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■ Matter is made out of a great many interacting atoms, or elementary parts. Thus, macroscale
behavior (mechanical, electrical,. . . ) of matter should be explainable in terms of the microscopic
behavior and motion of the atoms, or the elementary parts.

■ Realistic physical bodies are composed of a huge number of atoms; for example, 1 mm3 of bulk
metal contains about 1019 atoms. We are not going to be able or want to know how every atom is
actually behaving or where it is actually moving. A deterministic approach is not feasible.

■ Systems of vast numbers of atoms are governed by principles that call for a probabilistic description.
We are going to want to know about average behavior and what the odds are for different effects
occurring. We are going to want to describe the motion of atoms as a random motion.

■ A probabilistic description can also be motivated by the behavior of atoms being not according to
classical mechanics, but rather quantum mechanics, but this is beyond the scope of this course.
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blanc
blanc

Macroscale behavior: little particles
of plant pollens jiggle around in a liquid.

blanc
Robert Brown.

(botanist, experimentalist).

Microscale origin: effect of collisions
with smaller liquid molecules in thermal motion.

blanc
Albert Einstein.

(theoretical physicist).

We will look at foundational discoveries of Brown and Einstein.
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A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in
ruhenden Füssigkeiten suspendierten Teilchen. Annalen der Physik, 17:549-. . . ,1905.

www.rpgroup.caltech.edu/courses/aph161/Handouts/Einstein1905A.pdf.
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■ The Brownian motion was discovered in 1827 by Robert Brown, a botanist. While he was studying
microscopic life, he noticed little particles of plant pollens jiggling around in the liquid he was
looking at in the miscroscope.

■ “In this paper it will be shown that according to the molecular-kinetic theory of heat, bodies of
microscopically-visible size suspended in a liquid will perform movements of such magnitude that
they can be easily observed in a microscope, on account of the molecular motions of heat. It is
possible that the movements to be discussed here are identical with the so-called “Brownian
molecular motion”; however, the information available to me regarding the latter is so lacking in
precision, that I can form no judgment in the matter (I).”

■ “If the movement discussed here can actually be observed (together with the laws relating to it
that one would expect to find), then classical thermodynamics can no longer be looked upon as
applicable with precision to bodies even of dimensions distinguishable in a microscope: an exact
determination of actual atomic dimensions is then possible. On the other hand, had the prediction of
this movement proved to be incorrect, a weighty argument would be provided against the
molecular-kinetic conception of heat.”



Overview

ULg, Liège, Belgium MATH0488 – Lecture 1 (part A) 8 / 34

■ There are two main lines of thought in Einstein’s paper:

1. The first line of thought consists in explaining the movement of the particles as the effect of

molecular collisions. As part of this line of thought, Einstein also establishes that the evolution
of the probability density function of each component of the position of a particle relative to its
initial position obeys a diffusion equation whose diffusion coefficient is related to the second
moment of the particle movement.

2. The second line of thought consists in establishing relationships between the theory and

experimentally observable behavior, thus paving the way for validating the theory through
experiments and, in this way, providing evidence for the atomic nature of matter. Such
experiments were later carried out by J. B. Perrin.

■ Please note that in this section, we use (mostly) Einstein’s notations. Thus, uppercase letters
referring to random quantities and lowercase letters to deterministic quantities does not apply.
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A. Einstein.
Nobel laureate in Physics, 1921.

J. B. Perrin.
Nobel laureate in Physics, 1926.
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■ Einstein considers the horizontal component of motion (x-direction) in an unbounded domain
involving particles (large blue dots in the sketch) suspended in a liquid (small black dots):
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situation at time t+τ

situation at time t+ τ

realization of ∆

and Einstein denotes by ν(x, t) the number density of particles in a volume element (of unit area in
the y − z-plane) centered on spatial coordinate x at time t (assumed to depend only on x and t).

■ “Evidently it must be assumed that each single particle executes a movement which is independent
of the movement of all other particles.”

■ “the movements of one and the same particle after different intervals of time must be considered as
mutually independent processes, so long as [. . .] these intervals of time [are] not too small.”
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■ “We will introduce a time-interval τ in our discussion, which is to be very small compared with the
observed interval of time, but, nevertheless, of such a magnitude that the movements executed by a
particle in two consecutive intervals of time τ are to be considered as mutually independent [. . .].”

■ “In an interval of time τ the x-co-ordinates of the single particles will increase by ∆, where ∆ has a
different value (positive or negative) for each particle. For the value of ∆ a certain probability

[density function] will hold [denoted by φ, which] fulfils the condition φ(∆) = φ(−∆). We get

ν(x, t+ τ) =

∫ +∞

−∞

ν(x+∆, t)φ(∆)d∆.”

