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Abstract 

Flood in urban areas is an increasing problem and it causes over one-third of overall economic 

losses due to natural hazards across the globe. For many river basins, studies show that flood risk 

will further increase during the 21st century as a result of a combination of climate change and 

urban development. It is important in this respect to evaluating flood risks at different time 

horizons by coupling urban development models with hydrological models. Although often 

focused on flood hazard only, the existing studies suggest (i) an overwhelming contribution of 

urbanization to the future increase in flood risk in some river basins, and (ii) a likely high influence 

of small-scale spatial patterns in future urbanization, requiring analyses at a finer scale than 

performed so far. The main goal of this PhD thesis is to investigate the expected flood damage for 

possible future built-up patterns at different scales. Wallonia (Belgium) is selected as a case study 

for this thesis. Four main steps are followed to accomplish the thesis’ goal. First, this thesis takes 

a retrospective analysis of the evolution of the urban development in Wallonia through the use of 

a multinomial logistic regression model (MNL). Second, in order to estimate the future flood 

damage for urban areas, there is a need for urbanization scenarios that are based on a realistic 

land-use change model. In this context, this research proposes and compares two land-use change 

models: (i) a coupled MNL and cellular automata model (MNL-CA), and (ii) a coupled CA and agent-

based model (CA-AB). Based on the comparison of both modeling approaches, the CA-AB model is 

employed to simulate several future urbanization scenarios. These scenarios are typically 

considering long-term time horizons, i.e. 2050-2100, as this is the appropriate time frame for 

analyzing such effects. In this thesis, Belgian cadastral datasets for 1990, 2000 and 2010 are used 

to calibrate and validate the land-use change models. A remarkable feature of this research is that 

it considers multiple densities of built-up which enables us to study both expansion and 

densification processes. As the model simulates urbanization up to 2100, forecasting land-use 

change over such time frames entails very significant uncertainties. In this regard, one of the main 

themes of this thesis is attributed to the modeling of uncertainty in the land-use change models. 

Third, 24 urbanization scenarios for the entire Wallonia for 2030, 2050, 2070 and 2100 that 

differed in terms of the rate of development and spatial policies are generated. The simulated 

scenarios will then be integrated with a hydrological model for the same time horizon. The 

inundation extents and water depths for each scenario are determined by a hydraulic model for 
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steady flows corresponding to return periods of 25, 50 and 100 years. The results suggest that 

urban development will continue within flood hazard zones in many of the simulated scenarios. 

Therefore, fourth, a procedural urban generation system is developed to analyze the respective 

influence of various urban layout characteristics on inundation flow which assists in designing 

flood-resistant urban layouts within the flood hazard zones. The results pointed out that the 

assumption of a binary approach of urbanization modeling, urban vs non-urban, may lead to 

inaccurate conclusions as the relative importance of the development controlling factors typically 

varies with density. Our results show that the densification strategy, without spatial policy 

interventions, may lead to an increase in the flood absolute damage by a 100% at the end of the 

century. Another important finding of this thesis is that the geometric factors of urban layouts, 

such as road width, orientation or curvature, have a role in water flow properties during floods. 

Thus, the thesis provides some guidelines for designing flood-sensitive urban layouts.  
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General Introduction 

Background  

Floods claim many lives and cause major economic losses.  A recent report by the UN, “Human 

Cost of Weather Related Disasters”, shows that 157,000 people have died as a result of floods 

between 1995 and 2015. Additionally, floods damages cost US$104 billion/year globally according 

to the UN report “Global Assessment Report on Disaster Risk Reduction”. The magnitude and 

occurrence of floods in many areas are currently increasing (Moel and Aerts, 2010; Pfister et al., 

2004) as a result of climate change. However, not only climate will change; but also economic 

development and land-use (mainly urbanization). Poelmans et al. (2011) investigated the relative 

impact of both climate change and urban expansion on the peak flows and flood extent for a small-

scale catchment situated in the center of Belgium. This study concluded that the potential damage 

related to a flood is largely influenced by land use changes that occur in the floodplain. Land use 

change influences flood risk through multiple pathways, including climate (e.g., modified 

evapotranspiration), run-off in the catchment (reduced infiltration), inundation flows (obstruction 

by buildings) and flood exposure (higher value of elements-at-risk in the floodplains).  

For several decades hard flood protection measures such as levees, dams, and dikes have been 

widely used to control floods. These measures have been criticized because they often interrupt 

natural flooding processes by removing the natural land cover, reduce natural water storage 

capacity and disrupt water flow paths (Lennon et al., 2014; O’Neill, 2013). In the recent years, there 

is a shift in focus from hard flood controls towards a more strategic approach characterized by 

mitigating flood risk and increasing resilience during the urban design process (Lennon et al., 2014; 

White, 2008). Several soft solutions have been introduced at different spatial scales ranging from 

regional scale to building scale. For example, storing water in farmland, where the land remains 

property of the farmer and is used for temporary water storage in extreme flooding (e.g. Fokkens, 

2006). Other case-studies relocate the most sensitive land-use types; e.g. suggest moving 

residential areas to zones with a lower flood risk (e.g. Satterthwaite, 2007). Within this context, it 

is crucial for planners and policymakers to consider flood damage for possible future urban 

patterns. It is also important to concern the possibility of accommodating unavoidable floods by 

pre-emptive modifications to the urban design. This thesis studies the impacts of urban 

development on future flood in Wallonia (Belgium) as a case study. Urbanization in Wallonia is 

1 
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characterized by a mix of urban cores and several small settlements, together with a dense road 

network resulted in ribbon and fragmented development. Over the last decades, the main land-

use change form was the conversion of agricultural lands to urban lands, Figure 1.  

 

What should we consider as urban land-use? 

The total urban area is provided by several sources. Figure 2 gives the variation in the 

calculated urban land-use in four data sources: Corine Land Cover (CLC), La Carte d'Occupation du 

Sol de Wallonie, Land-use Map of Wallonia, (COSW), Conférence Permanente du Développement 

Territorial, permanent conference of territorial development, (CPDT) and Cadastral Data (CAD). 

 

CLC datasets provide a detailed inventory of the biophysical land cover in Europe. It is made 

available by the European Environment Agency (EEA, 1994) at resolutions of 100 m × 100 m and 

250 m × 250 m grid cells. CLC datasets have been generated based on different sets of satellite 

images and topographic maps (EEA, 1994). COSW datasets are detailed land cover maps for 

Figure 1: Land-use evolution 
between 1980 and 2009. 
Source: SPF Economie – DGSIE. 

Figure 2: Urban area 
in Wallonia reported 
by different data 
sources. 
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Wallonia developed by Wallonia Public Service (SPW). The method used to produce the maps is 

based on the use a base layer which is the PLI (Plan of Location Information). This is combined with 

the nature of the land register and crossed by geoprocessing with different layers describing 

certain types of land-uses including agricultural plot (from the SIGEC), water bodies, extraction 

areas, waste dumps, landfills, brownfield sites (SAR), port areas or airfields (SPW, 2008) . CPTD 

provides statistics about the total area of land uses in Wallonia based on Belgian statistics (SPF 

Economie - DGSIE). CAD is a vector dataset representing buildings in two dimensions as polygons, 

made available by the Land Registry Administration of Belgium.  CAD provides numerous 

information on buildings from which the construction date is used to develop urban land-use maps 

for several time points. 

Each data source is based on different nomenclatures that define urban land, a different 

methodology to develop the dataset, and/or a different generalization level. Therefore, different 

data sources are difficult to compare and the resulting areas of urban land show a relatively large 

variation. For example, the urban class in CLC configuration consists of land that is covered by 

buildings and other man-made elements such as residential areas and related functions services, 

industries, firms, and transport infrastructure. Whereas, CAD considers only lands that are 

completely or partially covered by buildings as urban lands. CLC is mainly based on the acquisition 

of satellite data. The remotely sensed data often underestimates dispersed classes such as urban 

lands, because of the coarse resolution of most satellite sensors (Poelmans, 2010) . On the other 

hand, data based on land registration and statistics such as CPTD tend to overestimate urban lands 

because they assume that an urban parcel in the land register is completely covered by buildings.  

Land-use classification resulting from free satellite imagery is another source for land-use data. 

However, CAD data is used in this research for two main reasons:  

(i) at the regional level, this study uses raster grids with spatial resolution of 100m to reduce 

computational resources and CAD allows to assign built-up density index for every 100 

m × 100 m cell, and  

(ii) this research investigates the relationship between urban layout design and flood 

damage by generating a large number of synthetic layouts using procedural system. The 

variance of the input parameters for the procedural system is obtained by inspecting CAD 

for 500 km² of Wallonia. 

Considering the different existing definitions of urban land use, one of the main originality of our 

research consists in avoiding a dual urban/non-urban approach as the one adopted in most existing 

studies. We will hence consider different levels of urban land use, from low- to high-density levels, 

and measure exposure to floods for these different levels of urban land use. This multi-level 

approach is more in line with the reality, as there is no sharp break between urban and non-urban 
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in our daily landscapes. Further on such a multi-level approach is highly relevant from a policy-

driven perspective, especially in those areas where there is a significant potential for a further 

urbanization of already urban areas. 

It should be stressed at this regard that different approaches have been implemented throughout 

the research to assign urban density ranges to each urban class in the different chapters. This is 

related to the fact that the different chapters have been submitted as separate articles in scientific 

journals, which led to some differences in the approach adopted to set the number and limits of 

urban density classes over time. These minor changes do not affect the general conclusions that 

can be drawn from the results.      

Research objectives and questions  

The overall goal of this thesis lies in identifying the impact of urban development on the flood 

damage at multiple scales for Wallonia (as a case study) in which many built-up neighborhoods are 

characterized by low density and some discontinuity with historical urban cores (Marique et al., 

2013). The thesis addresses the following research questions: 

Q1. What is the potential of analyzing and modeling multiple urban densities in a highly 
fragmented urban landscape? 

Q2. Which urban expansion model structure is the most appropriate? 

Q3. What is the relative impact of future urbanization on the flood damage across Wallonia? 

Q4. What is the relation between urban layout and flood damage? 

These questions approach future flood risks from two angles: urbanization and inundation 

modeling, and at two different levels: mesoscale (Q1 to Q3), and microscale (Q4). 

Thesis structure: methodological workflow 

The structure of the thesis, which is graphically summarized in Figure 3, consists of three 

distinct parts. Part one (P1) answers Q1, part two (P2) answers Q2, and part three (P3) is dedicated 

to Q3 and Q4. The main aim of P1, which includes chapter 1, is to analyze the recent urbanization 

in Wallonia and its drivers and to figure out whether it is important to consider several urban 

densities or to follow a binary classification, i.e. urban vs non-urban, as in many existing studies. 
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This part concludes that the relative influence of the development drivers typically varies with 

density. In addition, this part shows that it is crucial to study both expansion and densification 

(infill development) processes. 

The second part (P2) aims at simulating future urban land use. The main contribution of this step 

is improving the understanding of calibration process through urban expansion models. Unlike 

most commonly used models which simulate expansion, our approach considers expansion and 

the potential for densification within already built-up areas. This thesis examines the most 

common urbanization modeling approaches including a coupled multinomial logistic regression 

and cellular automata (MNL-CA) approach, and a coupled CA and agent-based (CA-AB) approach. 

Chapter 2, introduces an MNL-CA model in which the transition potential of each cell to be 

converted into a specific urban density class are based on a set of static variables which is 

calibrated with MNL, and a dynamic neighborhood interaction which is calibrated with a genetic 

algorithm (GA). In chapter 3, a CA-AB model is proposed whereby new developments are 

simulated through land developers’ decisions.  The agents are categorized into three agent groups 

with different characteristics and goals: developers, existing residents and planning permission 

Figure 3: Overview of 
the thesis structure. 



General Introduction 

6 
 

authority. The model’s parameters are also calibrated with GA. Further, this chapter presents a 

discussion and comparison of the allocation ability of the two models: MNL-CA (chapter 2), and 

CA-AB model (chapter 3). This comparison highlights that CA-AB model is the best performing 

model. Chapter 4 describes a novel approach for tuning land-use allocation uncertainty over time. 

Our approach is referred to as Time Monte-Carlo (TMC) technique. It uses a specific range of 

randomness to allocate new land uses. This range is associated with the transition probabilities 

from one land-use to another. The range of randomness is increased over time so that the 

magnitude of uncertainty increases over time. 

One of the aims of P3 is to evaluate the flood damage related to every urbanization scenario by 

coupling the corresponding scenario with inundation maps and by using a stage-damage function 

for urban areas and specific prices. Based on P2, our CA-AB model is employed to simulate 24 

different urbanization scenarios for 2030, 2050, 2070 and 2100 (chapter 4). These scenarios differ 

in terms of expansion and densification rates (low, medium, and high) and in allocation procedure 

(business-as-usual, ban on expansion, and ban on new constructions within flood-prone zones). 

The main contribution of chapter 5 is to acquire a better insight into the importance of simulating 

different levels of urban densities as well as considering different expansion and/or densification 

policies. 

Although simulating future urban land-use at the mesoscale based on a relatively coarse spatial 

resolution is perfectly suitable for analyzing the influence of future urbanization on climate itself 

and on hydrology, it fails to capture the influence of small-scale urban layouts on inundation 

characteristics. Another aim of P3 is to clarify how flood is influenced by the characteristics of 

urban layout parameters such as road width, building setbacks, etc. Chapter 6 provides guidelines 

for designing flood-sensitive urban layouts in the future urban areas which were simulated within 

P2. In chapter 6, a large set of alternate urban layouts was generated randomly using an urban 

procedural model. This model provides the shape of roads, parcels, and buildings with their 

geometry, over a square area of 1 km². Steady 2-D hydraulic computations were performed for 

the generated layouts with identical hydraulic conditions. Based on the computed hydraulics, a 

regression analysis is performed to outline the most influential layout parameters. 

Chapters 5 and 6 are based on a close collaboration with Martin Bruwier, a PhD student in the ARC 

FloodLand research project. The hydraulic models, used in this research, were developed and 

operated by Martin Bruwier. Finally, chapter 7 draws general conclusions and proposing future 

possible research lines.  

The thesis is made up of a series of articles that have been published/submitted to peer-reviewed 

journals. For this reason some overlap may occur between the various chapters.  
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Key findings of the thesis 

 In Wallonia, urban densification processes are mainly driven by local factors, whereas the 

expansion processes are strongly controlled by the zoning plan. 

  Densification mainly occurs in already dense areas and is dominated by self-organization 

dynamics rather than deliberate land-use policies at the regional level.   

 Without appropriate spatial policies, the increase in total flood risk by 2100 would increase 

by a factor of approximately two.  

 The sensitivity of the flood risk to spatial policy (business-as-usual vs. densification) is 

shown to be high. 

 General guidelines to design flood-resilient urban layouts is increasing the fragmentation 

of the urban layout. 

List of publications  

Peer-reviewed journal articles 

Included in the thesis: 

 Chapter 1 is based on:  

1. Mustafa, A., Rompaey, A. V., Cools, M., Saadi, I., & Teller, J. (2018). Addressing the 
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Studies, 0(0), 1-20. 

 Chapter 2 is based on:  

2. Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J. (2018). Modelling 
built-up expansion and densification with multinomial logistic regression, cellular automata 
and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156. 

 Chapter 3 is based on:  

3. Mustafa, A., Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., Dewals, B., & Teller, J. 
(under review). Effects of spatial planning on future flood risks in urban environments. 
Journal of Environmental Management. 

4. Mustafa, A., Cools, M., Saadi, I., & Teller, J. (2017). Coupling agent-based, cellular automata 
and logistic regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69C, 
529–540. 
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Chapter 1: Addressing the Determinants of Urban 

Expansion and Densification 

1.1. Introduction1 

Urban sprawl is increasingly acknowledged as a significant environmental, economic, and 

social challenge in both the USA (Nechyba and Walsh, 2004; Song and Zenou, 2006) and Europe 

(EEA, 2006; Hennig et al., 2015). Accordingly, policies have been developed to curb this 

phenomenon and foster a more efficient use of the land (Danielsen et al., 1999; Grant, 2009). Such 

policies are typically based on a combination of spatial planning with fiscal and economic 

measures, promoting infill development and land recycling. Infill development is expected to 

reduce the consumption of land and thereby lower the pressure on green and agricultural areas 

(Jehling et al., 2016; McConnell and Wiley, 2011). It contributes to fostering urban development 

through the regeneration of vacant land and/or brownfields within cities (Loo et al., 2017) and to 

promoting a more efficient use of available amenities, such as roads, schools, retail areas, and 

public spaces (Burchell et al., 2000; Downs, 2001; Ooi and Le, 2013). Infill development is further 

expected to reduce traffic congestion through a more intensive use of public transport, especially 

when designed in a transit-oriented development perspective (Litman, 2016).  

It should be stressed that infill development is not restricted to the reconversion of brownfields, 

even though it certainly has a role to play in this regard. Infill development is now increasingly 

targeting low- and medium-density urban areas, with significant densification capacities in terms 

of both available land and services. This is especially the case in countries like Belgium, where a 

number of built-up neighborhoods are characterized by low density and some discontinuity with 

historical urban cores (Marique et al., 2013). Indeed, Belgium in general and more specifically 

Wallonia (the southern part of Belgium) are in a remarkable situation within the European context 

with regard to urban sprawl (Dujardin et al., 2012; EEA, 2011a; Thomas et al., 2008). Hennig et al. 

(2015) measured urban sprawl trends for 32 European countries and reported that Belgium is one 

of the countries most affected by sprawl. Belgium is characterized by a mixed spatial planning

1This chapter is based on: Mustafa, A., Rompaey, A. V., Cools, M., Saadi, I., & Teller, J. (2018). Addressing 
the determinants of built-up expansion and densification processes at the regional scale. Urban Studies, 
0(0), 1-20. 
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 style, which combines regulatory with comprehensive planning dimensions (European Union, 

1997). Land allocation is highly controlled by the regional zoning plan (plan de secteur) that covers 

the entire territory of the country. Dating back to the 1970s and 1980s, the zoning plan has long 

contributed to creating urban sprawl, as it dedicates large scattered zones to built-up uses 

throughout the country (Poelmans and Van Rompaey, 2009). Furthermore, the spatial planning 

system in Belgium is characterized by weak vertical relationships between territorial levels (regions 

and municipalities) and weak horizontal relationships between actors at the same territorial level 

(ESPON, 2005). 

The combination of these two elements—the role of an oversized zoning plan and the lack of 

coordination between stakeholders—may somehow hinder infill development, even when land 

recycling and controlling sprawl are explicitly pursued by the spatial development strategies 

adopted in all three regions of the country. 

A better understanding of the mechanisms underlying urban development processes is essential 

to improve the efficiency of the spatial planning system. Spatial models that explore the factors 

that control urban development and/or simulate future expected scenarios may provide valuable 

information in this respect (Poelmans and Van Rompaey, 2009). The objective of this research is 

to compare the controlling factors of urban expansion with densification, which is an essential 

component of spatial policies that aim to tackle urban sprawl (Nabielek, 2012; Tachieva, 2010). 

Our key motivation is to identify potential spatial drivers of low-density development and 

densification. To this end, urban development in Wallonia was analyzed from 1990 to 2010 based 

on datasets derived from cadastral data. A multinomial logistic regression (MNL) model was 

employed to explore the relationship between expansion/densification and a set of 

socioeconomic, geographic, and spatial planning factors. 

The research proceeds as follows. Section 1.2 presents previous work in the domain of land-use 

change models, stressing the need for greater consideration of urban densities within these 

models. Section 1.3 gives details about the study area (Wallonia), the MNL model, and data 

preparation. We report our results and discuss these in Section 1.4, with Section 1.5 presenting 

our conclusions. 

1.2. Previous work on densification 

Aguayo et al. (2007) identified three main elements for land-use change spatial models: (i) 

examining the factors that control the change (e.g. Liu and Ma, 2011; Shu et al., 2014); (ii) 

projecting future scenarios and their potential impacts (e.g. Mustafa et al., 2016; Robinson et al., 

2012); and (iii) evaluating the impacts of different spatial policies on land-use patterns (e.g. Guzy 
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et al., 2008; Jantz et al., 2003). In line with the aims of this study, we focus on exploring the factors 

that control urban development considering both expansion and densification processes. 

