 60 s, 90 s, 120 s

by the solution to the stochastic initial-value problem stated on Slide 17/20 with

(U(0), V (0)) = (0, 0) for the values of m, µ, and σ relevant to Perrin’s experiment.

7. Imagine, explain, and implement how the simulation of Perrin’s experiment of Question 6 can be

used to characterize the accuracy with which Perrin was able to determine Avogadro’s number.

Were his estimates of Avogadro’s number correct up to the accuracy limitations that you obtain?
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