■ Einstein then constructs the Taylor series

ν(x, t+ τ) = ν(x, t) + τ
∂ν

∂t
+ . . .

ν(x+∆, t) = ν(x, t) + ∆
∂ν

∂x
(x, t) +

∆2

2!

∂2ν

∂x2
(x, t) + . . .

■ “We can bring [these expansions] under the integral sign [. . .]. We obtain

ν(x, t)+τ
∂ν

∂t
=

∫
+∞

−∞

ν(x, t)φ(∆)d∆+

∫
+∞

−∞

∆
∂ν

∂x
(x, t)φ(∆)d∆+

∫
+∞

−∞

∆2

2!

∂2ν

∂x2
(x, t)φ(∆)d∆ [+ . . .].”
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■ “On the right-hand side the second, fourth, etc., terms vanish since [φ(∆) = φ(−∆)]; whilst of the
first, third, fifth, etc., terms, every succeeding term is very small compared with the preceding. [. . .]

Bearing in mind that
∫ +∞

−∞
φ(∆)d∆ = 1, and putting

D =
1

τ

∫ +∞

−∞

∆2

2
φ(∆)d∆,

[. . .] we get [. . .]
∂ν

∂t
= D

∂2ν

∂x2
.

This is the well-known [partial] differential equation for diffusion, and we recognise that D is the
coefficient of diffusion.”

■ Einstein finds that the second moment of the displacement over a time interval of length τ is related
to the diffusion coefficient D as

∫ +∞

−∞

∆2φ(∆)d∆ = 2Dτ.
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■ To establish relationships with experiments, on the one hand, Einstein considers the problem of
”diffusion outwards from a point,” in which 1 particle starts from the origin x = 0 at time t = 0:







∂ρ

∂t
(x, t)−D

∂2ρ

∂x2
(x, t) = 0,

ρ(x, 0) = δ(x).

Einstein interprets this diffusion equation as describing the evolution of the probability density

function for (the x-component of) the position of a particle (relative to its initial position).

■ This problem has the solution

ρ(x, t) =
1√

2π
√
2Dt

exp

(

−1

2

(

x√
2Dt

)2
)

.

At any given time t, the probability density function x 7→ ρ(x, t) for the x-component of the position
of the particle given that this particle was at the origin x = 0 at time 0 is the Gaussian probability
density function with mean 0 and second moment 2Dt. This expresses Einstein’s famous finding
that the second moment of (the x-component of) the position of a particle (relative to its initial
position) is proportional to the elapsed time:

x2 = 2Dt.
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■ To establish relationships with experiments, on the other hand, Einstein elaborates a thought
experiment in which he assumes that on each particle is exerted a force K that just balances the
diffusion in the sense that there is no net flow of particles. For example, if the particles were
charged, this force could be exerted by an electric field.

■ “If the suspended particles have spherical form (radius a), and if the liquid has viscosity k, then
[by Stokes’s law] the force K imparts to the single particles a velocity K

6πka and there will pass

[. . .] per unit of time ν K
6πka particles. [By Fick’s law] as the result of diffusion there will pass in a

unit of time −D ∂ν
∂x

particles. Since there must be dynamic equilibrium [conservation of mass]:

ν
K

6πka
−D

∂ν

∂x
= 0.”

■ “Equilibrium with the force K is brought about by pressure [. . .]: Kν − ∂p
∂x

= 0. [By Van ’t Hoff’s

law] if there are ν particles in a unit volume [. . .] [in an equilibrium condition], there will be a
corresponding osmotic pressure p = RT

N
ν, where N [Avogadro’s number] signifies the number of

molecules contained in [1 mole, R is the ideal gas constant, and T is the absolute temperature].
The required condition of equilibrium [conservation of momentum]:

−Kν +
RT

N

∂ν

∂x
= 0.”
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■ “We can [eliminate the force K and] calculate the coefficient of diffusion from the two conditions
[. . .]. We get

D =
RT

N

1

6πka
.”

■ “Formula for the [root-mean-square] displacement of suspended particles:

√

x2 =
√
t

√

RT

N

1

3πka
.”

■ “It is to be hoped that some enquirer may succeed shortly in solving the problem suggested here
which is so important in connection with the theory of heat.”
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■ Let f : R → R be an integrable function, that is,
∫

R
|f(t)|dt < +∞. Then, the Fourier

transform f̂ of f is the bounded, continuous function f̂ from R into C such that

f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt.

The Fourier transform of an integrable function is not necessarily integrable itself.