A number of studies have aimed at a better understanding of urbanization controlling factors. 

Oueslati et al. (2015) examine the relationship between urban sprawl and a set of controlling 

factors in several European cities. Their results show the significant role that socioeconomic, 

transportation, and environmental factors play in urban sprawl. Li et al. (2013), Nong and Du 

(2011), Shu et al. (2014), and Traore and Watanabe (2017) explore the historical effects of physical, 

socioeconomic, and neighborhood factors on urban expansion in relation to different geographical 

locations. Braimoh and Onishi (2007) identify the factors underlying residential and 

industrial/commercial development in Lagos (Nigeria) between 1984 and 2000. The findings of 

these studies provide important implications for spatial planning. In many studies, the relationship 

between controlling factors and urban development is analyzed with logistic regression (logit) 

models. These studies confirmed that logit models are empirically robust. 

Typically, the identification of potential factors controlling urban expansion is based on expert 

knowledge of the specific study area as well as a literature review (Cammerer et al., 2013). The 

variety of controlling factors introduced in recent urban studies is summarized in Table 1.1. These 

factors can be grouped into five categories: (i) accessibility factors; (ii) topological factors; (iii) 

neighborhood factors; (iv) socioeconomic factors; and (v) planning policies. 

Table 1.1. Controlling factors of urban expansion considered in some recent studies. 

 
Accessibility 
factors 

 
Topological 
factors 

Neighborhood 
factors 

Socio-economic 
factors 

Spatial 
planning 
policies 

Mustafa et al. (2017) ●  ● ● ● ● 

Achmad et al. (2015) ●    ●  

Chen et al. (2014) ●  ●    

Mustafa et al. (2014) ●  ● ● ● ● 

Zhang et al. (2013) ●  ●    

Li et al. (2013) ●  ● ●   

Cammerer et al. (2013) ●  ● ● ●  

Vermeiren et al. (2012) ●  ● ●   

Dubovyk et al. (2011) ●  ● ● ●  

Poelmans and Van 
Rompaey (2010) 

● 
 

●  ● ● 

Batisani and Yarnal (2009) ●  ●  ● ● 

Verburg et al. (2004) ●  ● ● ● ● 

 

Accessibility factors, such as distance to roads, are often taken into consideration in land-use 

change modeling (Aguayo et al., 2007). Herbert and Thomas (1982) claim that sprawl is commonly 

controlled by accessibility factors. A high accessibility level plays a decisive role in decreasing travel 

costs and making far-out land more accessible, resulting in lower-density urban developments. 
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Topological factors, such as elevation, are correlated with the price of urban development. Liu et 

al. (2016) suggest that the construction cost is considerably high for rugged lands. 

Neighborhood factors, such as the proportion of urban land in the neighborhood, are especially 

important because of the fact that urban development can be regarded as a self-organization 

dynamics in which neighboring interaction strongly influences new developments (Poelmans and 

Van Rompaey, 2010). Many developers tend to develop land near to existing built-up areas 

because of the lower development risk for their investment (Rui and Ban, 2010). Socioeconomic 

factors, such as population density and employment potential, are quite often considered as active 

drivers of urbanization (Liu and Ma, 2011). For instance, economic activities may lead to a 

concentration of populations, which increases pressure on housing and housing prices in the 

center. Thus, it could be cheaper to develop land outside urban centers in areas characterized by 

lower density (Christiansen and Loftsgarden, 2011). 

The influence of these controlling factors on urban development is usually measured on regular 

grids composed of square cells of a dimension between 3030 m and 300300 m (e.g. Feng et al., 

2011; Hao et al., 2013; Hu and Lo, 2007; Liu et al., 2008; Vermeiren et al., 2012). Most studies 

assume that urban expansion is a binary process, contrasting two classes of cells, i.e., urban vs 

non-urban cells (e.g., Mustafa et al., 2017; Vermeiren et al., 2012). Such a binary representation 

of urban environment somehow disregards the fuzzy nature of urban boundaries (Ban and 

Ahlqvist, 2009). More importantly, it tends to conceal the potential for further infill development 

within already built-up areas when their present density and level of services allow it. Some studies 

have specifically considered multiple urban densities (Mustafa et al., 2015a, 2016; Xian and Crane, 

2005; Yang, 2010). Considering various levels of densities is necessary to measure the influence of 

controlling factors on densification processes and infill development (Loibl and Toetzer, 2003); this 

is especially important as the factors governing sprawl and infill development may not be identical 

in their nature or their relative importance. Eliciting these differences requires modeling both 

expansion and densification processes. Finally, measuring past densification processes and the 

factors behind these may help to reveal and activate available capacity in already urban areas, 

which is in line with current land recycling policies. 

In sum, a major difference in our approach compared with previous work is that we examine the 

potential of the spatial models to explore the factors behind urban development, considering 

different levels of density and the drivers of infill development. 
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1.3. Material and methods 

1.3.1 Study area 

Wallonia (Figure 1.1) accounts for 55% of the territory of Belgium with a total area of 16,844 

km2 – to give an idea, this area is slightly larger than Northern Ireland in the UK or the US state of 

Connecticut. Its main urban cores are Charleroi, Liège, Mons, and Namur, which are all 

characterized by a historical city center, around which the urban development has expanded. The 

total population of Wallonia in 2010 was 3,498,384 inhabitants, corresponding to one-third of the 

Belgium population (Belgian Federal Government, 2013). The population is mainly concentrated 

in the northern areas, following the nineteenth-century industrial axis, running from east (Liège) 

to west (Mons) (Thomas et al., 2008). North of this axis, urban landscapes are highly influenced by 

the Brussels metropolitan area. Toward the far south of Wallonia, urban development is influenced 

by the presence of the city of Luxembourg (Thomas et al., 2008). Topographically, elevations in the 

region range from sea level to 693 m above sea level. 

Wallonia is characterized by a strong sprawl and the resulting landscape fragmentation (Dujardin 

et al., 2014; EEA, 2011a). Densification strategies are especially important in such a context so as 

to limit the further consumption of land and to better structure existing peri-urban areas 

considering their specificities (De Smet and Teller, 2016). 

1.3.2. Outline of the model 

The built-up density index is calculated per 1 ha (100m 100m) over Wallonia using Belgian 

cadastral data. The range of density values is then subdivided into four classes (non-urban, low-, 

medium-, and high-density urban areas) by means of the natural breaks technique (Jenks and 

Caspall, 1971). To understand the expansion and densification processes, the methodology is 

tailored to identify the controlling factors of (i) expansion of the three density classes vs the non-

urban class, and (ii) transitions from low- and medium-density classes to medium- and high-density 

classes. 
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Figure 1.1: Study area. 

We employ a multinomial logistic regression (MNL) model to examine the relationship between 

expansion/densification and their controlling factors. The MNL model allows for the consideration 

of several classes as the dependent variable (Yn), using a set of independent explanatory variables 

(Xs). When working with MNL models, three kinds of dependent variables should be considered: 

(i) the nominal Y responses; (ii) the categorical responses with natural ordering; and (iii) the nested 

responses when one category is nested in the previous one. In this research, the dependent 

variable for the model is initially treated as categorical under the assumption that the levels of 

dependent status have a natural ordering (i.e., low to high density). To evaluate this assumption, 

the test of the proportional odds assumption is performed. The significance of the chi-squared 

statistic of the test is <0.001, which implies that the assumption of having a natural ordering in the 

dependent variable is violated. We then employ a nested MNL model with two levels: (i) urban vs 

non-urban; and (ii) three urban densities. The inclusive values (IVs) for the two nested levels are 

0.8 and 3.9. Since at least one of the IVs is outside the 0–1 range, we decided not to opt for the 

nested MNL, as the parameter estimates are only consistent with utility maximization for a certain 

value range of the explanatory variables (Ortúzar and Willumsen, 1994). Accordingly, a nominal 

MNL model is adopted for this study. 

The general form of the MNL model can be represented as: 
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where log(kn) is the natural logarithm of class kn vs the reference class k0, X is a set of explanatory 

variables (X1, X2,…, Xv), 𝛼  is the intercept term for class kn vs the reference class, and 𝛽is the 

slopes for the classes (the coefficient vector). Thus, the probabilities of each class can be obtained 

using the following formula: 
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(1.2) 

where ((Pc)ij,Y=kn) is the probability of change from the reference class to class kn occurring in cell 

ij. The MNL model employs the maximum likelihood estimation method to achieve the best-fit sets 

of coefficients for each X. 

The model is performed for two observed periods, 1990–2000 and 2000–2010, using Belgian 

cadastral data. A comparison of the two periods allows the measurement of the stability of the 

role of the different factors over time. The MNL outcomes are a set of coefficients that define the 

contribution of each controlling factor to the urban development, as well as a map of probability 

of being urban for each class, which is generated by plugging the coefficients of the MNL model 

into Equation (1.2). The MNL model assesses overall model performance and the significance of 

individual X variables. The X variables were selected by entry testing based on the significance of 

the score statistic (P-value), which was set to P0.05. Only variables significant at P0.05 on at 

least one class were included in the final MNL model. 

The goodness-of-fit of the model runs was evaluated using the relative operating characteristic 

(ROC) method. The ROC is an excellent method to estimate the quality of a model that predicts 

the occurrence of an event by comparing a probability map depicting the likelihood of change 

occurring and a binary map showing where the changes actually occurred (Hu and Lo, 2007). A 

ROC value of 0.5 means completely random discrimination and 1 means perfect discrimination. 

Dependent variables 

The dependent variables for the MNL model are defined using the cadastral dataset (CAD). 

CAD is a vector dataset representing buildings in two dimensions as polygons, made available by 

the Land Registry Administration of Belgium. CAD provides the construction date for each building. 

This information was used to generate three urban maps for 1990, 2000, and 2010. CAD vector 

data were then rasterized at a very fine cell dimension of 22 m. 
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One of the independent variables, elevation (DEM), is available at 1010 m cell size and therefore 

we should aggregate the rasterized CAD data to at least 1010 m (representing a building of 100 

m). The computational time and resources required to process the 1010 m datasets, about 

400,000,000 cells, are huge. Data aggregation can efficiently reduce the computational resources 

of our model. Still the modifiable areal unit problem (MAUP) should be considered when 

aggregating spatial data (Openshaw, 1984; Openshaw and Taylor, 1979). To examine the effects 

of aggregation in the context of the MAUP, we performed a series of the first-lag autocorrelation 

analyses based on Moran’s I test following Jelinski and Wu (1996). The conceptualization of spatial 

relations is based on King’s (queens) case analysis, which considers a neighborhood window of 

eight cells. As a result of this sensitivity analysis (Figure 1.2), we selected an aggregated cell of 

100100 m, which appears as the best combination between aggregation dimension and Moran’s 

I. Moreover, the 100100 m cell size is commonly used in regional land use models (e.g. Mustafa 

et al., 2017; Poelmans and Van Rompaey, 2010). 

 

Each aggregated cell has a density value that exhibits the number of 22 m cells located within  its 

boundary. This density value will be used as a built-up density index for each aggregated 100100 

m cell. The minimum density value adopted for considering 100100 m cells as built-up is 25. The 

threshold of 25 (representing a building of 100 m²) corresponds to an average-sized residential 

building in Belgium (Tannier and Thomas, 2013). The density value is then used to represent four 

classes: (class-0) non-urban, (class-1) low-density, (class-2) medium-density, and (class-3) high-

density urban. 

The natural breaks classification method was used to set the thresholds that define the different 

classes. This method effectively ensures a high internal homogeneity among classes (Fraile et al., 

2016). The natural breaks method uses the Jenks optimization algorithm (Jenks and Caspall, 1971), 

which identifies breaks by the arrangement of classes that best groups similar values. This is done 

by minimizing the average deviation of each class from its mean and maximizing that average 

deviation from the means of the other classes. Table 1.2 presents the resulting thresholds, which 

define the different densities for the model implementation. The low-density and scattered built-

up landscape of Wallonia resulted in low thresholds for medium and high densities. 
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Figure 1.2: Effects of data 
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from aggregation procedures for 
cadastral dataset. 
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Table 1.2. Range of built-up classes in the number of 22 cells. 
Class Minimum Maximum % of cells in 1990 

Class-0 (non-urban) 0 24 85.13% 

Class-1 (low-density) 25 264  10.69 % 

Class-2 (medium-density) 265  735  3.56 % 

Class-3 (high-density) 736  2500  0.62 % 

 

Urban development controlling factors 

The accessibility factors included in this study are the Euclidian distance to Road1 (highways), 

Road2 (main roads), Road3 (secondary roads), Road4 (local roads), railway stations, large-sized 

Belgian cities (population >90,000), and medium-sized Belgian cities (population 20,000–90,000). 

For the topological factors, slope and elevation are included. Employment rate is considered as a 

socioeconomic factor. The number of existing built-up cells from each density class within a 55 

cell neighborhood is included in this study to consider local interaction effects. The selection of the 

neighborhood size was made because previous studies found that the defined neighborhood using 

all surrounding cells within a radius of one to eight cells can capture the operational range of the 

local processes being modeled (Hu and Lo, 2007; Roy Chowdhury and Maithani, 2014). Table 1.3 

gives the complete list of the selected controlling factors, Xs. All data used in this study are 

represented as a 100100 m raster grid. X variables are measured in different units so we 

standardized all continuous X variables. If some X variables relatively measured the same 

phenomena, strong collinearities would cause an erroneous estimation of the MNL model’s 

parameters. Consequently, a multicollinearity test was examined in the initial stage using variance 

inflation factors (VIF). Montgomery and Runger (2003) recommended that the VIFs should not 

exceed 4.  

X variables may exhibit spatial autocorrelation, which would bias the results of the regression 

analysis (Overmars et al., 2003). To address this issue, logistic regression land-use models are 

commonly calibrated based on a data sampling approach (e.g. Cammerer et al., 2013; Huang et 

al., 2010; Puertas et al., 2014). An alternative solution is the autologistic regression model, which 

considers an autocorrelative term in the regression model. A number of studies have argued that 

autologistic models outperform logistic models (e.g. Lin et al., 2011; Shafizadeh-Moghadam and 

Helbich, 2015). In contrast, some authors (e.g. Dormann, 2007) have reported that the logistic 

regression model tends to outperform the autologistic model in terms of estimation of model 

parameters. However, comparison of both modeling approaches (logistic vs autologistic) is beyond 

the scope of the present research. Our model was calibrated through a data sampling approach, 

which is commonly used in land-use change modeling. The selection of samples is based on 100 

runs of the MNL model with different random samples. The best sample set, evaluated by ROC, 

was then selected. 
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Table 1.3. List of selected urbanization controlling factors. 
Factor  Name Type Unit SD* Source 

X1 Elevation (DEM) Continuous Meter  148.8 Belgian National Geographic 
Institute 

X2 Slope Continuous Percent rise 5.6 Own calculation based on DEM 

X3 Dist. to Road1 Continuous Meter 8264.8 Own calculation based on 
NAVTEQ 2002 map 

X4 Dist. to Road2 Continuous Meter 3740.1 Own calculation based on 
NAVTEQ 2002 map 

X5 Dist. to Road3 Continuous Meter 1419.5 Own calculation based on 
NAVTEQ 2002 map 

X6 Dist. to Road4 Continuous Meter 834.7 Own calculation based on 
NAVTEQ 2002 map 

X7 Dist. to railway 
stations 

Continuous Meter 5690.2 Own calculation based on 
WALPHOT s.a. data 

X8 Dist. to large-sized 
cities 

Continuous Meter 25688.1 Own calculation based on 
WALPHOT s.a. data 

X9 Dist. to med-sized 
cities 

Continuous Meter 12865.4 Own calculation based on 
WALPHOT s.a. data 

X10 Number of class1 
cells within a 5x5 
window 

Continuous Number  4.1 Own calculation based on CAD data 

X11 Number of class2 
cells within a 5x5 
window 

Continuous Number 2.5 Own calculation based on CAD data 

X12 Number of class3 
cells within a 5x5 
window 

Continuous Number 1.1 Own calculation based on CAD data 

X13 Employment rate Continuous Percent 5.3 Own calculation based on Belgian 
statistics 

X14 Zoning Categorical  Binary  0.4 Own calculation based on Wallonia 
authorities data 

* standard deviation 

1.4. Results and discussion 

Figure 1.3 shows the spatial distribution pattern of density classes in 1990. High-density cells 

are concentrated in existing metropolises, whereas medium-density cells tend to be located in 

their surroundings and low-density lands are likely to be found in rural and remote locations. Table 

1.4 summarizes class-to-class transitions from 1990 via 2000 to 2010. It can be seen that the 

transition from non-urban to low-density developments (i.e., class-0 to class-1) largely dominates 

over both periods. However, a progressive trend toward infill development, namely densification 

of urban areas, can also be identified from this table. This trend should be amplified especially in 

the transitions from medium- to high-density developments (i.e., class-2 to class-3) in those areas 

that are best located in terms of accessibility to transport and services. This finding can be related 

to some recent spatial policies. Since 2005, the definition of a new zone to be urbanized in the 

regional zoning plan in Wallonia must be compensated by the downzoning of a similar-sized area 

that was to be urbanized beforehand to a nonurban zone (Prokop et al., 2011). 
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Figure 1.3: Urban density classes in 1990. 

Table 1.4 shows that the transitions from class-1 to class-3 over the study period are marginal. 

Thus, densification is considered as the transitions from class-1 to class-2 and from class-2 to class-

3, whereas expansion is seen as the transitions from class-0 to classes 1–3. The VIF test values 

(<1.59) for all standardized explanatory variables suggest that all X variables can be incorporated 

in the MNL model. 

Table 1.4. The number of cells representing class-to-class changes (% of total changes). 
1990-2000   Class-1 Class-2 Class-3 

Class-0   14675 (60.91%) 1785 (7.41%) 550 (2.28%) 

Class-1   - 6327 (26.26%) 102 (0.42%) 

Class-2   - - 653 (2.71%) 

2000-2010   Class-1 Class-2 Class-3 

Class-0   9665 (58.45%) 1202 (7.27%) 340 (2.06%) 
Class-1   - 4714 (28.51%) 91 (0.55%) 

Class-2   - - 524 (3.17%) 

1.4.1. Urban expansion 

Table 1.5 presents the results of the expansion process, i.e., transitions from non-urban cells 

with a density of 0–24 to cells with urban density classes 1–3. For the relative measurement of the 

contribution of each controlling factor to the expansion process, the odds ratio (OR), which equals 

exp(), is calculated. An OR >1 (coefficients greater than 0) indicates a positive effect, i.e., the 

probability of development increases with an increasing OR of the variable, whereas an OR <1 
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indicates a negative effect. The results indicate that the impact of the different controlling factors 

varies along with density. 

Expansion of all density classes is highly correlated with zoning status (X14), which is in line with 

findings by Poelmans and Van Rompaey (2010). In both periods, the result shows a gradual upward 

trend in the zoning status from low density to high density. For instance, in 1990–2000, the 

expansion of classes 1, 2, and 3 is respectively around 11, 20, and 68 times more likely to be located 

in zones designated for urban use than in zones designated for other land uses. To minimize 

administrative and financial risks, high-density developments are typically located in areas where 

the legally binding plan allows such developments. In contrast, urban developments in areas 

adjacent to urban cores (medium density) such as suburbs do not strictly follow land-use plans. 

The impact of zoning on transitions to low-density classes is lower than the one observed in other 

classes. Such transitions can be considered as remote areas, consisting of scattered buildings (1–3 

buildings/ha), which can sometimes deviate from existing zoning plans, especially in agriculture-

related zones. 

In both periods, elevation (X1) is a positive determinant for low- and medium-density expansions, 

whereas slope (X2) has a remarkable negative effect on all expansion processes, as in Poelmans 

and Van Rompaey (2010), especially on the expansion of medium- and high-density classes. The 

model predicts that a 5.6% rise in slope decreases the odds of expansion by a factor of 0.4 for the 

medium-density class, and by 0.3 and 0.4 for the expansion of the high-density class in 1990–2000 

and 2000–2010, respectively. 

All statistically significant distances to road classes have OR values <1 implying that the closer to 

roads, the higher the expansion probability, as reported in Cammerer et al. (2013), and Poelmans 

and Van Rompaey (2010). Distance to high-speed roads (X3 and X4) has a notable impact on the 

development of high-density areas, although it should be considered that a number of urban cores 

are directly accessible via high-speed roads in Wallonia. Distance to secondary roads (X5) 

contributes to the expansion of different density classes, especially the medium-density class, 

whereas distance to local roads (X6) has a remarkable impact on the expansion of low-density areas 

in both periods, which is what can be expected, as many low-density areas are only accessible via 

local roads. The findings suggest that the new developments of medium- and high-density projects 

are likely to be located near train stations (X7) in 1990–2000 and 2000–2010. 

Interpretation of the contribution of distance to large- and medium-sized cities (X8 and X9) in 

Wallonia indicates a decentralizing and suburbanizing trend over time. In 1990–2000, the impact 

of distance to large-sized cities positively affected high-density expansion. In 2000–2010, the 

distance to large-sized cities had a positive impact on low- and high-density classes. This means 

that the likelihood of low- and high-density developments increased with increasing distance to 
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large-sized cities in both periods. In contrast, distance to medium-sized cities was a negative 

determinant of medium- and high-density expansion in 1990–2000 and remained positive on low-

density expansion in 2000–2010. 

The increasing number of existing low-density cells within a neighborhood of 55 size (X10) reveals 

a strong relationship with low-density expansion: every four low-density neighbors increase low-

density expansion odds by around four times in 1990–2000 and 2000–2010. The probability of 

medium-density expansion is greater by increasing the number of existing low-, medium-, and 

high-density cells (X10, X11, X12), whereas the probability of high-density expansion is greater by 

increasing the number of existing medium- and high-density cells (X11, X12) within a neighborhood. 

Table 2.5. The coefficients () of the MNL model for urban expansion (reference: class-0). Sample size 
16,360. 

 1990-2000  2000-2010 

Factor Coefficients β (Odds Ratio) Coefficients β (Odds Ratio) 

  Class-1 Class-2 Class-3  Class-1 Class-2 Class-3 

Intercept  -1.106 -3.669 -6.402 -1.106 -3.526 -6.288 
X1 0.217* 

(1.242) 
0.129* 
(1.138) 

-0.054 
(0.947) 

0.135* 
(1.144) 

0.154* 
(1.167) 

-0.064 
(0.938) 

X2 -0.218* 
(0.804) 

-0.951* 
(0.386) 

-1.307* 
(0.271) 

-0.234* 
(0.791) 

-0.845* 
(0.429) 

-1.000* 
(0.368) 

X3 -0.058 
(0.944) 

-0.134 
(0.874) 

-0.564* 
(0.569) 

-0.100* 
(0.905) 

-0.261* 
(0.771) 

-1.170* 
(0.310) 

X4 -0.042 
(0.959) 

-0.236* 
(0.790) 

-0.539* 
(0.583) 

0.033 
(1.034) 

-0.251* 
(0.778) 

-0.505* 
(0.603) 

X5 -0.133* 
(0.875) 

-0.334* 
(0.716) 

-0.263* 
(0.769) 

-0.098* 
(0.907) 

-0.252* 
(0.778) 

-0.093 
(0.911) 

X6 -0.214* 
(0.807) 

-0.157* 
(0.855) 

-0.211 
(0.810) 

-0.205* 
(0.814) 

-0.144* 
(0.866) 

-0.026 
(0.975) 

X7 0.017 
(1.017) 

-0.161* 
(0.851) 

-0.301* 
(0.740) 

0.021 
(1.021) 

-0.129* 
(0.879) 

-0.365* 
(0.694) 

X8 0.005 
(1.005) 

-0.059 
(0.942) 

0.186* 
(1.204) 

0.105* 
(1.110) 

0.044 
(1.045) 

0.271* 
(1.311) 

X9 -0.028 
(0.972) 

-0.168* 
(0.845) 

-0.237* 
(0.789) 

0.064* 
(1.066) 

0.002 
(1.002) 

0.126 
(1.134) 

X10 1.286* 
(3.619) 

0.619* 
(1.856) 

0.098 
(1.103) 

1.260* 
(3.524) 

0.512* 
(1.669) 

0.255* 
(1.290) 

X11 0.306* 
(1.358) 

0.433* 
(1.541) 

0.289* 
(1.336) 

0.485* 
(1.623) 

0.709* 
(2.031) 

0.529* 
(1.697) 

X12 0.009 
(1.009) 

0.204* 
(1.227) 

0.287* 
(1.333) 

0.040 
(1.041) 

0.286* 
(1.331) 

0.432* 
(1.541) 

X13 N.S. N.S. N.S. N.S. N.S. N.S. 
X14 2.371* 

(10.705) 
2.974* 
(19.576) 

4.216* 
(67.728) 

2.446* 
(11.539) 

2.967* 
(19.437) 

4.103* 
(60.546) 

ROC 0.903 0.887 0.959 0.906 0.889 0.973 
* Indicate significance at P≤ 0.05 level 
N.S. non-significant at P≤ 0.05 level 
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The lack of significant contribution of employment rate (X13) to the expansion processes indicates 

that it was not a limiting factor of the urban expansion processes, as it was the case in Hu and Lo 

(2007), and Poelmans and Van Rompaey (2010). 

1.4.2. Urban densification 

Urban densification is defined as transitions from low- to medium-density class, as well as 

transitions from medium- to high-density class. As such, it corresponds to infill development. In 

general, the magnitude of the unique effects of land-use policies (zoning) and accessibility factors 

declined along with the densification process. Table 1.6 lists the MNL model’s results of the 

densification process. The slope’s OR values (X2) <1, as in densification processes, signify that the 

process of conversion from lower to higher densities tends to occur in flat areas. The estimated 

coefficients of slope in both periods highlight that slope—the only variable that has a statistically 

significant impact on all urban development processes—continues to play an important role in 

explaining both expansion and densification processes, compared with other variables in our 

model. When considering infill development policies, it could be expected that some variables, 

such as distance to train stations or accessibility to employment areas, would play a more 

significant role in driving urban development, by contributing to reducing home-to-work distances 

and increasing the use of sustainable modes of transport. Our results indicate that in Wallonia this 

is not yet the case; urban development processes continue to be determined by physical factors, 

i.e., low slope areas that are scattered across the entire region.  

Distance to high-speed roads (X3 and X4) negatively contributes to all densification processes. 

Other distance-related factors have no impact except for secondary roads, which contributed to 

the densification of low-density areas in 1990–2000, and distance to large-sized cities, which 

contributed to the densification of low-density areas in 2000–2010. Neighborhood plays a 

significant role in densification processes. In both periods, the odds of conversion of low-density 

lands into medium density are increased by a factor of 1.1 for every four low-density neighbors. 

Each medium-density neighbor increases the odds of low-density densification by ~0.5 times. The 

odds of conversion of medium density into high density are increased by ~1.2 for each high-density 

neighbor. These findings suggest that existing high-density locations will generally experience a 

higher densification rate. Unlike the expansion processes, where the employment rate is not 

significant, the employment rate (X13) contributes positively to the densification of medium-

density areas. However, the contribution of this variable to the densification process is small 

compared with the other variables. The nonsignificant role of employment rate could be explained 

by the fact that many commuters (even car users) can deduct their transport costs from their 

income tax (De Decker, 2008). Together with the density of the road network, this may encourage 

people to choose to live in low-density settlements far from their workplaces. Interestingly, the 
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magnitude of the zoning status effect (X14) on the densification process decreases compared with 

the expansion process. The effect of zoning status on the change from medium- to high-density 

class is not significant. It also shows a moderate effect on the change from low to medium density 

in both periods. 

The ROC values differ between the distinct processes of urban development. The expansion 

process shows a relatively high goodness-of-fit with ROC values of 0.89–0.97. Estimation of the 

potential urban densification process produced many false-positives, which were estimated at 

ROC values of 0.74–0.76. This implies that the densification process is less predictable than the 

urban expansion process, which can be explained by the fact that most of the selected controlling 

factors were not statistically significant. The ROC values for 1990–2000 and 2000–2010 were 

almost identical, indicating that there were no major changes in the urban development trend 

over the study period. 

Table 1.6. The coefficients () of the MNL model for urban densification. 
 1990-2000  2000-2010 
Factor Coefficients β (Odds Ratio) Coefficients β (Odds Ratio) 
 Reference: class-1 

Sample size: 9000 
Reference: class-2 
Sample size: 1000 

Reference: class-1 
Sample size: 9000 

Reference: class-2 
Sample size: 1000 

  Class-2 Class-3  Class-2 Class-3 
Intercept  -1.507 -0.174 -1.547 -0.173 
X1 N.S. N.S. N.S. N.S. 
X2 -0.431 

(0.650) 
-0.256 
(0.774) 

-0.467 
(0.627) 

-0.424 
(0.654) 

X3 -0.106 
(0.900) 

-0.397 
(0.672) 

-0.165 
(0.848) 

N.S. 

X4 -0.091 
(0.913) 

N.S. -0.095 
(0.909) 

-0.282 
(0.754) 

X5 -0.054 
(0.948) 

N.S. N.S. N.S. 

X6 N.S. N.S. N.S. N.S. 
X7 N.S. N.S. N.S. N.S. 
X8 N.S. N.S. 0.059 

(1.061) 
N.S. 

X9 -0.110 
(0.895) 

N.S. N.S. N.S. 

X10 0.089 
(1.093) 

-0.448 
(0.639) 

0.073 
(1.075) 

-0.458 
(0.632) 

X11 0.271 
(1.311) 

N.S. 0.276 
(1.318) 

N.S. 

X12 N.S. 0.183 
(1.201) 

N.S. 0.230 
(1.259) 

X13 N.S. 0.078 
(1.081) 

N.S. 0.195 
(1.216) 

X14 1.123 
(3.074) 

N.S. 1.314 
(3.723) 

N.S. 

ROC 0.738 0.762 0.738 0.757 
* Indicate significance at P≤ 0.05 level 
N.S. non-significant at P≤ 0.05 level 
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1.5. Conclusions 

Using a multinomial logistic regression model, this study explores the relationship between 

urban expansion/densification and their controlling factors. It considers the three classes of urban 

densities of low, medium, and high density. Previous urban expansion models assumed a binary 

process of expansion, i.e., urban vs non-urban. Tables 1.5 and 1.6 show that the assumption of a 

binary approach may lead to inaccurate conclusions as the relative importance of the controlling 

factors typically varies with density, for both expansion and densification processes. 

This study highlights significant factors that control low-density development, which is one of the 

main characteristics of urban sprawl. Spatial planning, road accessibility, and neighborhood 

interactions are important determinants of the low- and medium-density developments in 

Wallonia, Belgium. This finding is in line with those of other studies conducted in other regions of 

the world (e.g. Aguayo et al., 2007; Hu and Lo, 2007). 

Our results indicate that there is a progressive shift from expansion to densification in Wallonia 

even though expansion processes remain very active. The densification processes show a 

nonsignificant relationship with railway stations, which means that infill development does not yet 

follow a transit-oriented development approach that would foster high-density developments 

around train stations. Proximity to medium- and large-sized cities does not appear to be a key 

factor in densification processes, even though it is certainly where infill development is most 

expected in terms of both real estate value and contribution to sustainable development. This 

phenomenon may be related to the fact that densification appears highly correlated with 

neighborhood characteristics, which may conceal the effect of proximity to medium- and large-

sized cities where denser neighborhoods may be expected. 

Our study reveals that infill development is mainly driven by local factors in Wallonia and that 

expansion remains controlled by the zoning plan. In contrast, the influence of zoning on 

densification is not major. Infill development does not obey an official spatial policy adopted at 

the regional level that is articulated along clear sustainability principles. Hence, the impact of 

zoning on expansion and densification appears counterproductive in some respects, which is quite 

unsatisfactory in terms of land-use policy. It should be stressed that zoning documents were drawn 

up in the 1970s and 1980s in Wallonia, well before the current sustainability agenda. Even though 

these documents have been partially revised since then, areas open to urban development remain 

overabundant in some parts of the region. A mechanism for the transfer of development rights 

should be designed to better allocate urban zones to places/nodes where infill development can 

be supported. At the same time, streamlining the modification of land-use plans and planning 

permission procedures in selected areas of the region may provide appropriate support for those 

processes. 
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The results of this study emphasize that the MNL model incorporating various classes of urban 

densities provides useful information for policy makers who want to explore the relationships 

between spatial drivers of infill development. Contrasting the drivers underlying expansion and 

densification processes is essential for designing spatial policies that support improved land 

recycling and infill development. 

1.6. Key contributions 

 The relative importance of the drivers behind urban development typically varies with 

density. 

 One can observe a slight increase of densification processes over time in Wallonia. Still, 

expansion keeps by far the dominant process.  

 Densification processes are mainly driven by self-organization dynamics. It does not follow 

a clear land-use policy following infill development at regional level. 

 Expansion processes are strongly controlled by the zoning plan. 
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Chapter 2: Modelling Urbanization with 

Multinomial Logistic Regression and Cellular 

Automata 

2.1. Introduction1 

Urban development is the most typical form of land-use change. Without policy interventions, 

urban development may cause destructive impacts on the environment, on natural resources and 

on human health (Zhang et al., 2011). Consequently, modelling urbanization is attracting attention 

of scientists, urban planners and politicians alike. Most urban expansion models  (e.g. Han and Jia, 

2016; Liao et al., 2014; Liu et al., 2014; Puertas et al., 2014; Vermeiren et al., 2012) are raster-

based with a coarse cell space ranging from 30 m× 30 m to 300 m × 300 m. Whilst many authors 

advocate a larger grid cell for land-use modelling, for example 100×100m (e.g. Jiang et al., 2007; 

Munshi et al., 2014; Poelmans and Van Rompaey, 2010), land-use cells with these dimensions 

usually comprise a mix of different land-uses (Omrani et al., 2015). For example, a cell classified as 

built-up land may be occupied by 80% built-up surface and 20% arable surface. With increases in 

the spatial resolution of data, researchers have begun to use grid cells as small as 10 m × 10 m, 

such as Berberoğlu et al. (2016) model for Adana city (Turkey). However, the drawback to using 

such a fine resolution is that it requires intensive computational resources to model larger study 

areas such as regions where 100 m × 100 m cell dimensions are commonly used (e.g. Omrani et 

al., 2015; Poelmans and Van Rompaey, 2010). One solution to address the trade-off between 

coarse regular cell spaces and heterogeneity is examining several built-up densities instead of a 

binary classification (i.e. urban/non-urban). Although urban densification processes, transitions 

from low-density to high-density, is critically important for policy makers who are concerned with 

restricting sprawl (Nabielek, 2012; Tachieva, 2010), the literature on urban expansion models 

highlights that many of the models focus only on expansion process (e.g. Poelmans and Van 

Rompaey, 2009; Wang et al., 2013).  However, there are a limited number of studies that consider 

the expansion of several urban densities and/or densification in a variety of ways. Mustafa et al.

1This chapter is based on: Mustafa, A., Heppenstall, A., Omrani, H., Saadi, I., Cools, M., & Teller, J. (2018). 
Modelling built-up expansion and densification with multinomial logistic regression, cellular automata 
and genetic algorithm. Computers, Environment and Urban Systems, 67, 147–156.  
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(2015a), Robinson et al. (2012), Sunde et al. (2014), Xian and Crane (2005), Yang (2010), and Zhang 

et al. (2011) model the expansion of different urban/built-up densities. Crols et al. (2015), Loibl 

and Toetzer (2003) and White et al. (2015, 2012) model the processes of urban expansion as well 

as of densification. They define densification as an increase in population and/or several economic 

sectors density. 

One of the most popular techniques of existing urban expansion models which are employed to 

analyze and/or predict the urban landscape is cellular automata (CA) (e.g. Berberoğlu et al., 2016; 

Feng et al., 2011; Han et al., 2009; Tian et al., 2016; Wang et al., 2013). CA is a dynamic discrete 

space and time bottom-up modelling approach. CA is widely used in urbanization modeling due to 

its simplicity, transparency and powerful capacities for dynamic spatial simulation (Clarke and 

Gaydos, 1998). Aburas et al. (2016) and Santé et al. (2010) reviewed CA urbanization models 

concluding that the CA modelling approach is one of the most appropriate techniques for 

simulating urban landscape. However, key challenges in CA are calibrating the transition rules of 

urban development probability as a function of (i) a series of controlling factors and (ii) spatial 

(neighborhood) characteristics. Early methods for CA calibration are based on trial and error (e.g. 

White and Engelen, 1997) and/or a visual test, to determine the model’s parameters (e.g. Clarke 

et al., 1997; Ward et al., 2000). Recently, a variety of automated methods based on statistics (e.g. 

García et al., 2013), machine learning (e.g. Rienow and Goetzke, 2015), artificial neural networks 

(e.g. Berberoğlu et al., 2016) and search algorithms for optimization such as  genetic algorithms 

(e.g. Al-Ahmadi et al., 2009) and particle swarm optimization (e.g. Feng et al., 2011) have begun to 

be widely employed.  

Validation of CA models is another challenge. A common validation method is based on pixel-by-

pixel location agreement (e.g. Poelmans and Van Rompaey, 2009). This approach cannot 

discriminate between “near-miss” and “far-miss” errors which limits its ability to detect spatial 

patterns (Mustafa et al., 2014). Another approach is based on spatial metrics (Roy Chowdhury and 

Maithani, 2014). Spatial metrics can be potentially misleading, for example, two areas with 

distinctly different infrastructures may show the same spatial index (White and Engelen, 2000).  A 

third method is based on a fuzzy set theory. Fuzzy map comparison provides a method of dealing 

and comparing maps containing a complex mixture of spatial information (Ahmed et al., 2013). It 

takes into account local variations meaning that matches found at shorter distances are given a 

higher agreement. It measures the similarity of a cell in a value between 0 (fully-distinct) and 1 

(fully-identical). Thus, it can easily distinguish areas of minor errors from areas of major errors. 

(van Vliet et al., 2016) present a comprehensive survey of calibration and validation practices in 

land use change modeling. 

This study contributes to research efforts that model urban expansion and densification processes. 

We model the urban expansion (non-urban to one of urban density classes) and densification 
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(lower urban densities to higher ones). The model is based on a hybrid approach which integrates 

logistic regression and CA modelling approaches. It is applied to Wallonia (Belgium) as a case study. 

Belgian cadastral data (CAD) are used to generate three urban land-use maps for the years 1990, 

2000 and 2010. These maps represent four urban classes: non-urban (class-0), low-density (class-

1), medium-density (class-2) and high-density (class-3). Three maps can define one calibration 

interval (1990-2000) and one validation interval (2000-2010). The model considers a set of static 

controlling factors related to accessibility, geo-physical features, policies and socio-economic 

factors. Another important factor is neighborhood interactions because of the fact that 

urbanization can be regarded as a self-organizing system (Poelmans and Van Rompaey, 2010). 

The model’s parameters are calibrated based on a logistic regression model and genetic algorithm. 

The logistic regression is employed to set the parameter of 12 urbanization controlling factors: 

elevation, slope, zoning status, employment rate, richness index and Euclidian distances to 

highways, main roads, secondary roads, local roads, railway stations, large-sized and medium-sized 

Belgian cities. The richness index is calculated as the average income per capita for each 

municipality divided by the average income per capita in Belgium. The dependent variable for the 

logistic regression model represents the changes from class-0 to class-1, class-2 or class-3, the 

changes from class-1 to class-2 and the changes from class-2 to class-3.  

A multi-objective genetic algorithm (MGA) is employed to calibrate the neighborhood interactions 

on a dynamic basis. García et al. (2013) reported that the GA is one of the most robust heuristic 

automated methods to solve optimization problems. A number of studies have used GA to 

calibrate CA models (e.g. Al-Ahmadi et al., 2009; García et al., 2013; Shan et al., 2008). The MGA 

objective function is the maximization of allocation accuracy rates for all urban classes. The 

accuracy rate function is defined as a fuzzy membership function of exponential decay with a 

halving distance of two cells and a neighborhood window of four cells. The accuracy rate function 

is also employed to validate the model. 