■ Let f : R → R be a square-integrable function , that is,
∫

R
|f(t)|2dt < +∞. Then, the Fourier

transform f̂ of f is the square-integrable function f̂ from R into C such that















f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt,

f(t) = F−1f̂(t) =
1

2π

∫

R

exp(iωt)f̂(ω)dω.

■ These definitions indicate that one cannot take the Fourier transform of any function: these
definitions provide the Fourier transform only for integrable and square-integrable functions.

■ We include the minus sign in the forward transform and the factor 1
2π in the inverse transform.
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■ Random variables (samples are scalars, vectors, matrices,. . . ):

■ Stochastic processes (“samples are functions of one variable”):

t

Z(t)

t

Z(t)

t

Z(t)
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■ A stochastic process {Z(t), t ∈ T } indexed by a subset T of R and with values in R is a
collection of random variables Z(t) with values in R indexed by t in T .

■ For any nonempty finite subset {t1, . . . , tm} of T , where m denotes the number of elements in
this subset, the joint probability density function ρ(Z(t1),...,Z(tm)) of (Z(t1), . . . , Z(tm)) (provided
that it exists) is called a (m-th order) marginal probability density function of the stochastic
process {Z(t), t ∈ T }.

The collection of all the marginal probability density functions (provided that they exist) of a
stochastic process is called the system of marginal probability density functions.

■ A stochastic process {Z(t), t ∈ T } indexed by T and with values in R is Gaussian if each
probability density function in its system of marginal probability density functions is Gaussian.
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■ A stochastic process {Z(t), t ∈ T } indexed by T with values in R is of the second order if

E
{

Z(t)2
}

=

∫

R

z2ρZ(t)(z)dz < +∞, ∀t ∈ T .

■ The mean function of a second-order stochastic process {Z(t), t ∈ T } indexed by T with
values in R is the function z from T into R such that

z(t) = E
{

Z(t)
}

=

∫

R

zρZ(t)(z)dz.

■ The autocorrelation function of a second-order stochastic process {Z(t), t ∈ T } indexed by T
with values in R is the function rZ from T × T into R such that

rZ(t, t̃) = E
{

Z(t)Z(t̃)
}

=

∫

R×R

zz̃ρ(Z(t),Z(t̃))(z, z̃)dzdz̃.

■ The covariance function of a second-order stochastic process {Z(t), t ∈ T } indexed by T with
values in R is the function cZ from T × T into R such that

cZ(t, t̃) = E
{

(

Z(t)−z(t)
)(

Z(t̃)−z(t̃)
)

}

=

∫

R×R

(

z−z(t)
)(

z̃−z(t̃)
)

ρ(Z(t),Z(t̃))(z, z̃)dzdz̃.

■ Please note that cZ(t, t̃) = E
{

(

Z(t)− z(t)
)(

Z(t̃)− z(t̃)
)

}

= rZ(t, t̃)− z(t)z(t̃).
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■ A second-order stochastic process {Z(t), t ∈ R} indexed by R with values in R is mean-square

stationary if z(t) = z is independent of t and rZ(t, t̃) = rZ(t− t̃) depends on only t− t̃.

■ The power spectral density function of a zero-mean, mean-square stationary, second-order
stochastic process {Z(t), t ∈ R} indexed by R with values in R, if it exists, is the function sZ
from R into R+ such that

rZ(t− t̃) =
1

2π

∫

R

sZ(ω) exp
(

iω(t− t̃)
)

dω.

The power spectral density function sZ has the following properties:

◆ it is even because of the evenness of rZ ,
◆ it is positive owing to Bochner’s theorem,
◆ it is integrable because E

{

Z(t)2
}

= rZ(0) =
1
2π

∫

R
sZ(ω)dω < +∞.

■ If α is an integer, the spectral moment of order α, denoted by mα, if it exists, is the integral

mα =
1

2π

∫

R

ωαsZ(ω)dω.



Second-order stochastic processes

ULg, Liège, Belgium MATH0488 – Lecture 1 (part A) 23 / 34

t− t̃

rZ(t− t̃)

ω

sZ(ω)

t

Z(t)

t

Z(t)

t

Z(t)
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t− t̃

rZ(t− t̃)

ω

sZ(ω)

t

Z(t)

t

Z(t)

t

Z(t)
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■ In the engineering literature, a white noise is intuitively construed as a stochastic process with
constant power spectral density function and delta autocorrelation function. However, such a
white noise cannot be defined within the context of second-order stochastic processes because its
variance is infinite. In fact, a Gaussian white noise can be defined as a mathematical construct
within the theory of generalized stochastic processes, but this is beyond the scope of this course.