2.2. Materials 

2.2.1. Datasets 

The urban maps for 1990, 2000 and 2010 are generated based on the Belgian cadastral 

database (CAD) in a shapefile format. CAD vector data were rasterized at a cell size of 2 m × 2 m. 

The rasterized cells were then aggregated to a 100 m × 100 m raster-grid. The density values were 

calculated for the aggregated cells (100 m²) by counting the smallest cells (2 m²). All aggregated 

cells with density values less than 25 were considered as non-urban cells.  
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Table 2.1. Urban density classes range in number of 2×2 cells (% of 100x100 cell area). 
Class Minimum Maximum 
Class-0 (non-urban) 0 24 (1%) 

Class-1 (low-density) 25 102 (4.1%) 

Class-2 (medium-density) 103  499 (20%) 

Class-3 (high-density) 500  2500 (100%) 

Table 2.2. The number of cells representing class-to-class changes (% of total changes). 
1990-2000  Class-1 Class-2 Class-3 
Class-0  10841 (37.21%) 5153 (17.69%) 1016 (3.49%) 
Class-1  - 10102 (34.67%) 151 (0.52%) 
Class-2  - - 1872 (6.43%) 
2000-2010  Class-1 Class-2 Class-3 
Class-0  7120 (34.99%) 3450 (16.96%) 637 (3.13%) 
Class-1  - 7535 (37.03%) 107 (0.53%) 
Class-2  - - 1497 (7.36%) 

Table 2.3. List of selected urban controlling factors. 
Factor  Name Type Unit 
X1 Elevation (DEM) Continuous Meter  
X2 Slope Continuous Percent rise 
X3 Dist. to Road1 Continuous Meter 
X4 Dist. to Road2 Continuous Meter 
X5 Dist. to Road3 Continuous Meter 
X6 Dist. to Road4 Continuous Meter 
X7 Dist. to railway stations Continuous Meter 
X8 Dist. to large-sized cities Continuous Meter 
X9 Dist. to med-sized cities Continuous Meter 
X10 Employment rate Continuous Percent 
X11 Richness index Continuous Percent 
X12 Zoning Categorical  Binary (0 non-urban, 1 urban)  

All 100 m × 100 m cells have a density index ranging between 0 and 2500.  The density index is 

then used to set four classes: non-urban (class-0), low-density (class-1), medium-density (class-2) 

and high-density (class-3). A geometrical interval classification method is used to set the density 

ranges that define the different classes. This classification method works very well on continuous 

data (Arlinghaus and Kerski, 2013). The resulting density ranges are listed in Table 2.1. Table 2.2 

gives the actual urban transitions over the modeled period for four density classes. The urban 

development causative factors were operationalized to be included in the MNL. Table 2.3 gives 

the selected controlling factors for this study. 
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2.3. Methodology 

This section discusses the main characteristics of the model. The quantity of change during 

calibration (1990-2000) and validation (2000-2010) phases was constrained to the actual quantity 

of new urban lands, Table 2.1, divided evenly by 10 (the number of years). 

2.3.1. The transition rules 

The quantity of change is spatially allocated based on a transition rule which has two 

components. The first component concerned the main urbanization controlling factors as 

determined using MNL. The second component dealt with the neighborhood characteristics 

(section 2.3.1.1). The transition potentials P for a cell ij changing its state from non-urban to one 

of urban densities or low density urban to a higher one at specific time-step is calculated as follows: 

   ij c nij ij
P P P

   (2.1) 

where (Pc)ij is the urbanization probability based on controlling factors, (𝑃 )  is the neighborhood 

effect on the cell ij and σ expresses the relative importance of the neighborhood effect. Figure 2.1 

demonstrates an example of how the final transition potential P matrix is calculated. 

The model selects the top-scoring cells from the built-up transition potentials matrix for each 

density class and changes their state to the appropriate class until meeting the required quantity. 

The transition potential matrices are calibrated for 1990-2000. The calibration results are then 

used to simulate 2000-2010 urban pattern. The simulated map of 2010 is compared against the 

actual 2010 map to validate the model allocation ability (section 2.3.2). 

 

Cell neighborhood calibration  

Neighborhood interactions can also be calibrated in MNL model by including them as part of 

the explanatory variables (e.g. Hu and Lo, 2007; Verburg et al., 2004). However, because MNL 

models are not temporally explicit, they cannot reveal the path-dependent and self-organizing 

development which is typical for urban expansion (Poelmans and Van Rompaey, 2010; Wu, 2002). 

The most common approach to explicitly calibrate the neighborhood interactions on a dynamic 

basis is by using a cellular automata (CA) modelling approach. 

Figure 2.1: An example of urban 
transition potentials matrix (right) 
which equals the square root of 
pairwise multiplication of Pc (left) and 
Pn (middle) matrices. The σ of Pn is 
assumed to be 2. 
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In some studies (e.g. Chen et al., 2014; Poelmans and Van Rompaey, 2009; Wu, 2002) the 

neighborhood is defined as a square region, the Moore neighborhood, around the central cell with 

many square sizes from 3×3 to 11×11. Chen et al. (2014), and Poelmans and Van Rompaey (2009) 

analyzed several square sizes and concluded that the model run with the 3×3 neighborhood 

window produces a land-use pattern that most fits the actual pattern. These studies use a coarse 

cell resolutions. However, it might be different for finer cell resolutions. In this study, a 3×3 

neighborhood window is used to consider neighborhood interactions. The (Pn)ij is calculated 

according to the method proposed by White and Engelen (2000): 

 n kxd kxdij
k x d

P w I 
 

(2.2) 

where wkxd is the weighting parameter assigned to a cell with class k, which represents one of the 

built-up classes listed in Table 2.2, at position x at distance zone d and Ikxd is 1 if a cell in distance d 

is occupied by class k or 0 otherwise. 

Our objective is to define the CA parameters that achieve the best allocation accuracy rate for the 

expansion process (transitions from class-0 to class-1, class-2 and class-3 simultaneously) and for 

the densification process (transitions from class-1 to class-2 and transitions from class-2 to class-

3). In order to automatically calibrate the neighborhood weighting parameters, a multi-objective 

genetic algorithm (MGA) is used for the expansion and a genetic algorithm (GA) is used for the 

densification process. The genetic algorithm is a highly effective algorithm for solving both 

constrained and unconstrained optimization problems that has been inspired by the mechanisms 

of evolution and genetics (Al-Ahmadi et al., 2009; Holland, 1975). MGA attempts to portray a 

trade-off among multiple, possibly conflicting objectives at once. In this research, MGA is a variant 

of a non-dominated sorting genetic algorithm II (NSGA-II) proposed by Deb (2001). NSGA-II favors 

individuals with an elitist strategy and individuals that can help increase the diversity of the 

population (Yijie and Gongzhang, 2008). The output of the MGA is a set of solutions that is also 

known as Pareto front optimized solutions, among which we can select the most preferable 

solution. Pareto front is a set of feasible solutions that are non-dominated to each other but are 

significantly better than the rest of solutions. 

The MGA/GA initializes a random initial population in which many solutions participate in an 

iteration (generation). It then uses stochastic operators to generate new generations and direct a 

searching process based on a fitness function. Each individual in the population corresponds to a 

chromosome made up of a set of genes, where each gene represents one parameter that requires 

calibration. In each generation, every individual in the population is evaluated through a fitness 

function. Once the initial population is generated and evaluated, the parents for the next 

generation are selected by using a tournament procedure based on a relative fitness score. The 
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tournament randomly selects two individuals, and the individual with the highest fitness value 

becomes a parent. Each two parents are combined based on a crossover operator. We proposed 

that the crossover operator generates two children that lie on the line representing both parents 

and inherit at least 70% genes from the parent with the better fitness value. Once the new 

generation is obtained, each child is then perturbed in its vicinity by a mutation operator that adds 

a small random number to each gene.  

This study tries to achieve a proper balance between exploration and exploitation ability of the 

MGA/GA. Exploration enables the MGA/GA to explore a broader search space, while exploitation 

enables MGA/GA to focus on one direction which is an optimal solution or close to it (Hansheng 

and Lishan, 1999). The mutation operator is used to provide exploration ability whereas the 

crossover operator is used to lead the population to the global optimal solution so far. In our case, 

the mutation operator selects a random number from a Gaussian distribution with a center of zero 

and a standard deviation of 2 at the first generation. This standard deviation is shrunk to 0 linearly 

as the last generation is reached. Consequently, the MGA/GA explores much more search space 

at the beginning of the optimization process and ensures the convergence of the population 

towards the global optimal solution by the end of the process. 

MGA/GA is initialized with a random population. Stochastic operators are applied to this 

population and a large number of generations evolved to obtain a favorable solution. Each 

individual solution takes about 19 seconds in case of MGA and 8 seconds in case of GA to be 

evaluated using a good PC (Intel Core i7-4700 CPU @ 2.4GHz) implying that large population and 

generation numbers require considerable time to be processed. To minimize the computing time, 

we implement a two phase MGA/GA. First, the MGA/GA starts with a low number of population 

and generations. Second, the outcome of the first run is used to set the initial population, initial 

range and number of generations. In addition, the first run is used to determine values for the 

crossover and mutation operators. Based on this, a set of 500 generations (300 for expansion, 100 

for densification of class-1 and 100 for densification of class-2) with 500 individuals for each 

generation are used for the final MGA/GA.  

The objective function for the genetic algorithms for the calibration is based on a fuzzy 

membership function, as discussed further below. The parameter values that maximize the 

objective function will be selected as the best calibration outcome. 

2.3.2. Validation 

The ability of the model to locate transitions from non-urban to one of urban densities and 

lower densities to higher densities is validated by comparing the simulated map of 2010 with the 

actual map of 2010. The comparison considers only new urban transitions between 2000 and 2010. 

The fuzziness index of a cell location depends on the cell itself and the cells in its neighborhood. 
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There is no universally agreed extent to which the neighboring cells influence the fuzzy 

representation and a type of decay function among land-use modelers. Although it may be 

advantageous to experiment with different neighboring sizes and decay functions to define the 

best alternative, this experiment is beyond the scope of this research as it would require too much 

space to adequately discuss such analyses. However, a number of authors proposed an 

exponential decay function with a halving distance of two cells and a neighborhood with a four- 

cell radius to evaluate (e.g. Ahmed et al., 2013; Hagen, 2003; Loibl et al., 2007). Likewise, the 

average fuzziness similarity rate used in this research is an exponential decay with a halving 

distance of two cells and a neighborhood with a four-cell neighbor extent and calculated as 

follows:  

     
,

0/2 1/2 /2

0 1
max

,

1/ 2 , 1/ 2 ,......, 1/ 2
k k k

k k sim

d

x x x d
x X

k
k actul

I I I

FSR
X



  




 (2.3) 

where FSRk (0 ≤ FSRk ≤ 100) is the fuzziness similarity rate for class k, 𝐼  is 1 if cell ik in the 

simulated map at zone d (0 ≤ d ≤ 4) has the similar land-use class to one cell at zone d in the 

observed map otherwise is 0, Xk,sim equals the change amount of class k in the simulated map and 

Xk,obsr equals the change amount of class k in the observed map. The FSR is also employed as the 

objective function for MGA/GA. 

2.4. Results and discussion 

In this section, the urban landscape resulted from classification of CAD data, the calibration 

results and the validation of the model are discussed. In general, the urban landscape visible in 

Wallonia resembles the classical urban pattern from across a wide range of regions worldwide (e.g. 

Kumar et al., 2012). A high level of built-up density was found in the major urban cores surrounded 

by medium-density areas. A large majority of low-density lands are likely to be found in scattered 

rural areas and remote locations. Figure 2.1 illustrates different densities for Charleroi and Namur 

metropolitan areas as an example. 
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Figure 2.1: Urban classes of 2010 for Charleroi and Namur metropolitan areas. 

Variance inflation factors test, with values of less than 1.33, shows no problems with 

multicollinearity suggesting that all causative factors can be incorporated in the MNL model. The 

MNL parameter sets calibrated in the 1990–2000 are shown in Figure 2.2.  

The GA optimization module for the densification of class-1 and class-2 began to converge when 

reaching iteration 56 and 50 respectively (Figure 2.3). After  228  iterations,  average  change  in  

the  spread  of  Pareto  solutions for MGA was less than 0.00001. The MGA/GA optimal weighting 

values that define neighborhood interactions are given in Figure 2.4 (a, b and c). The calibration 

shows that the likelihood of low-density expansion is highly increased by increasing the number of 

existing low-density and medium-density lands and decreasing the number of high-density lands 

in the immediate neighborhood of the cell. The probability of medium-density expansion is 

increased with increasing number of all land-uses, especially medium-density cells. This study finds 

a positive relationship between expansion of high-density and the number of existing high-density 

cells in the neighborhood of the cell. In contrast, the expansion of high-density lands is negatively 

impacted by increasing the number of non-built-up, low and medium-density lands. 

The probability of low to medium-density urban transitions is positively linked with the existing 

non-urban, low and medium-density urban neighbors and negatively linked with high-density 

neighbors, whereas the densification of medium-density areas is negatively related to the 

increasing number of non-urban and low-density cells and positively related to the increasing the 

number of high-density cells in the neighborhood of the cell.  Together, these findings suggest that 

existing residents of low and medium-density areas tend to protest dense developments near their 

homes, whereas most new densified areas are located within or close to already high-density 

neighbors. This causes a highly fragmented and low-density urban landscape. One of the main 
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factors leading to this situation is the spatial planning policy (Dieleman and Wegener, 2004; 

Poelmans and Van Rompaey, 2009). 

The ROC values of the MNL outcomes are 0.81, 0.85, 0.94, 0.73 and 0.72 for class-0 to class-1, 

class-0 to class-2, class-0 to class-3, class-1 to class-2 and class-2 to class-3 respectively. ROC values 

higher than 0.70 are considered as a reasonable fit and the estimates can be used in further 

analyses (Cammerer et al., 2013; Jr and Lemeshow, 2004). 

The calibration and validation of allocation accuracy rates are given in Figure 2.4 (d). The relative 

importance of the neighborhood effect (σ) parameter is calibrated using MGA. The MGA of σ 

converges when reaching iteration 35 for expansion process, 27 and 24 respectively for 

densification of class-1 and class-2. The value of parameter σ shows neutral effect, i.e. equals 1, 

on the expansion of class-2, class-3 and the densification of class-2. For the expansion and 

densification of low-density class the values of σ are 1.97 and 0.53 respectively. 

The calibration accuracy rates are larger than the validation rate. The possible source of this 

variation is potentially due to the uncertainty associated with the future values of modeling 

parameters. Most CA models (e.g. Al-Ahmadi et al., 2009; García et al., 2013) introduced a 

stochastic disturbance term to represent unknown errors and uncertainty. The extension of this 

study necessitates a more comprehensive framework that explicitly models uncertainty related to 

future values of the model’s parameters. 

The fuzziness similarity rates for the major metropolitan area (Liege), as an example, are shown in 

Figure 2.5. This figure demonstrates a majority of allocated cells has a high FSR. Table 2.4 lists the 

number of allocated cells in each FSR class. According to Table 2.4, the model spatially allocates 

more than 75% and 70%, in 1990-2000 and 2000-2010 respectively, of new cells in the right 

location or in the immediate neighbor. 
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Figure 2.2: The MNL 
parameters coefficients 
for 1990-2000.  
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Figure 2.3: The convergence of the fitness score during the GA optimization. 

 
Figure 2.4: Weighting values that define neighborhood parameters values for (a) transitions from class-0 to 
class-1, class-2 and class-3, (b) transitions from class-1 to class-2 and (c) transitions from class-2 to class-3. 
(d) The average fuzzy similarity rates for calibration and validation. 

Table 2.4. The number of allocated new cells with each fuzziness similarity rate (FSR) (% of total changes). 
FSR 1990-2000 2000-2010 

0 2683 (9.21) 3169 (15.58) 
0.25 1038 (3.56) 807 (3.97) 
0.35 1391 (4.77) 975 (4.79) 
0.5 1952 (6.70) 1228 (6.04) 
0.71 17076 (58.61) 11529 (56.66) 
1 4995 (17.14) 2638 (12.97) 
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2.5. Conclusions  

One of the central limitations of most existing urban expansion models is that urbanization is 

considered as a binary process (urban vs non-urban). This research has demonstrated that the 

urban development process is heterogeneous, with links between density and the impact of 

different urban development drivers. We propose an integrated multinomial logistic regression 

(MNL) and cellular automata (CA) model to examine the urbanization trends in Wallonia. The 

urban development considers both expansion and densification. Considering the densification is 

an essential component of sprawl-fighting land-use policies. In this study, urban densities (non-

urban, low-density, medium-density and high-density) for 1990, 2000 and 2010 and geophysical 

and socioeconomic data that are referred to as controlling factors were gathered and processed. 

The MNL allows to automate the calibration of the controlling factors whereas the CA model is 

used to simulate the neighborhood interactions. A multi-objective/genetic algorithm is employed 

to calibrate neighborhood interactions parameters. The calibration is done for urban transitions 

Figure 2.5: The fuzziness 
similarity rate (FSR) for Liege 
metropolitan. 

 1990-2000 

2000-2010 
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between 1990 and 2000. The calibration results are then used to validate the model by simulating 

the 2010 urban pattern and compare it with the actual 2010. The model evaluates the MNL 

outcomes using relative operating characteristic and validates the simulated built-up patterns by 

means of fuzzy set theory. The model reveals a good overall accuracy. However, calibration and 

validation processes provide information on the uncertainties in the model outcomes over time. 

In later work we intend to pursue the analysis further by modelling uncertainty in the future urban 

simulations. Therefore, our model can effectively develop future urbanization scenarios 

considering the uncertainty. 

The neighborhood effect weights imply that the densification occurs in already dense areas 

whereas low-density and medium-density areas tend to retain their densities over time. Public 

authorities clearly should play a role in the development of a more balanced densification policy, 

considering the densification of very accessible (transport, services, etc) low/medium density 

nodes besides a further densification of already dense areas. This is not contradictory with a 

concentration spatial policy provided that low/medium density nodes where densification occurs 

are well connected to city centers (as for instance promoted through transit-oriented 

development).  

Our analysis does not consider building use or height. There are several missing of buildings uses 

and heights within the cadastral data. Consequently, population and employment density indices 

cannot be considered here. However, this study prompts a series of further research questions 

regarding the relation between built-up density and land-use policy, spatial, geophysical, and 

socioeconomic factors. Hopefully this study should provide a useful context for policy makers and 

the ongoing research. 

2.6. Key contributions  

 A multi-objective Genetic Algorithm considering multiple density classes has been 

successfully integrated a CA model to calibrate it. 

 Our CA model allows to predict future land-use considering different urban densities 

according to neighborhood and global factors.   

 It further confirms earlier observations, as densification and sprawl are inherently related 

to previous levels of density at the neighborhood scale. 

 An average fuzziness similarity rate has been implemented and tested for the validation 

of multi-density models. 

 



 

49 

 

 

Chapter 3: An Integrated Cellular Automata and 

Agent-Based Model to Simulate Future 

Urbanization 

3.1. Introduction1 

Urban environment is a complex system, which includes a large number of contradictory 

parameters and several actors (e.g. households, developers, government, etc.). The complexity of 

such a system is well explored in Batty (2008, 2007). Urban expansion model is a tool to gain insight 

into the mechanisms of the urban environment. These models can project the expected future 

demands of urban lands and/or a spatial distribution of these demands. Urban expansion models 

have wide range applications, which expands from global warming (e.g. Haggert, 1995) to response 

to flood risks (e.g. Beckers et al., 2013; Mustafa et al., 2016; Poelmans et al., 2010). 

Several statistical and geospatial approaches have been proposed and developed to model urban 

expansion, including logistic regression models (logit) (e.g. Hu and Lo, 2007; Vermeiren et al., 

2012), cellular automata (CA)  (e.g. Al-Ahmadi et al., 2009; Mitsova et al., 2011) and agent-based 

models (AB) (e.g. Hosseinali et al., 2013; Zhang et al., 2010). Often, the urbanization likelihood of 

a non-urban land is determined by static drivers related to accessibility, geophysical features, 

policies and socio-economic factors. Another important driver is neighborhood interactions  

because of the fact that urbanization can be regarded as a self-organizing system (Poelmans and 

Van Rompaey, 2010). The relative importance of different drivers as determinants of the 

urbanization likelihood can be based on different approaches such as logit and CA.  

Logit models are a common approach to model urban expansion. They predict the outcome of a 

categorical variables using a set of quantitative and/or qualitative predictors. Logit can include 

geophysical as well as socio-economic factors. The model’s ability to include as many factors as 

necessary allows us to better understand the main drivers behind urbanization processes.
1This chapter is based on:  
Mustafa, A., Cools, M., Saadi, I., & Teller, J. (2017). Coupling agent-based, cellular automata and logistic 
regression into a hybrid urban expansion model (HUEM). Land Use Policy, 69C, 529–540. 
Mustafa, A., Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., Dewals, B., & Teller, J. (under review) 
Effects of spatial planning on future flood risks in urban environments. Journal of Environmental 
Management. 
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 Neighborhood interactions can also be captured in Logit models by including them as part of the 

explanatory variables as in Hu and Lo (2007) and Verburg et al. (2004). However, because logit 

models are not temporally explicit, they cannot reveal the path-dependent and self-organizing 

development which is typical for urban expansion (Poelmans and Van Rompaey, 2010; Wu, 2002). 

The most well-known approach to calculating the neighborhood interactions on a dynamic basis is 

cellular automata (CA) based model, in which the neighborhood state is updated during each 

simulation step. Cellular models are simple and widely available (Clarke and Gaydos, 1998). 

However, pure CA models focus on the calculation of urbanization transitions by explicitly consider 

the immediate neighbors of each landscape unit, i.e. cell, rather than on the interpretation of 

drivers of urban expansion. Several studies try to overcome this limitation of pure CA models by 

integrating CA with other modeling methods to consider several urbanization drivers. In this 

context, logit and CA are commonly combined to create a so-called ‘CA-logit model’, which 

considers both the urbanization static drivers and the dynamic neighborhood interactions 

(Poelmans and Van Rompaey, 2010).  

One of the clear drawbacks of CA-logit approach is related to the lack of theoretical links between 

the spatial transitions rules and agents within the urban environment and their decisions. Agent-

Based (AB) models offer a way of incorporating the influence of human decision-making on land 

use change by simulating agents as goal-oriented entities capable of responding to their 

environment and interacting with each other. Agents in the model can play a role of individuals or 

groups of people, institutions, etc. They can exhibit different characteristics: they can be 

heterogeneous (e.g. economic state, age, family structure), autonomous (they take their own 

decisions based on prescribed rules and/or analytical functions) and dynamic (they can learn and 

adapt to different conditions) (Valbuena et al., 2008). The agents are commonly grouped into 

homogeneous sets of individuals with comparable characteristics and behaviors. Generally, the 

decision-making criteria of agents require a large amount of data stemming from surveys that 

depict people's choices and utilize experts’ knowledge. In a large study area, such an intensive data 

gathering is limited by the presence of a large number of agents (Valbuena et al., 2008).  In order 

to overcome data limitations, a number of studies used empirical data, such as distance to road 

network, slope etc., to represent agents decision-making for which we have no behavioral 

information (Mustafa et al., 2017a; Robinson et al., 2012). 

In this chapter, we propose an integrated cellular automata and agent-based model (CA-AB), 

inspired by the work of Mustafa et al. (2017a), to allocate the necessary new urban development. 

It considers two development processes: expansion and densification. In addition, this chapter 

compares the performance of MNL-CA model (chapter 2) with the proposed CA-AB model. 
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3.2. Methods 

The model is applied to Wallonia (Belgium). The urban land use maps of 1990, 2000, and 2010 and 

all explanatory factors described in chapter 2 are introduced in CA-AB.  

The model is a 100×100 m² grid-based whereby urbanization are simulated through the interaction 

between several agents (Figure 3.1).  

 

Figure 3.1: The overall framework of CA-AB model. 

The agents are categorized into three groups with different characteristics and goals: developer 

(DevAG), existing resident (ExtAG) and planning permission authority (PPA). At each time step, 

corresponding to one year, a number of DevAGs select locations to develop. The selection of target 

location is a spatial knowledge-based decision that is provided by regional and local attractiveness. 

Regional attractiveness factors are listed in Table 3.1. They are in line with the controlling factors 

presented in chapter 2. 

The relationship between existing residents and developer agents is often conflicting. On the one 

hand, each developer agent tends to build within the existing urban area (densification) or close 

to it in order to benefit from existing services and low risk of his/her investment. On the other 

hand, existing residents usually want to live in low density areas and do not prefer their 

neighborhood to be developed (Rand et al., 2005). In this study, a 3×3 neighborhood window is 

used to represent the DevAGs preferences regarding local attractiveness. 
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Table 3.1. List of regional attractiveness factors. 
Factor  Name 
X1 Elevation (DEM) 
X2 Slope 
X3 Dist. to Road1 
X4 Dist. to Road2 
X5 Dist. to Road3 
X6 Dist. to Road4 
X7 Dist. to railway stations 
X8 Dist. to large-sized cities 
X9 Dist. to med-sized cities 
X10 Employment rate 
X11 Richness index 

Each DevAG determines transition potential from one class to another for a location according to 

the following equation: 

   DevAG c nij ij
UF P P

 
 

(3.1) 

where UFDevAG is the utility function for DevAG, Pc is the regional attractiveness, Pn represents the 

developer agents local attractiveness, and σ is a variable indicates the relative importance of the 

neighborhood preferences. The Pc is determined according to the following equation: 

(𝑃 ) = 𝑎 × 𝑋1 + 𝑏 × 𝑋2 + 𝑐 × 𝑋3 + 𝑑 × 𝑋4 + 𝑒 × 𝑋5 + 𝑓 × 𝑋6 + 𝑔 × 𝑋7

+ ℎ × 𝑋8 + 𝑖 × 𝑋9 + 𝑗 × 𝑋10 + 𝑘 × 𝑋11 
(3.2) 

where aAG to kAG are specific weights assigned to utility function variables listed in Table 3.1. The 

Pn is dynamically computed at each time-step using an embedded CA model according to the 

method proposed by White and Engelen (2000): 

 n kxd kxdij
k x d

P w I 
 

(3.3)

where wkxd is the weighting parameter assigned to a cell with class k, which represents one of the 

urban classes listed in Table 2.2, at position x at distance zone d and Ikxd is 1 if a cell in distance d is 

occupied by class k or 0 otherwise. 

After the respective developer has selected a cell to develop or densify and at which density, it has 

to ask for a development permission from the planning permission authority (PPA). The PPA 

determines to grant the development permission according to two factors: (i) land-use zoning 

regulations, and (ii) the resistance of existing residents against proposed new development. Frist, 

the PPA sets three zones categories: (1) permitted (urban zones), (2) severely restricted (arable 

lands, grasslands, forests, and other classes) and (3) forbidden (water bodies) according to the 

authorized zoning plan. If a cell is located in a permitted or in a forbidden zone, PPA will 
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instantaneously grant or reject the permission respectively. Otherwise, if the cell is located in a 

severely restricted zone, PPA will give permissions for a specific percentage of the change amount 

(allowed rate) each time-step as follows: 

𝑃𝑃𝐴𝑍 =
𝑔𝑟𝑎𝑛𝑡, 𝐷𝑡 ≤ 𝐴𝑅𝑡 
𝑟𝑒𝑗𝑒𝑐𝑡,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.4) 

where PPAZ is the PPA decision on a development proposal for a cell within severely restricted 

zones, Dt is the number of developed cells within severely restricted zones in previous time-steps 

and ARt is the allowed rate. Second, PPA considers the local residents protest as follow: 

𝑃𝑃𝐴𝐷𝑒𝑐 =
𝑔𝑟𝑎𝑛𝑡, 𝐴𝑣𝐷𝑡 ≤ 𝐴𝑐𝐷  
𝑟𝑒𝑗𝑒𝑐𝑡,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.5) 

where PPADec is the PPA final decision, AvDtk average density at time-step t for a 3×3 

neighborhood window in which a density class k occupies ≥ 50 % of the total cells within the 

neighborhood window, and AcDk is the accepted average density value for a neighborhood with a 

density k. 

The model is calibrated with urban development that was observed between 1990 and 2000. The 

calibration results are then used to validate the model with the development between 2000 and 

2010. A genetic algorithm (GA) is employed to calibrate the model parameters (Equations 3.1 to 

3.5). GA is one of the recent automatic calibration methods used to calibrate urban expansion 

models (e.g. Al-Ahmadi et al., 2009; García et al., 2013; Mustafa et al., 2017). In order to set GA 

parameters such as the number of individual in each generation, the number of generations, the 

selection of the parents for each generation, the crossover, and the mutation operators we 

performed a number of empirical experiments on different values of the parameters and selecting 

the best ones.  

The GA objective function is the maximization of allocation accuracy rates for all density classes. 

The accuracy rate function is defined as a fuzzy membership function of exponential decay with a 

halving distance of two cells and a neighborhood window of 4×4 cells, Equation (2.3). 

3.3. Results and discussion 

Figure 3.2 illustrates the spatial distribution of new development across Wallonia. The region 

borders with other countries show a remarkable effect of urbanization in Wallonia especially the 

metropolitan of Lille (France). The development of new low-density overwhelmed Namur 

municipality and the south of Wallonia through the last couple of decades. The 2000-2010 period, 

however, shows lower development of low-density lands in the north of the region. Interestingly, 

the densification of low-density area follows upward trend over the past two decades. The 
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construction of new high-density areas is largely situated in the east of Wallonia. Whereas the 

transitions from medium-density to high-density areas clearly affect the major urban cores. 

Table 3.2 lists the calibration result for the model parameters. In this table, X1 to X11 are the 

calibrated weights for parameters involved in Equation 3.2. X12 to X15 represent the effect of 

urban density class-0, class-1, class-2, and class-3 within the neighborhood, Equation 3.3. X16 is 

the weight assigned to variable σ in Equation 3.1. X17 is the allowed rate ARt in Equation 3.4. X18 

to X20 show the AcD in Equation 3.5, the accepted average density value for a neighborhood with 

a dominant density of class-1, class-2, and class-3 respectively. 

Referring back to the results of the MNL-CA model, chapter 2, the calibration results reveal some 

differences. Generally, the effect of accessibility factors has increased whereas the geophysical 

factors have gone in the opposite direction. The results highlight the role of planning authorities 

in enforcing zoning planning. The calibration of the allowed rate Art shows that some transitions 

from non-urban to low-density (163 ha/year) does not follow the zoning plan. This is also the case 

for the transitions from low-density to medium-density (61 ha/year). Almost all high-dense 

developments are located within urbanizable zones (only 4 ha/year from non-urban, and 7 ha/year 

from medium-density are located outside urbanizable zones). For the rest, the conclusions are in 

line with the findings of chapter 2. 

Performance comparison of MNL-CA and CA-AB models, by means of the average fuzzy similarity 

rates, is given in Table 3.3. The results imply that CA-AB always outperforms MNL-CA. Although 

the performance of CA-AB model is slightly better than MNL-CA in terms of calibration (1990-

2000), the performance assessment in the validation phase (2000-2010) is much higher. This is an 

important result as it implies that CA-AB is more stable than MNL-CA model and therefore CA-AB 

is more robust in terms of future forecasting. Both models extrapolate the calibration results 

(1990-2000) to simulate future land-use (2000-2010). This offers one explanation of why the 

improved performance of the validation period over the calibration one. MNL-CA follows only a 

few rules to change the state of the cells depending on some socioeconomic, geophysical, 

accessibility, policy factors, and neighborhood states. On the other hand, CA-AB relates the 

allocation process to the decisions of several actors: developers, residents, and authorities. The 

latter is seen as an opportunity in MNL-CA by involving zoning plan as a factor in MNL, while it is a 

barrier in CA-AB. 
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Table 3.2. Calibrated weights for the model’s parameters. 
Parameter Class 0 to 1 Class 0 to 2 Class 0 to 3 Class 1 to 2 Class 2 to 3 

Elevation 0.002 0.079 0.005 1.094 0.044 
Slope -0.168 -0.577 -0.111 -0.413 -0.688 
Dist. to Road1 -0.124 -0.886 -0.429 -0.109 -0.307 
Dist. to Road2 -0.017 -0.254 -0.017 -0.578 -0.711 
Dist. to Road3 -0.237 -0.077 -0.003 -0.142 -0.689 
Dist. to Road4 -0.987 -0.004 -0.037 -0.06 -0.219 
Dist. to railway stations 0.071 -0.049 -0.058 -0.372 -0.019 
Dist. to large-sized cities 0.105 -0.083 -0.131 -0.427 -0.397 
Dist. to med-sized cities 0.094 -0.068 -0.001 -0.299 -0.352 
Employment rate 0.759 0.137 -0.005 0.436 0.118 
Richness index 0.046 -0.015 -0.058 0.716 0.033 
Class 0 neighbors 0.009 0.542 0.039 -0.198 -0.443 
Class 1 neighbors 1.192 -0.062 -0.044 1.313 0.128 
Class 2 neighbors 0.912 0.797 -0.039 1.718 0.881 
Class 3 neighbors -0.805 0.773 0.152 -0.383 1.531 
σ (Eq. 3.1) 1.019 1.343 0.772 1.506 1.497 
ARt (Eq. 3.4) 0.152 0.069 0.035 0.057 0.036 
AcD1 (Eq. 3.5) 1.45 1.10 1.45 1.42 1.25 
AcD2 1.95 1.95 1.56 1.95 1.42 
AcD3 2.00 2.20 2.90 2.45 2.63 

Table 3.3. Average fuzziness similarity rate (FSR) for newly urban cells. 
 CA-AB model MLN-CA model 

1990-2000 2000-2010 1990-2000 2000-2010 
Class 0 to 1 0.45 0.39 0.44 0.36 
Class 0 to 2 0.38 0.34 0.33 0.26 
Class 0 to 3 0.36 0.33 0.34 0.27 
Class 1 to 2 0.58 0.48 0.57 0.45 
Class 2 to 3 0.40 0.32 0.38 0.26 

3.4. Conclusions  

This chapter has introduced a coupled cellular automata agent-based model (CA-AB) for 

simulating urbanization processes. Three groups of agents have been defined in the model: 

developers, existing residents, and planning authority. The model has been calibrated using 

empirical data related to geophysical, accessibility, and socioeconomic factors. Furthermore, a CA 

module has been embedded into the model structure for calculating the preferences of developers 

in terms of their local neighbors. By means of fuzziness accuracy, we have compared the 

performance of the proposed model and MNL-CA model presented in chapter 2. The results 

confirm that the CA-AB model outperforms the logit-CA model. Most importantly, the CA-AB 

model is more stable than the logit-CA model over time.   

It is important to keep in mind that the abstraction for the current version of CA-AB is simple, with 

only three agent classes, and thus some key variables may be missed. In addition, the model is 

calibrated using empirical data that essentially provide an abstract representation of the agent’s 

reasoning without any insight into the agent’s behavior changes. Further research should consider 



Chapter 3 

57 

 

including more agent groups and developing more adaptive and learning-oriented agents. In spite 

of these limitations, the major contribution of CA-AB is to provide more flexibility in simulating 

policymaker decisions on the allowed rate of new development outside urbanizable zones and 

dealing with the protest of existing residents against new developments which is not the case in 

the typical logit-CA model. 

3.5. Key contributions 

 A coupled CA-AB model outperforms MNL-CA model. 

 It has been demonstrated that CA-AB is more robust than logit-CA in urbanization 

forecasting. 

 CA-AB allows to simulate and evaluate a broader choice of policy options. It may be used 

to include uncertainty factors in the model, through the behavior rules attributed to 

agents.   
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Chapter 4: Addressing Uncertainty in Land-use 

Change Dynamic 

4.1. Introduction1 

 One of the primary goals of land use change models is to forecast possible future land states. 

Although uncertainty is an inherent feature of any forecast, few land-use change models 

considered uncertainty as a component of the model structure. According to a comprehensive 

review of 114 land use change applications, van Vliet et al. (2016) found that only 17% of the 

reviewed applications addressed uncertainty. Uncertainties may arise from many sources. One 

source relates to the errors in the model’s input data which  were investigated in a number of 

studies (e.g. Tayyebi et al., 2014). The estimation of the future change amount (quantity 

uncertainty), which is usually determined exogenously (Santé et al., 2010), is another source of 

uncertainty. This type of uncertainty was captured in various land-use models by simulating 

different scenarios differ in the quantity of change (e.g. Cammerer et al., 2013; Landuyt et al., 

2016). Another common source of uncertainty is the potential nonstationary character of the 

spatial allocation of land use changes. Generally, land-use models extrapolate allocation 

calibration results to simulate future landscape. Thus, these models implicitly assume that the 

calibrated parameter set is valid for the future and do not consider the nonstationary feature of 

the land-use allocation that is related to the political, economic, and/or environmental conditions 

which are known to be nonstationary (van Vliet et al., 2016). Figure 4.1 depicts the difference 

between quantity uncertainty and allocation uncertainty. Our main focus in the present study is 

related with land-use allocation uncertainty. The uncertainty in the allocation process was 

addressed in many studies by means of fuzziness (e.g. Wang et al., 2013) or randomness (e.g. Yang 

et al., 2008). The randomness, however, ensures that each run can produce a different landscape 

and that some patterns can be proper by chance (Brown et al., 2005; van Vliet et al., 2016). Many 

of the current techniques for embedding allocation uncertainty in land-use change models are 

inspired by introducing a stochastic disturbance (SD) term or a Monte-Carlo Simulation (MC) 

method into the model. Feng (2017), Mustafa et al. (2014), and Yang et al. (2008) introduced an

1This chapter is based on: Mustafa, A., Saadi, I., Cools, M., & Teller, J. (under review). A Time Monte-Carlo 
method for addressing uncertainty in land-use change dynamic. International Journal of Geographical 
Information Science. 
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SD term, proposed by White and Engelen (1993), whereas Li and Liu (2006), Liu et al. (2008a), and 

Wu (2002) used an MC method in their models to consider uncertainty.  

The main contribution of this research is that it introduces an approach to tune uncertainty degree 

over time so that it differentiates the uncertainty degree between the immediate future and the 

distant future. Our approach compares the transition probability from one land-use to another of 

each land unit to a random number as in Wu (2002). Yet, a major differentiation of our work lies 

in generating a uniform random number that is drawn over a dynamic range associated with 

transition probabilities from one state to another and this range is increased over time.  

We incorporate our method in a cellular automata (CA) model to simulate urban expansion in 

Wallonia (Belgium) from 1990 to 2010. After calibrating and validating the model, a comparison of 

the results obtained by our method and by the two most widely used methods, SD and MC, is 

performed. The comparison demonstrates the robustness of our method against SD and MC 

methods. 

This research is structured as follows. In section 4.2, we review SD and MC methods and then 

describe our method. Section 4.3 presents the land-use change model, study area, and data. In 

section 4.4, we show and discuss our results. Finally, section 5 presents our conclusions. 

Figure 4.1. Quantity and allocation uncertainties in land-use change models. 
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4.2. Modeling land use allocation uncertainty  

In this section, we review the SD method proposed by White and Engelen (1993) and the MC 

method proposed by Wu (2002) for incorporating uncertainty into land-use change models. 

Thereafter, we introduce our method, which we refer to as time Monte-Carlo (TMC) method.  

Once the transition probability is computed for each unit in the landscape, the SD term perturbs 

each probability score in its vicinity by a random number that can be calculated as follows (White 

and Engelen, 1993):   

𝑆𝐷 = 1 + (− ln 𝛾)  (4.1) 

where γ is a uniform random number between 0 and 1, and σ is a parameter that allows to 

controlling the magnitude of the SD. When σ is set at 0, the model will behave deterministically. 

In contrast, when σ is set at high positive values, the model will become a random process. 