■ We can visualize sample paths of band-limited flat-spectrum stochastic processes:

ω

sZ

ω

sZ

ω

sZ

t

Z(t)

t

Z(t)

t

Z(t)

However, sample paths of a white noise, a flat-spectrum stochastic process of infinite bandwidth,
cannot be visualized. We can only think of sample paths of white noise as a sort of limit of sample
paths of band-limited flat-spectrum stochastic processes as the bandwidth increases to infinity.
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■ The Wiener process is a stochastic process that draws from Einstein’s study the idea of independent
increments and the idea of the second moment increasing proportionally with elapsed time.

■ A (scalar-valued) Wiener process is a stochastic process {W (t), t ∈ R+} indexed by the
positive real line R

+ with values in R such that

1. W (0) = 0,

2. for 0 ≤ s < t < u < v, the increments W (t)−W (s) and W (v)−W (u) are statistically
independent,

3. for 0 ≤ s < t, the increment W (t)−W (s) is a Gaussian random variable with mean zero
and variance t− s.

■ A (vector-valued) Wiener process is a stochastic process {W (t), t ∈ R
+} indexed by the

positive real line R+ with values in Rn such that

1. W (0) = 0,

2. for 0 ≤ s < t < u < v, the increments W (t)−W (s) and W (v)−W (u) are statistically
independent,

3. for 0 ≤ s < t, the increment W (t)−W (s) is a Gaussian random variable with mean zero
and covariance matrix (t− s)[I], where [I] is the (n× n)-dimensional identity matrix.
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■ Simulating sample paths of the Wiener process {W (t), t ∈ R
+} indexed by R+ with values in R

typically entails seeking to simulate its values at discrete time instants. We thus set tn = n∆t, with
n the index of the time instant and ∆t the time step.

■ We let Wn denote W (tn). Then, condition 1 indicates that W0 = 0, and conditions 2 and 3
indicate that Wj+1 = Wj +∆Wj with j = 0, 1, 2, . . ., where each ∆Wj is a statistically
independent Gaussian random variable with mean zero and variance ∆t.

■ Thus, to simulate a sample path {w0, w1, w2, . . .} of the values taken by the Wiener process at
the discrete time instants t0, t1, t2, . . ., one begins with setting w0 = 0; then, for j = 0, 1, 2, . . .,
one recursively generates a realization ∆wj of a statistically independent Gaussian random
variable with mean zero and variance ∆t and sets wj+1 = wj +∆wj .

■ The Matlab functions randn and cumsum can be useful.
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t [-]

w
[-
]
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w1 [-]

w
2
[-
]
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■ Since the Wiener process has statistically independent increments, its time derivative can be
intuitively construed as a stochastic process whose values at different time instants are statistically
independent, that is, the time derivative of the Wiener process is a white noise. In fact, the time
derivative of the Wiener process being a Gaussian white noise can be made rigorous within the
theory of generalized stochastic processes, but this is beyond the scope of this course.

■ To make this property more explicit, albeit still intuitive and not rigorous, consider the
finite-difference approximation

f∆t(t) =
W (t+∆t)−W (t)

∆t
.

Then, it can be shown (see the assignment) that the covariance function of {f∆t(t), t ∈ R
+} is

E{f∆t(t)f∆t(s)} =











1

∆t

(

1− |t− s|
∆t

)

if |t− s| ≤ ∆t,

0 otherwise.

Thus, as ∆ → 0 and the finite-difference approximation thus tends to the time derivative, the
covariance function tends to a Dirac delta.
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■ Please read the papers written by Einstein and Perrin. Describe in a few lines the experiment that
Einstein suggests that “some enquirer” carry out, and briefly point out its historical significance.

■ Please determine the total variation of the Wiener process over a time interval [0, τ ], that is, the limit

lim
n→+∞

n
∑

j=1

√

√

√

√E

{

∣

∣

∣

∣

W

(

jτ

n

)

−W

(

(j − 1)τ

n

)∣

∣

∣

∣

2
}

;

Interpret your result.

■ Please determine the quadratic variation of the Wiener process over a time interval [0, τ ], that is,

lim
n→+∞

n
∑

j=1

E

{

∣

∣

∣

∣

W

(

jτ

n

)

−W

(

(j − 1)τ

n

)∣

∣

∣

∣

2
}

;

■ Please show that the covariance function of the Wiener process is E{W (t)W (s)} = min(t, s).
Deduce the expression for the covariance function of {f∆t(t), t ∈ R

+} stated on Slide 31/34.

■ Implement the algorithm stated on Slide 28/34, and plot a few sample paths of the scalar-valued
and vector-valued Wiener processes. Carry out a few tests to verify that your sample paths can
indeed be considered sample paths of the scalar-valued and vector-valued Wiener processes.
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