Introducing an SD term in the transition probabilities may cause a bias in the model outcomes, 

because those cells with very low transition probabilities can also change their state (García et al., 

2011; Wu, 2002). Wu (2002) proposed an alternative method which employs a Monte-Carlo 

Simulation procedure for modeling allocation uncertainty. In this approach, after computing the 

transition probabilities, a cell in the landscape is randomly selected and its probability is compared 

with a random number uniformly distributed between 0 and 1, such that the state of a cell is 

changed if its probability score is greater than the random number. One of the shortcoming of this 

approach is that it does not allow controlling of the degree of randomness. Therefore, Wu (2002) 

transformed the transition probability of each cell by comparing it with the best available 

probability at each time-step, as follows:   

𝑃𝑖′ = 𝑃𝑖 exp [−𝛿(1 − 𝑃𝑖 /max (𝑃 )] (4.2)

where Pi’t is the updated transition probability for cell i at time-step t, Pit is the original probability, 

δ is a dispersion term, and max(Pt) finds the maximum transition probability at time-step t. The 

dispersion term, δ, in Equation (4.2) plays a role equivalent to σ in Equation (4.1). When δ is set at 

high values, this will decrease transition probabilities, in particular for cells with a lower probability 

score, away from the maximum probability at each time-step. Thus, a strong differentiation 

between cells with higher probabilities and for those with lower probabilities is gained, and there 

will be less chance for land-use change of the latter.  

Although the two methods explained above are widely used to model allocation uncertainty in 

land-use change models, none of the methods ensure that the degree of uncertainty is changeable 

over time, which is the case in reality as the distant future involves more uncertainty about the 

economic value of the land, about actual communication means, about social/household 
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preferences etc. All these elements play a key role in land allocation and become less predictable 

in a distant future. The contribution of this research lies in being one of the first attempts to control 

uncertainty degree over time in land-use change models.  

The proposed TMC method uses an MC procedure as in Wu (2002). At each time-step, a cell is 

selected at random and its computed transition probability is compared to a uniform random 

number within a dynamic range. The key difference between the proposed method and the 

method of Wu (2002) is that Wu defines this range between the minimum and maximum 

probabilities, i.e. 0 and 1. We propose that this range varies so as to tune the degree of uncertainty 

over time. At each time-step, the computed transition probabilities are sorted in descending order, 

with the most suitable cell at the top of the list. Typically, the top-scoring cells from the sorted list 

change their state until meet the requested change quantity. In order to consider uncertainty, the 

model randomly selects one cell in a set of cells with best probabilities, the size of which is initially 

determined by the quantity of change and subsequently increased to include more cells. 

Thereafter, the model compares the transition probability of the selected cell with a uniform 

random number and the cell change its state according to the following equation:  

𝑆𝑖 =
𝑐ℎ𝑎𝑛𝑔𝑒,               𝑃𝑖 > 𝑟𝑎𝑛𝑑
𝑛𝑜𝑛 − 𝑐ℎ𝑎𝑛𝑔𝑒,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4.3)

where Sit+1 is the state of the cell i at the next time-step, Pit is the computed transition probability 

at the time-step t, and rand is a uniform random number within a range (randmin 

≤ rand ≤ randmax). We set rand_max and rand_min as follows:  

𝑟𝑎𝑛𝑑 = max(𝑃 ) , 

𝑟𝑎𝑛𝑑 = 𝑡𝑟𝑎𝑛𝑠(𝑞 + (𝑡 × ɸ × 𝑞)) 
(4.4)

where max(Pt) returns the maximum probability at time-step t; and trans(q+(t×ɸ×q)) returns the 

transition probability of a cell during time-step t from the sorted list which it is location determined 

by q, the change quantity pre time-step, and ɸ is a specific percentage of q. Figure 4.2 illustrates 

an example of the method. By doing so, the model behaves deterministically at the beginning and 

slowly turns to behave more and more stochastically as the model operates over time. 

4.3. Land-use change model 

In this study, we apply a grid-based cellular automaton (CA) land-use change model to simulate 

urban expansion in Wallonia (Belgium) between 1990 and 2010. Urban land-use maps of 1990 and 

2000 are used to calibrate the model parameters. The calibrated parameters are then used to 

simulate 2010 urban pattern. We validate our model by comparing the simulated 2010 pattern 

with the observed pattern of 2010. The model has two main modules: the demand module and 
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the allocation module. Our emphasis is not on the quantity uncertainty, but rather on the 

allocation uncertainty and therefore the demand module was fed with the actual quantity of new 

urban divided by 10 (the number of time-steps). 

The allocation module allocates new urban cells based on transition probabilities. Two major 

components shaped the probabilities as in Wu (2002), Poelmans and Van Rompaey (2010), and 

Mustafa et al. (2018). The first is based on a set of urbanization diving forces. The second 

component concerns the dynamic interaction between neighborhood land-uses. The transition 

probability P for cell i at time-step t is computed as follows:  

    (.)
tt

d nPi Pi Pi con    (4.5)

where (Pid) is the urbanization probability based on of urbanization driving forces, (Pin)t is the 

neighborhood interaction, and con(.) is restrictive conditions for land-use change. The (Pid) is 

calculated as:  

Figure 4.2. Example of the TMC method. Assuming that q=8 and ɸ=25%, the model randomly 
selects 8 cells out of 10, 8 cells out of 12, and 8 cells out of 14 in the time-steps 1, 2, and 3 
respectively according to Eq. 3. White: no-change, gray: changes done in the current time-step, 
and black: changes done in the previous time-septs.    
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(𝑃𝑖 ) =
exp(𝛼 + 𝛽 𝜒 + 𝛽 𝜒 + ⋯ + 𝛽 𝜒 )

1 + exp(𝛼 + 𝛽 𝜒 + 𝛽 𝜒 + ⋯ + 𝛽 𝜒 )
 (4.6)

where α is the intercept, (X1, X2, …, Xn) are the land-use change driving forces and (β1, β2, . . ., βn) 

the weights of the driving forces. Logistic regression model (logit) is employed to calibrate the 

weights βn. We consider the same set of driving forces listed in Table 2.3.  

The (Pin)t is calculated as follows  (Feng et al., 2011; Wu, 2002): 

  ( )

1
t

n

count s urban
Pi

n n




 
 (4.7)

where count(s=urban) represents the number of urban cells amongst the Moore n×n 

neighborhood. In each time-step, representing one year, the model converts the non-urban cells 

according to Equation (4.3), until meeting the required change amount.  

4.3.1. Validation 

The validation process involves assessing the goodness of fit of the logit model, and the 

allocation accuracy of the model. The goodness of fit of the logit model is assessed using the 

McFadden pseudo R-square (PR²) and the relative operating characteristic (ROC) procedure 

(Pontius Jr. and Schneider, 2001). The PR² mimics the R-squared statistic of linear regression 

models. A value of 1 shows a perfect fit, whereas a PR² of 0 indicates a random fit. We evaluate 

the allocation performance in terms of both allocation and pattern accuracy. Allocation accuracy 

evaluates the model’s ability to allocate new changes to the proper locations, whereas pattern 

accuracy evaluates the configuration or the structure of the landscape (Hagen-Zanker and 

Martens, 2008). The common approach to assess location accuracy is the spatial overlay which 

depends on the cell to cell location accuracy (e.g. Mustafa et al., 2017a; Wu, 2002). This approach 

cannot differentiate between near-miss and far-miss errors (Mustafa et al., 2014). Pattern 

accuracy is often measured by a set of spatial metrics (Mustafa et al., 2014; Roy Chowdhury and 

Maithani, 2014). Yet, the spatial metrics can show misleading results, for example, two landscapes 

with different patterns may give the same spatial index (White and Engelen, 2000). Some other 

methods of accuracy assessment can differentiate between near and far misses, such as multi-

resolution analysis (Pontius et al., 2004) and a fuzzy similarity method (Hagen, 2003). Although, 

these methods are location accuracy methods, they also can be classified as a measure of pattern 

accuracy as they operate at larger scales than the cell. In this research, we assess the accuracy of 

calibration and validation phases using a fuzzy similarity method. The fuzziness similarity rate (FSR) 

used here is calculated as follows (Hagen, 2003; Mustafa et al., 2018):  
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where FSRk (0 ≤ FSRk ≤ 100) is the fuzziness similarity rate for class k, 𝐼  is 1 if cell ik in the 

simulated map at zone d (0 ≤ d ≤ 4) has the identical land-use class to one cell at zone d in the 

observed map otherwise is 0, Xk,sim equals the change amount of class k in the simulated map and 

Xk,obsr equals the change amount of class k in the observed map. 

4.4. Results and discussion 

In this section, we briefly state the result of the logit calibration and then we turn our attention 

to the allocation uncertainty. The estimated coefficients of the logit model are shown in Table 4.1. 

The PR² of the logit model is 0.295 indicating a good fit (Clark and Hosking, 1986). The transition 

probability map generated by the logit model shows a very good fit with ROC value of 0.833. 

Table 4.1. The logit coefficients. 

Factor  Name Coefficient β 
 Intercept -0.9030 
X1 Elevation (DEM) 0.0623* 
X2 Slope -0.2183* 
X3 Dist. to Road1 -0.0744* 
X4 Dist. to Road 2 -0.0819* 
X5 Dist. to Road 3 -0.2734* 
X6 Dist. to Road 4 -0.5558* 
X7 Dist. to railway stations -0.0042 
X8 Dist. to large-sized cities -0.1351* 
X9 Dist. to med-sized cities -0.1661* 
X10 Employment rate 0.0003 
X11 Richness index -0.0002 
X12 Zoning 3.0348* 

*Significant at a 95% confidence level 

The FSR (fuzziness similarity rate) without randomness for the calibration, simulated 2000 vs actual 

2000, and for the validation, simulated 2010 vs actual 2010, are 48.52 and 39.33 respectively with 

a loss of about 10% between 2000 and 2010. We propose to set ɸ in Equation (4.4) at 1% 

corresponding to the FSR loss per year between 2000 and 2010. In addition, we examine other 

values of ɸ including 2%, 5%, 10%, 50%, 100%, and 200%.  

In order to compare the performance of the TMC with the SD and the MC methods, we examine 

the model performance with respect to each single method. The SD is introduced in the model by 

updating Equation (4.5) as follows:  
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    (.)
tt

d nPi Pi Pi con SD      (4.9)

We use different values of σ, Equation (4.1), to investigate its effect on the model. Regarding the 

MC method, Wu (2002) suggests that the range of δ is usually from 1 to 10. Accordingly, we set δ 

at 1, 2, 4, 6, 8, and 10. With higher values of δ, the model tends to produce a strong skewed 

probabilities which causes the computation time to increase exponentially. For example, when 

setting δ at 20 the cells with original probabilities of 0.9426 and 0.5854 will become 0.5121 and 

0.0002 after implementing Equation (4.2). The computing time with high δ value is large, to give 

an idea, one run using δ=15 is about 1.6 hours, and using δ=20 is about 23.2 hours. Table 4.2 

presents the average computation time per run for each method. We implemented our model in 

MATLAB, running on a desktop computer clocked at 3.60GHz with 32.0 GB RAM. The results 

indicate that the TMC method is significantly faster than the SD and the MC methods. 

Table 4.2. The average run-time per run. 

Method Run time (Seconds) 
Original model (deterministic) 3 
TMC ɸ = 0.01 (1%) 24 
TMC ɸ = 2 (200%) 4 
SD σ = 0.01 34 
SD σ = 2 28 
MC δ = 1 40 
MC δ = 10 271 

Many simulations are required to investigate the properties of the model in the dynamic 

environment of different random noises and thus we run the model 9,500 times (500 runs per 

configuration). The simulated varying FSR for new urban cells is given in Table 4.3. Based on the 

experimental results, introducing the TMC with ɸ = 0.01 in the model slightly improves the average 

FSR. This is also the case for the SD with σ=0.01 and 0.05. Increasing the magnitude of both ɸ and 

σ decreases the average FSR as the model involves more randomness. In contrast, in the MC 

method the average FSR increasing with higher values of δ. This can be explained by the fact that 

δ controls the exponential curve that scales the transition probability and therefore higher values 

of δ cause more skewed curve. As a result, the chance of the cells with higher transition probability 

values to change their state will be higher than other cells. However, the results indicate that it is 

difficult to get comparable results to the model performance without randomness using the MC 

method even with higher values of δ.  

Figure 4.3 illustrates the future urban patterns for 2030 and 2100. The number of new urban cells 

in each time-step, one year, is constrained to the observed quantity of new developed cells 

between 2000 and 2010 divided evenly by 10. 
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Table 4.3. The fuzziness similarity rate for newly urban cells for 9,500 runs. 

  1990-2000 2000-2010 
  Maximum Average  Minimum Maximum Average  Minimum 

 Deterministic model 48.52 - - 39.33 - - 

TM
C 

ɸ = 0.01 48.60 48.53 48.46 39.46 39.35 39.27 
ɸ = 0.02 48.57 48.51 48.43 39.45 39.33 39.23 
ɸ = 0.05 48.57 48.49 48.41 39.43 39.28 39.11 
ɸ = 0.1 48.56 48.47 48.34 39.59 39.31 39.09 
ɸ = 0.5 48.27 48.04 47.77 39.29 39.02 38.64 
ɸ = 1 47.86 47.51 47.16 39.08 38.65 38.17 
ɸ = 2 47.09 46.56 46.25 38.60 38.05 37.58 

SD
 

σ = 0.01 48.59 48.53 48.46 39.38 39.34 39.26 
σ = 0.05 48.62 48.52 48.39 39.47 39.34 39.10 
σ = 0.1 48.56 48.40 48.30 39.49 39.28 39.01 
σ = 0.5 48.13 47.85 47.57 39.17 38.82 38.53 
σ = 1 46.84 46.52 46.23 38.11 37.69 37.10 
σ = 2 42.50 41.98 41.45 34.21 33.49 32.62 

M
C 

δ = 1 36.47 36.05 35.74 28.23 27.55 26.68 
δ = 2 38.60 38.08 37.61 30.48 29.49 28.87 
δ = 4 42.17 41.62 40.93 33.69 33.02 32.35 
δ = 6 44.57 44.13 43.64 36.00 35.49 34.73 
δ = 8 45.91 45.63 45.38 37.59 36.99 36.48 
δ = 10 46.99 46.59 45.95 38.41 37.74 37.22 

Figure 4.3 demonstrates that the MC method cannot produce simulations somewhat similar to the 

ones without considering any randomness. Furthermore, this becomes more difficult with lower 

values of δ. On the contrary, the SD method with very low degree of σ produces simulations similar, 

with marginal differences, to the ones without randomness which can be expected as the model 

tends to evolve to a stable state with lower degrees of σ. By increasing the degree of σ the model 

produces simulations quite different from the ones produced in a deterministic way. From the 

qualitative analysis of Figure 4.3, it is confirmed that the proposed TMC method well inherits the 

randomness in the model. It produces simulations similar to the ones produced without 

randomness at the earlier time-steps and slightly tunes the simulations far from the deterministic-

based simulations over time. One could ask why the SD method is not used since it produces 

comparable results to the TMC method and we can increase the degree of randomness over time 

via σ. One key feature of the TMC method is that it keeps the original transition probabilities which 

is not the case with the SD method. This enables the model to simulate an important land-use 

change process in which the landowners may resort to speculative motives for hoarding land, in 

anticipation of potential development in the future. Consequently, some cells with high transition 

potentials have a great chance of changing their state in the later time-steps. When it comes to 

the magnitude of uncertainty, which controlled by ɸ or σ, Table 4.4 shows that the TMC method 

controls the degree of randomness more efficiently than the SD method.  
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Table 4.4. The new urban cells allocation difference (%) between 500 simulations for each configuration. 

 2030   2100   

 Maximum Average  Minimum Maximum Average  Minimum 

TMC | ɸ = 0.01 1.37 1.21 0.99 5.76 5.38 4.96 
TMC | ɸ = 2 34.45 33.75 32.99 36.55 36.17 35.78 
SD | σ = 0.01 1.35 1.14 0.94 1.05 0.76 0.89 
SD | σ = 2 62.06 61.17 60.18 35.72 35.28 34.79 
MC | δ = 10 38.64 37.99 37.22 31.59 31.16 30.66 
MC | δ = 1 85.70 85.32 84.93 62.44 62.12 61.76 

Table 4.4 gives the results of the allocation differences for the new urban cells between 500 

simulations for each configuration. The main aim of this table is to indicate the dependence of 

model results on the magnitude of the randomness parameter. Surprisingly, the results reveal that 

both SD and MC methods generate landscape patterns for 2100 that are more similar to each other 

than the patterns generated for 2030. This is against expectation because distant future is more 

uncertain than the near ones. In the SD and the MC methods, we have constant change amount 

per time-step whereas the available number of cells that can change their state decreasing with 

increasing the time-steps. If the number of the available cells is fewer, as the case in 2100, the 

opportunity of these cells to be randomly selected during each run is higher. Contrariwise, in the 

TMC method we have a fixed change amount and the number of cells that can change their state 

is increasing with time. As a result, our method is able to increase the randomness magnitude over 

time. 

If the simulations are uniform, a specific number of cells will change their state in most of the 

simulations resulting in lower differences in the allocation process. On the other hand, if the 

simulations are very variable, many cells will change towards another state during each simulation 

and therefore the difference between each simulation is high. It is difficult to forecast and interpret 

the future simulations if the model generates landscape patterns that are highly different from 

each other. With a lower magnitude of randomness, the model generates landscape patterns for 

distant future that are very similar to each other, as in SD with σ = 0.01, such that the future 

simulations can be considered as an extrapolation of the past trends. The TMC with ɸ = 0.01 

method produces patterns with low differences for the near future and higher difference for the 

distant futures. In addition, by 2100, the method is still able to generate patterns that can be 

considered because they are not very different from each other. 

4.5. Conclusions 

We proposed a method, which we refer to as TMC, to introduce randomness in land-use 

change models with a purpose of modeling allocation uncertainty. The method is based on a 

Monte-Carlo simulation in which a cell in the landscape is randomly selected and its transition 
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probability from one state to another is compared with a random number uniformly distributed 

within a dynamic range that increases over time. We compared the proposed method with the 

widely used methods to introduce randomness in land-use change forecasting: Stochastic 

Disturbance, and Monte-Carlo Simulation. The three methods were introduced into a cellular 

automata model that was developed to simulate urban expansion in Wallonia (Belgium) between 

1990 and 2000. 

Our analysis reveals that the TMC produces results comparable with existing methods over the 

short-term validation period (2000-2010). Further on it is capable of tuning uncertainty on longer-

term time horizon. Controlling the degree of randomness over time is an important feature of the 

TMC as the distant future is characterized by more uncertainty than the near future. 

The proposed method assumes that all projections are exposed to the same source of allocation 

uncertainty. Therefore, more research in how to quantify several allocation uncertainty sources 

such as uncertainties related to the model structure, model simplification, and model parameter 

estimates need to be conducted. For example, our model was calibrated and validated with 1990-

2010 data. Throughout this period, there were no major urban transition breaks and the land-use 

dynamics can be regarded as rather consistent over times. By contrast, applying our model over 

the distant past, e.g. 1950-2010 would allow to analyze uncertainties related with major 

development breaks, as for instance the shift from a train-based to a car-based city model in the 

1950ies and 1960ies, the succession of diverging economic cycles or the adoption of legally-binding 

land-use regulation in the late 1970ies. 

4.6. Key contributions 

 Our proposed method, Time Monte-Carlo (TMC), tunes the uncertainty over time. 

 The uncertainty magnitude tends to decrease over time with traditional methods, 

stochastic disturbance and Monte-Carlo Simulation, which is against expectation. 

 Introducing some randomness in land-use change models tends to improve the 

performance of predictions when compared to the purely deterministic predictions, even 

on short-term, e.g. 10 years, time horizons. 
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Figure 4.3. 2030 and 2100 simulations for different 
configurations for Liege metropolitan.  
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PART 3: Impact of Future Urbanization on Floods 
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Chapter 5: Effects of spatial planning on future 

flood risks in urban environments 

5.1. Introduction1 

The magnitude and frequency of floods, particularly river floods, are currently increasing in 

northwest Europe (Moel and Aerts, 2010). Climate change and urban development are key 

elements contributing to increased flood damage (Poelmans et al., 2011). Urbanization increases 

the damage due to flood exposure caused by the increasing population and infrastructure within 

flood-prone zones. In addition, transforming natural surfaces into artificial surfaces causes an 

increase in flooding frequency because of poor infiltration and increased exposure to the elements 

(Huong and Pathirana, 2013). Recent studies have shown different effects of climate change and 

urban development on flood risk. The Intergovernmental Panel on Climate Change claimed, with 

low confidence, that climate change has affected the frequency and magnitude of flooding (IPCC, 

2014). Poelmans et al. (2011) and Beckers et al. (2013) investigated the relative impact of both 

climate change and future urban expansion on floods. Poelmans et al. (2011) found that the 

potential flood-related damage was mainly influenced by urbanization on the floodplains. Similar 

results were obtained by Beckers et al. (2013) in a “dry” climate scenario, while climate change is 

more influential in a “wet” scenario. Hannaford (2015) found that changes in peak flows could not 

be directly attributed to climate change across the United Kingdom. Cammerer et al. (2013) 

analyzed potential changes in future flood exposure because of different land use developments 

and found that the range of potential changes in flood-exposed residential areas varies from no 

further change to 159% increase depending on the spatial planning scenarios.  

Previous studies that coupled urban development scenarios with hydrological models using a 

spatial resolution between 50 m and 100 m (e.g., Beckers et al., 2013; Cammerer et al., 2013; 

Poelmans et al., 2010; Tang et al., 2005) considered only urban expansion processes, i.e., 

transitions from nonurban to urban land use. Such a binary process may fail to estimate the 

damage related to floods properly because it neglects the different densities of urban cells and the 

1This chapter is based on: Mustafa, A., Bruwier, M., Archambeau, P., Erpicum, S., Pirotton, M., Dewals, B., & 
Teller, J. (under review). Effects of spatial planning on future flood risks in urban environments. Journal of 
Environmental Management. 
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variation in density over time. However, spatial planning policies designed to foster infill 

development are now increasingly targeting low- and medium-density urban areas, with 

significant densification capacities in terms of both available land and services.  

This study investigates the possibility of flood damage related to different urban development 

scenarios in Wallonia (Belgium) if there is no further climate change. The main contribution of our 

study is the evaluation of the impacts on flood damages from spatial planning policies that consider 

expansion versus densification processes compared with spatial planning policies oriented 

towards development restrictions in flood-prone zones. 

5.2. Study area 

Wallonia covers an area of 16,844 km2 in southern Belgium (Figure 5.1). Its hydrographic 

network is structured along four hydrographic districts (Meuse, Rhine, Escaut Scheldt or Seine 

basin), 15 hydrographic subbasins and 6,208 so-called PARIS sectors, each of which correspond to 

a river stretch with relatively homogeneous characteristics in the main riverbed and in the 

floodplains. In this study, we only consider the two main districts of Meuse and Escaut, which cover 

73% and 22% of Wallonia, respectively. The areas of most subbasins in the Meuse district are larger 

than in the Escaut district, while the population density is generally lower in the former. The Meuse 

aval subbasin is the largest in Wallonia and the most densely inhabited in the Meuse district. Four 

subbasins in the Meuse district have a population density lower than 100 inhabitant/km², while it 

is higher than 175 inhabitant/km² for all subbasins in the Escaut district (DGO3 2015a, 2015b). The 

Meuse district is mainly covered by agricultural uses and forests while the Escaut district is mainly 

covered by agriculture and built-up uses. In both districts, high flows generally occur in winter and 

low flows in summer, following the rainfall–evaporation regime. 

Table 5.1: Hydrographic sub-basins in Wallonia in the Meuse and Escaut districts and their respective 
main river, area and population density (DGO3/SPW, 2015a, 2015b).  

District Sub-basin Main river Area (km²) Density in 2009 (inh/km2) 

Meuse 

Meuse aval Meuse 1,924  373  
Meuse amont Meuse 1,923  116  
Ourthe Ourthe 1,843  83  
Semois-Chiers Semois 1,759  74  
Sambre Sambre 1,703  361  
Lesse Lesse 1,343  52  
Amblève Amblève 1,077  72  
Vesdre Vesdre 703  305  

Escaut 

Dyle-Gette Dyle and Gette 944  273  
Haine Haine 802  512  
Escaut-Lys Scheldt 766  287  
Dendre Dender 673  175  
Senne Senne 569  372  
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Figure 5.1: Representation of the 4 hydrographic districts and 15 hydrographic sub-basins in the Walloon 
region. 

5.3. Methods 

Our methodology to assess flood damage for different urbanization scenarios consists of three 

main steps. Firstly, urban land-use data for 1990, 2000 and 2010 were generated based on Belgian 

cadastral data (CAD). Secondly, following chapters 3 and 4, the CA-AB is employed to simulate 

future urban land-use (2030, 2050, 2070 and 2100). In order to define the appropriate number of 

urban density classes from hydrological point of view, a sensitivity of the computed flood damage 

to the number of classes is examined. The model focuses on two sources of uncertainties, (i) the 

expected future quantities of changes, and (ii) the developer agents’ behaviors when selecting 

specific land to develop. The first source of uncertainties is often influenced by dynamics that occur 

at large spatial and temporal scales and involving macro-economic and demographic changes 

(Veldkamp and Lambin, 2001). Commonly, the estimates of quantity uncertainty are based on 

simulation of different scenarios according to any assumption of extrapolation of the past quantity 

of changes, population expansion and/or socio-economic transitions (e.g. Cammerer et al., 2013; 

Mustafa et al., 2016; Poelmans et al., 2010). Using linear extrapolations of the observed expansion 

and densification rates between 1990, 2000 and 2010 in Wallonia, three change rates are 

proposed for the future: low-, medium- and high-demand. These scenarios were derived by 

extrapolating respectively the trends between 2000 and 2010 (low), 1990 and 2010 divided by 2 

(medium), and 1990 and 2000 (high-demand). Regarding the parameter weights that define 

developer agents’ behaviors when selecting specific land to develop, we propose to introduce a 

uniform random variable in the model to consider uncertainty due to allocation as proposed in 
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chapter 4. Finally, the Wolf2D hydraulic model (Bruwier et al., 2015; Ernst et al., 2010; Erpicum et 

al., 2010b)  was used to compute inundation extents and water depths for each future urban 

pattern. 

5.3.1. Hydrological characteristics 

The computation of inundation extents and water depths for the generation of flood hazard 

maps in Wallonia was performed for steady flows corresponding to return periods of 25, 50 and 

100 years, using the 2D hydraulic model, WOLF 2D, with a cell size of 5 m × 5 m. 

In this study, we only consider the water depth to determine the flood damage. Flood damage is 

influenced by additional factors such as the flow velocity, the flood duration, transport of 

sediments, and early warning. In this study, however, flow velocity remained low, which is typical 

in floodplains of lowland rivers. Therefore, it has a negligible influence on the damage (Kreibich et 

al., 2009; Pistrika and Jonkman, 2010). We use stage-damage functions, which were developed for 

relatively long-duration floods (Kreibich et al., 2010), which is consistent with the flood events of 

interest in this study. Water depth is widely recognized as the factor with the greatest influence 

on flood damage estimation (Büchele et al., 2006; Merz et al., 2007; Kreibich et al., 2009), whereas 

the specific contribution of additional factors remains incompletely understood and, no generally 

accepted procedure exists for quantifying their influence in large-scale damage modelling as 

undertaken in this study. 

Maps of inundation extents and water depths were computed for several hundreds of kilometers 

of rivers throughout Wallonia (Figure A-1 in the Appendix). In the Escaut district, only a limited 

portion of all sectors was computed, except for the Escaut-Lys subbasin where results are available 

all along the Scheldt river (Escaut). No river was computed in the Haine subbasin. In the Meuse 

district, computations were performed all along the rivers Amblève, Meuse, Ourthe, Sambre, 

Vesdre, and Viroin rivers. In the Lesse and Semois-Chiers subbasins, results are only available for 

some reaches of the Lesse and Semois rivers. 

5.3.2. Flood damage assessment 

Figure 5.2 shows the overview of our workflow. The result is a map giving the spatial 

distribution of direct and tangible flood damage at a mesh-resolution of 5 m × 5 m, representative 

of the resolution of the hydraulic computation. The land-use category of each floodplain cell was 

determined from the land-use map at a resolution of 100 m × 100 m. Only damages related to 

buildings are computed in this study and we do not consider damages related to other land-uses 

like infrastructure, agriculture, and forest.  

The susceptibility of a building to flooding was assessed by a stage-damage function giving the relative 

damage, i.e., the share of the total value of a building that is damaged by the flood, as a function of the water 
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depth. In this study, we used the stage-damage functions for residential and industrial categories defined by 

the FLEMO (Kreibich et al., 2010).  The damage assigned to residential and industrial buildings is split 

between mobile and immobile assets. Figure 5.3 illustrates the single FLEMO stage-damage 

function used for both assets for residential buildings and the two functions for industrial ones. 

The determination of flood damage in monetary value requires the assignment of a specific value 

to the buildings. In our study, the monetary values of residential and industrial buildings were 

chosen so that in the baseline scenario, the estimated flood damages are similar to those 

computed by Beckers et al. (2013) along the Meuse river for a 100-year flood. We used identical 

monetary values for both residential and industrial categories and assume that immobile values 

are four times higher than mobile ones, which respects the ratios proposed by Beckers et al. 

(2013). In Table 5.2, the resulting immobile and mobile values are significantly higher than the 

values used by Beckers et al. (2013). These results were obtained from the type of elements for 

which the monetary values are assigned: i.e., parcels for Beckers et al. (2013) and buildings in this 

study. 

Table 5.2: Prices of the residential and industrial categories. 

 Beckers et al. (2013) The present study 
Element at risk Parcel Building 
 Immobile Mobile Immobile Mobile 
Residential 389 €/m2 119 €/m2 2000 €/m2 500 €/m2 
Industry 343 €/m2 90 €/m2 2000 €/m2 500 €/m2 

The United Nations defines risk as the combination of the probability of an event to occur and its 

negative consequences (UNISDR, 2009). Considering N flood events with a return period Ti and 

causing a damage Di, the risk R was evaluated by Ernst et al. (2010) as the expectation value of 

damage by the following expression: 

 1

1 1

1 1

2

N
i i
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D D
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T T


 

   
   

  
   (5.1) 

 

Equation (5.1) was computed based on the three return periods T25, T50 and T100 without 

extrapolation neither to lower nor to higher return periods for which data are not available 

consistently for all the considered river reaches. As a result, Equation (5.1) gives an indicator of 

the flood risk and not the risk itself since the risk curve should be integrated over the entire range 

of flood probability. This indicator is, however, useful for the determination of the impact of 

urbanization on flood damage with a single scalar value representative of the damage occurring 

in-between the three return periods considered in this study. 
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Figure 5.2: Methodology for the estimation of flood damage. 

Figure 5.3: FLEMO stage-
damage functions for 
residential and industrial land 
use categories. 
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5.3.3. Influence of the number of urban density classes 

The sensitivity of the computed flood damage to the number of density classes is assessed for 

flood discharges Q25 and Q100. We examine 1 to 9 density classes for each land-use category, the 

flood damage Dd computed with d classes of density is compared to the results obtained with the 

highest number of classes, i.e. D9, using the following relative difference Ed: 

 9

9

d
d

D D
E

D


   (5.2) 

The computed flood damages are overestimated by 48% to 105% when a single class of building 

density is used (Figure 5.4). When the number of classes is increased, the value of the computed 

flood damage converges rapidly towards values close to D9, and fluctuates slightly around this 

value. When five classes of densities are used, the relative error remains lower than 5% for the 

two flood discharges Q25 and Q100. Beyond this number of classes, the relative difference Ed does 

not seem to decrease significantly. Therefore, we used five classes of density for each land use category 

(i.e., residential and industrial) using the natural-breaks technique (Jenks and Caspall, 1971). Table 

5.3 gives an estimation of the number of buildings per 100 m × 100 m land assuming that the 

average-sized residential building in Belgium is 100 m²  (Tannier and Thomas, 2013). Table 5.3 

demonstrates that about 80% of built-up land is related to very low-density urban classes (class-1 

and 2), whereas only 5% are highly dense areas in 2010 observed data. This offers a strong 

potential to increase density of the existing urban areas. 

Table 5.3. Urban density classes range in percentage of 100m×100m cell area. 
Class Minimum Maximum Number of cells in observed 2010 (% of 

Wallonia area | % of built-up area) 
Class-0 (non urban) 0 1 1410959 (83.5 | 0) 
Class-1 (lowest-density) 1  5.8  129232 (7.6 | 46.4) 
Class-2 5.8  13.8  91148  (5.4 | 32.7) 
Class-3 13.8  26.1  41447 (2.5 | 14.9) 
Class-4 26.1  48.6  14109 (0.8 | 5.1) 
Class-5 (highest-density) 48.6  100  2847 (0.2 | 1) 

5.3.4. Future urbanization scenarios 

As detailed in Table 5.4, 24 different urbanization scenarios were generated by varying the 

urbanization rate, the spatial policies (densification with/without expansion), and different levels 

of flood management policies. In this respect, we consider three zones represented in the official 

inundation maps (Erpicum et al., 2010a): 

 zones of “low flood hazard”, referred to hereafter as “zone 1”; 
 zones of “medium flood hazard”, referred to hereafter as “zone 2”; 
 zones of “high flood hazard”, referred to hereafter as “zone 3”; 
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Figure 5.4: Sensitivity of the total flood damage computed with different numbers of classes of building 
density, for flood discharges Q25 and Q100.  

The business-as-usual scenario is in line with the recent urban developments. In the densification 

scenarios, we assume that the expansion process is blocked and the required new areas for 

expansion are taken from the next density level. For instance, the expansion from class-0 to class-

1 and class-2 is substituted by densifying the same area from class-1 to class-2. In cases where the 

available area of a specific class is not sufficient to be further densified, the model densifies the 

required expansion area from the next density class. After simulating each density class, the model 

assigns an urban use (residential or industrial) for each cell according to the official zoning plan of 

Wallonia.  

Table 5.4. Urbanization scenarios. 

 
Urbanization rate High  

(1990-2000) 
Medium  
(1990-2010) 

Low  
(2000-2010) Ban on new developments  

Business as 
usual 
 

None BH BM BL 
In zone 3 BHR-3 BMR-3 BLR-3 
In zones 2 and 3 BHR-23 BMR-23 BLR-23 
In all zones BHR-123 BMR-123 BLR-123 

Densification  
 

None DH DM DL 
In zone 3 DHR-2 DMR-2 DLR-2 
In zones 2 and 3 DHR-23 DMR-23 DLR-23 
In all zones DHR-123 DMR-123 DLR-123 
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5.4. Results and discussion  

5.4.1 Future urban land-use  

    The proposed ABM generates a series of future possible urbanization scenarios. The validation 

of the model, simulated 2010 vs observed 2010 map, shows a comparable results to those 

reported in the literature (e.g., Han and Jia, 2016; Long et al., 2013; Wang et al., 2013) with Kappa 

indices of 0.88, 0.87, 0.90, 0.92 and 0.92, for classes 1-5 respectively..  

Table 5.5 lists the actual urban transitions over the modeled period. The table indicates that the 

predominant urbanization processes have been the development of low and medium density 

areas (class-1 and 2). The observed class changes further suggest that transitions from class 1 to 

classes 4 and 5, class 2 to class 5, and class 3 to class 5 over the study period are marginal. 

Therefore, we set the densification as the transitions from class 1 to classes 2 and 3, from class 2 

to classes 3 and 4, from class 3 to class 4, and from class 4 to class 5. 

Figure 5.5 illustrates the simulated maps for 2030 and 2100 considering BH and DH scenarios. In 

business-as-usual scenarios, the development of new low and medium density land are occurring 

continually and therefore Wallonia will experience highly fragmented urban landscape in the 

future. On the other hand, there are sufficient low and medium density urban areas that could 

accommodate future urbanization demands. As mentioned above, we assumed that, in the 

densification only policy, the required new areas for expansion are taken from the next density 

class. If the available area of a specific class is not sufficient to be further densified, the model 

densifies the required expansion and densification area from the next density class. Consequently, 

the area of class-1 and class-2 will decreases over time. Figure 5.6 shows the percentage of change 

for each class comparing with the 2010. 

Table 5.5. Class to class transitions. 

1990-2000  Class-1 Class-2 Class-3 Class-4 Class-5 
Class-0  12548 2753 973 464 211 
Class-1  - 9469 517 71 9 
Class-2  - - 3364 151 8 
Class-3  - - - 820 23 
Class-4  - - - - 130 
2000-2010  Class-1 Class-2 Class-3 Class-4 Class-5 
Class-0  8277 1851 628 289 127 
Class-1  - 7195 320 55 15 
Class-2  - - 2598 116 10 
Class-3  - - - 594 10 
Class-4  - - - - 80 
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2010 observed 
urban land-use 

2030 BH 2030 DH 

2050 BH 2050 DH 

2100 BH 2100 DH 

Figure 5.5: Urbanization 
patterns for 2030, 2050, and 
2100. 

Figure 5.6: Change rate (%) of 
the area of each urban class 
related to its area in 2010. 
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5.4.2. Flood risk  

The uncertainty in the computation of the flood risk indicator resulting from the adopted 

resolution of the land use information (100 m × 100 m) is expected to be significant, particularly 

for moderate events with limited flood extents such as the Q25 flood discharge. Consequently, the 

assessment of the flood risk in absolute monetary values should be interpreted with caution. 

Following Moel and Aerts (2010), we therefore use relative values of flood risk, taken as a 

percentage of a reference risk values (in the baseline scenario) computed with the same 

methodology. 

Distribution of the flood risk between the sub-basins in the baseline scenario 

Figure 5.8 illustrates the relative contributions of different sub-basins to the flood damages 

for the Q25, Q50 and Q100 flood discharges (respectively 445×106 €, 620×106 € and 830×106 €) 

and to the value of the flood risk indicator (18×106 €). For most sub-basins, the relative 

contributions are very similar for the different flood discharges as well as for the flood risk 

indicator. The variations are the highest for the Meuse aval sub-basin in which the contribution to 

the overall flood damages varies between 14% and 20% depending on the considered flood 

discharge. In what follows we only discuss the flood risk indicator since the conclusion can 

reasonably be extended to the flood damages for the three computed flood discharges. 

The results show that: 

 The Meuse amont, Meuse aval and Ourthe sub-basins have the highest contribution to 
the computed flood risk indicator. This is consistent with the high number of sectors 
which are computed in these sub-basins (Figure 5.8).  

 The flood risk indicator in the Vesdre sub-basin is more than twice as high as in the 
Semois-Chiers, Lesse and Amblève sub-basins, despite a smaller sub-basin area and the 
existence of large reservoirs in the upper part of the Vesdre catchment. This is certainly 
related to the population density, which is four to six times higher in the Vesdre sub-
basin than in the other ones. 

 In the Escaut district (Dyle-Gette, Senne, Dendre and Escaut-Lys sub-basins), the 
computed flood risk indicator is the lowest because only a limited number of sectors are 
computed. 
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Figure 5.8: Relative contribution of each sub-basin to the total flood damages at the regional level and to 
the flood risk indicator (R) for the baseline scenario (2010 land-use map). 

Influence of the urbanization scenarios on the magnitude of the total flood risk 

In this section, we compare the influence of the spatial planning policies on the increase in the 

value of the flood risk indicator for the 2050 time horizon compared with the baseline scenario. 

Table 5.5 shows that the increase in the total flood risk indicator ranges between 0% and 44% 

depending on the spatial planning scenario for a high demand rate and between 0% and 22% for 

a low demand rate. Banning new developments in flood-prone zones is by far the most influential 

spatial planning factor. A ban on new developments in flood-prone zone 3 would limit the increase 

in the flood risk indicator to roughly one-third of the values without any ban on new developments. 

Extending the ban to flood prone-zones 2 reduces the increase in flood risk indicator to only 1-2% 

when compared with 2010. Banning new developments in all flood-prone zones leads to no 

increase in flood damages for the computed flood discharges because their maximum inundation 

extents matches the maximum flood-prone zones. The effects of urban development restrictions 

in flood-prone zones on the increase in flood damage are of the same magnitude for both BAU and 

densification strategies. 

In all cases, densification spatial planning policy leads to a higher flood risk indicator compared to 

BAU, especially in the case where no or moderate urban development restrictions are adopted in 

flood-prone zones. This is quite logical because the urban areas where densification may occur are 

predominantly located in valleys in Wallonia, following the pattern inherited from the industrial 

revolution. Without banning new developments or with a regulation in flood-prone zones 3, the 

rise in the flood risk indicator is respectively from 9 to 15 percentage points and from 2 to 

3 percentage points higher in the densification scenario. Basically, this means that densification 

policies designed to curb sprawl should be accompanied by adequate restriction measures in 

flood-prone zones to mitigate the increased flood risk. 
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The influence of uncertainty related to the demand rate is lower than the effect of spatial planning 

policies. However, its impact remains significant because the increase in the flood risk indicator 

for a low urbanization rate scenario without regulation on new developments (with regulation in 

flood-prone zones 3) is 7 to 13 (2 to 3) percentage points lower than that obtained with a high 

demand rate scenario. 

Table 5.5: Increase in the flood risk indicator for the 2050 time horizon based on different urbanization 
scenarios, compared to the baseline scenario (2010). 

 Ban on new developments High urbanization rate Medium urbanization rate Low urbanization rate 

Business as 
usual  

None 29% 27% 22% 
In flood zones 3 9% 8% 7% 
In flood zones 2 and 3 1% 2% 1% 
In all flood zones 0% 0% 0% 

Densification 

None 44% 37% 31% 
In flood zones 3 12% 11% 9% 
In flood zones 2 and 3 2% 2% 2% 
In all flood zones 0% 0% 0% 

Influence of the urbanization scenarios on the distribution of the flood risk 

The flood risk indicator in 2050 is strongly influenced by the spatial planning scenario (Table 

5.5). In this section, we investigate the distribution of the increase in flood risk indicator among 

the subbasins depending on the spatial planning policy. 

Figure 5.9-a indicates that in business-as-usual scenarios (BAU), the urbanization rate impacts 

poorly the distribution of the rise in flood risk between the sub-basin but modifies the magnitude 

of the flood risk. On the contrary, the distribution of flood risk is highly influenced by the spatial 

policies (BAU VS densification scenario). With the densification policy, the changes in flood risk are 

distinctively higher in the Meuse district (sub-basins from Semois-Chiers to Vesdre in Figure 5.9-a) 

than for the BAU scenario, while a reduction is observed in the Escaut district. Figure 5.9-b show 

the relative increase in flood risk for each sub-basin compared with its flood risk in 2010. It is clear 

that in the BAU scenarios, the flood risk in the north-west part of Wallonia is remarkably increased, 

whereas the flood damage is nearly equally increased in most of the sub-basins in the densification 

scenarios.     

In all sub-basins, banning new developments in flood-prone zones 3 (Figure 5.9-c) has a high 

impact on the mitigation of the increase in flood risk (reduction from 4.8×106 € to 1.4×106 € of 

the rise in the flood risk indicator). Extending the ban to flood-prone zones 2 leads to marginal 

rises in flood risk in most sub-basins (rise in flood risk reduced to around 3×105 €). Only for the 

Meuse amont, Meuse aval and Dyle-Gette sub-basins, a significant additional mitigation of the 

flood risk can be obtained by an extension of the ban on new development in flood-prone zones 1 

(roughly a reduction of 2.5×105 € for the rise in flood risk over the three sub-basins). 
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Along the Meuse River, Beckers et al. (2013) evaluated the increase in flood damage due to 

urbanization in-between 1 and 40% for a 100-year flood. In this study, the range of the increases 

in flood damage for Q100 is 0-40% for the BAU scenarios, while a maximum increase by 85% is 

computed for the densification scenario (DH).  

(a)  

(b)  

(c)  

Figure 5.9: Changes in the values of the flood risk indicator in 2050 for each sub-basin compared to (a) the 
total flood risk in the baseline scenario, and (b) the flood damage for the sub-basin in the baseline 
scenario. (c) Changes in the flood risk indicator for each sub-basin compared to the total flood risk in the 
baseline scenario for BAU – Med. Urb. rate. 
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Increase in flood risk for different future time-horizons 

In this section, the increase in flood risk is quantified for the time horizons 2030, 2050, 2070 

and 2100 (Table 5.6) for the six following urbanization scenarios: 

Table 5.6: Increase in the flood risk per decade in Wallonia. 

Scenario Flood risk increase (%) 

BL 5.5 
BH 7.5 
DH 11 
BLR-3 2 
BLR-23 1 
BLR-123 0 

The first three scenarios are representative of the range of variation of the computed flood risk 

indicator without restrictions on urbanization in flood-prone zones. The comparison of the last 

three scenarios with the first enables to assess the effect of restrictions on new developments in 

flood prone-zones. 

The distribution of changes in the flood risk indicator between the different subbasins are slightly 

affected by the time horizon. The variations of the relative contribution of a subbasin to the total 

flood risk indicator at the time horizon 2100 are the highest for the first urbanization scenario (BAU 

with a low urbanization rate and no regulation on new urbanization), in which the maximum 

change of the relative contribution is -4% points (Meuse amont subbasins) while the average 

absolute change is as low as 1.3% points. 

Finally, it is worth mentioning that the coarse resolution, 100 m², of the land use maps and the 

assumption that flow characteristics do not change with urbanization are two limitations of this 

study. Furthermore, it should be stressed that the results of the present research are specific to a 

given territory where existing urban zones are somehow concentrated in flood-prone zones. The 

results may differ in those places where urban settlements did not initially develop along water 

channels. Nonetheless, we believe that the main findings of this research are significantly relevant 

contributions to sustainable flood risk management that pave the way for more flood-proof and 

resilient spatial planning. One of the significantly relevant of the current study for urban planners 

is that a spatial planning policy oriented towards densification without expansion should be 

accompanied by strict restriction measures in flood-prone zones to mitigate exposure to future 

flood risks. 
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5.5. Conclusions 

This research investigated the effects of different spatial planning policies on future flood risks 

in Wallonia (Belgium), for flood discharges corresponding to return periods of 25, 50 and 100 years. 

A number of future urban patterns were generated with a spatial ABM considering several factors. 

This model simulated both urban expansion and densification process. By means of a sensitivity 

analysis, we showed the importance of considering urban density and not just binary data 

(urban/nonurban) in the estimation of flood damage. 

The uncertainty related to the demand for future urban development strongly influenced the 

computed flood damages and on their spatial distribution. Without considering any ban on urban 

development in flood-prone zones, the increase in total flood risk varies by a factor of 

approximately two depending on the urbanization scenario. Quite importantly the sensitivity of 

the computed rise in flood damage to the spatial planning policy (BAU vs. densification) is shown 

to be much higher than to the demand rate. This highlights that spatial policies may have a 

substantial influence on future flood risk, even for a fixed demand rate. 

For the future time horizons 2030 to 2100, the increase in flood risk is expected to be between 

5.5% and 11% per decade compared with the current situation. Banning new developments in 

flood-prone zones would enables a strong reduction of expected increases. They would be reduced 

by a factor of 3 with a ban on new developments in flood-prone zones 3 (high flood hazard) and 

to values lower than 1% with an extension of the ban to other flood-prone zones, regardless of the 

spatial planning policy. 

5.6. Key contributions   

 The estimation of flood damage may be overestimated by 48% to 105% when models do 

not take into consideration urban densities. 

 There is a sufficient area in low and medium urban density classes to accommodate the 

future demand of urban development up to 2100. 

 Without flood management policies, the increase in total flood risk by 2100 varies by a 

factor of approximately two.  

 The sensitivity of the flood risk to the urbanization policy (business-as-usual vs. 

densification) is shown to be high which highlights that the spatial policies may have a 

substantial influence on future flood risk, even for a fixed urbanization rate. 
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Chapter 6: Influence of Urban Layout on Inundation 

Flow in Floodplains of Lowland Rivers 

6.1. Introduction1 

The natural advantages of the floodplain and the trend towards urban densification and 

expansions has fomented that floodplain development continued apace, regardless of potential 

planning policies to control these factors (Moel and Aerts, 2010; White, 2008). Referring back to 

chapter 5, implementing a densification policy at the regional level would mean that many of new 

urban areas should be located within flood-prone areas. Consequently, the potential damage as a 

result of floods will continue to rise. Within this context, digitally-enhanced urban design has the 

potential to construct flood resistant urban layouts. Our approach is concerned with 

accommodating the unavoidability of floods through modifications to urban and architectural 

design. 

Urban layout modeling has shown its research value in understanding, predicting and/or 

controlling effects of shape on many urban concerns such as urban planning (e.g. Vanegas et al., 

2012; Weber et al., 2009), urban vehicular traffic (e.g. Garcia-Dorado et al., 2014; Sewall et al., 

2011), crowd simulation (e.g. Feng et al., 2016), urban weather simulation (e.g. Garcia-Dorado et 

al., 2017) and water/fluid simulations (e.g. Bridson, 2015; Enright et al., 2002). Within this urban 

context, researchers and designers pay a lot of attention to flood mitigation. In this research, we 

establish a link between geometric urban layout design and urban flooding and assist in designing 

improved flood-sensitive cities. Table 6.1 lists some of existing tools simulate either fluid 

simulation or geometric modeling. Our key motivation is to create a procedural generation system 

that automatically generates 3D urban layouts that consider the influence of geometric urban 

characteristics (e.g. road width, orientation, and/or curvature) on flow properties during flood 

water simulations. 

1This chapter is based on:  
Bruwier, M., Mustafa, A., Aliaga, D. G., Archambeau, P., Erpicum, S., ... Dewals, B. (2018). Influence of 
urban pattern on inundation flow in floodplains of lowland rivers. Science of the Total Environment, 622-
623, 446–458.  
Mustafa, A., Wei Zhang, X., Aliaga, D. G., Bruwier, M., Nishida, G., Dewals, B.,  Teller, J. (under review). 
Procedural generation of flood-sensitive urban layouts. Environment and Planning B: Urban Analytics and 
City Science. 
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Table 6.1: Existing computer graphics tools simulate fluid simulation or geometric modeling.   

 Parameter 
Fluid simula on Bridson (2015) 
 Losasso et al. (2004) 
 Enright et al. (2002) 
Geometric modeling Forward procedural modeling 
 Vanegas et al. (2009) 
 Müller et al. (2006) 
 Inverse procedural modeling 
 Demir et al. (2015) 
 Vanegas et al. (2012) 

The urban layout influences the distribution of water discharges between roads as well as the flow 

depths and velocities. In a sense, we explore urban geometric grammars that help reduce flooding: 

i.e. what urban design rules produce passive barrier against natural floods? Our methodology is 

concerned with accommodating the unavoidability of floods by pre-emptive modifications to 

urban design. Designing and evaluating different urban layouts in terms of flood damage requires 

considerable time and resources. Any effort to reduce the design time or required resources is a 

profitable investment.  

In this study, we represent an urban area by dividing it into representative cells, typically 1×1 

kilometers. For each cell, we define a parameterized procedural model that can generate a wide 

range of possible urban layout configurations which mimic actual real-world urban patterns. 

Thereafter, a porosity-based hydraulic model computes the water flow characteristics of a 

proposed urban layout cell.  

6.1.2. Previous work 

Our work builds on flood flow modeling within urban areas as well as forward and inverse 

procedural modeling. Three dimensional models have been employed for assessment and 

visualization of urban flood flow and characteristics. Mioc et al. (2012) used observed data to 

generate 3D city models and integrates it with an inundation model. This integrated model helps 

city managers determine unsafe buildings and infrastructure in case of flooding. Amirebrahimi et 

al. (2016) proposed an integrated framework to measure flood damage to buildings based on a 

detailed 3D building information model. More related to our work is the work proposed by 

Christensen (2016) who introduced a dynamic approach to understanding the effect that natural 

disaster emergencies can generate in urban areas, with a particular emphasis on flooding events 

in residential areas. This approach also enables the end-user to simulate multi-scenarios based on 

different flood or water levels and to evaluate the impact of policy or structural interventions on 

reducing flood damages using an interactive interface. However, the objective disregarded the 

impact of urban layout configurations on flood damage. Lin et al. (2016) and Vollmer et al. (2015) 

investigated the interactions between urbanization and inundation flow for the rehabilitation of 
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Ciliwung River in Jakarta, Indonesia. The inundation extent and water depths were compared 

between different rehabilitation scenarios to identify the most effective one to mitigate floods. 

Since the authors considered rehabilitation scenarios specific to their case study, their conclusions 

are difficult to generalize to other urban areas. Huang et al. (2014) studied the impact of built-up 

coverage on the increase of water depths for a rectangular flume with an array of aligned buildings 

obstructing the flow. They proposed a method to update the Manning's roughness coefficient 

according to the blockage effect of buildings but consider only one urban characteristic (i.e., 

coverage) of an idealized urban network. 

Prior literature on geometric urban modeling for flood-sensitive urban areas has tended to focus 

on architectural design and general site layout recommendations (e.g. Lennon et al., 2014; Watson 

and Adams, 2010; White, 2008). The adaptation measures presented in this literature include 

usage of wet-proofing, construction based on elevated ground, building on stilts, using temporal 

flood defenses, increasing urban green areas and increasing the distance between buildings and 

water bodies (Mustafa et al., 2015b). Existing literature did not make a comprehensive analysis to 

identify the relationship between urban layout parameters and flood damage such as geometrical 

arrangement of road network, parcels, and buildings. Nonetheless, computational approaches 

such as ours can play a distinctive role in urban geometric design and flood damage assessment. 

There are already existing models that enable urban designers to procedurally alter and explore 

urban configurations. An in-depth review of urban procedural modeling can be found in Smelik et 

al. (2014) and Vanegas et al. (2009). Parish and Müller (2001) introduced a system to model cities 

using a procedural approach based on L-systems. Aliaga et al. (2008) proposed an interactive 

example-based approach that synthesizes urban patterns based on procedural modeling and 

image-based modeling. Vanegas et al. (2009) tackled an interdisciplinary research problem which 

considers modelling of behavioral and geometrical aspects of cities interactively. Yang et al. (2013) 

applied an optimized hierarchical splitting method to design urban layout automatically and 

interactively. Vanegas et al. (2012) proposed an inverse procedural system that enables 

interactively editing urban procedural models.  

Compared to previous work, we present a more systematic analysis to determine the respective 

influence of various urban planning characteristics on inundation water depths. We followed a 

three-step procedure. First, we used an urban procedural model to generate 2,000 quasi-realistic 

building layouts by varying randomly the values of 10 urban model parameters: average street 

length, street orientation, street curvature, major and minor street widths, parks coverage, mean 

parcel area and building setbacks (i.e. distance from a building to the parcel borders). 

Second, we computed the inundation flow field for each building layout by considering the same 

hydraulic boundary conditions. To make the hydraulic computation tractable for the 2,000 
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synthetic urban configurations, we used sub-grid models which enable a reduction of the 

computational cost thanks to a coarsening of the computational grid while preserving the essence 

of the detailed topographic information. We opted for an anisotropic porosity model, in which fine 

scale topographic information are preserved at the coarse scale by means of porosity parameters 

involved in the governing equations (Sanders et al., 2008).  

Finally, the influence of urban characteristics on the computed water depths were analyzed based 

on multiple linear regressions (MLR) and on Pearson correlation coefficients. Additionally, a 

conceptual model was developed to investigate the relationships between the inundation water 

depths and district-scale storage and conveyance porosity parameters, evaluated as a combination 

of the urban characteristics. The results show a good predictive capacity of the model based on 

just the two porosity parameters, with a prevailing influence of district-scale conveyance porosity. 

Hence, this model allows for quantifying to which extent flood-related impacts of an increase in 

the building coverage (i.e. new developments) can be mitigated by an appropriately chosen layout 

of the buildings. 

In the present analysis, we decided to keep the terrain slope equal to zero and to consider just one 

steady flooding scenario so as to focus on the influence of the urban planning characteristics. 

Therefore, the conclusions do not apply for floodplains involving steep slopes; but are instead 

representative of floodplains of lowland rivers which are flooded gradually and with moderate 

flow velocity. The steady flow conditions considered here are a valid representation of long 

duration floods (e.g., in lowland rivers such as the Rhine or the Meuse); but not for short duration 

floods in steep rivers nor for flash flood events. 

6.2. Method 

As sketched in the flowchart of Figure 6.1, we setup a three-step methodology to analyze the 

influence of the building layout on inundation flow: 

 first, procedural modelling was used to generate about 2,000 synthetic urban layouts 
considering ten input parameters, including typical street length, width and curvature, 
mean parcel area, setbacks … (section 6.2.1); 

 second, by means of a porosity-based hydraulic model, the flow characteristics were 
computed for each urban layout, considering identical hydraulic boundary conditions 
(section 6.2.2); and 

 finally, based on Pearson correlation coefficients and on multiple linear regression, we 
highlight the sensitivity of inundation flow to the input parameters (section 6.2.3). 
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Figure 6.1: Methodology for the determination of the influence of building layout on inundation 
characteristics. 

6.2.1 Parameterized urban model 

We represent an urban layout using a parameterized procedural model. While cities can 

occupy hundreds of square kilometers (e.g, a typical European city is 180 km² in area (Eurostat, 

2012)), we are only concerned with the part of a city near a river. Since the search space of all 

possible urban patterns is quite large, our procedural tool 1) divides the urban area into grid cells 

and provides design guidelines for each cell, and 2) reduces complexity by generating urban 

layouts based on a few number of rules and parameters (i.e., 12 parameters). Our system also 

enables users to import and export typical GIS data which facilitates migrating the system’s 

outcomes into a wide range of GIS software. 

Generation 

Our procedural generation system is inspired by Parish and Müller (2001), Vanegas et al. (2009) 

and CityEngine (from ESRI). The system first generates roads, then parcels, and finally buildings. 

Roads are divided into a two-level hierarchy (i.e., major and local roads). While Chen et al. (2008) 

requires the user to manually draw some curves as constraints to determine the road network 

patterns, we use several parameters to automatically generate two orthogonal major roads 

outwards from an initial location. The initial radially-outward direction is called the h-direction and 

its perpendicular is called the v-direction. We adapt the tensor field approach Chen et al. (2008) 

as it supports a wide variety of road network patterns. The major roads are used as constraints to 

construct the tensor field. The next step is to take each area surrounded by roads, called a block, 
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and subdivide them into parcels, define parks, decide where to place buildings, and instantiate 3D 

building envelopes. 

Parameters 

Altogether, our procedural model is controlled by a 12 dimensional parameter vector. These 

parameters are selected according to a literature survey of common parameters involved in 

previous studies (e.g. Aliaga et al., 2013; Sarralde et al., 2015; Vanegas et al., 2012). In the 

following, we describe each parameter (Figure 6.2): 

 average road length Ls-- the distance between two adjacent intersec ons, 

 road orienta on α-- orienta on of the ini al radially-outward road rela ve to lower-le  
corner, 

 road curvature X-- rota on of a road segment when it passes through an intersec on, 

 major road width W, and  

 minor roads width w. 

Parcels are defined based on a recursive subdivision of oriented bounding boxes (OBB) fit around 

each city block, as in Vanegas et al. (2012). Parcels are controlled by the following parameters: 

 average parcel area Ap, and 

 percentage of parcels selected as parks Pc. 

Buildings are generated with the following parameters: 

 minimum number of floors Fmin, 

 maximum number of floors Fmax and 

 front Sf, rear Sr, and side Ss building setbacks. 

The variance of the input parameters representative of real-world locations are obtained by 

inspecting the cadastral data for a random sample of 500 sites of 1 km × 1 km of Wallonia 

(Belgium). Table 6.2 lists a summary of these findings.  

By randomly selecting parameter values in their respective ranges of variation, we generated 2,000 

urban layouts, covering each a square area of 1 km × 1 km. In Table 6.2, the minimum value of the 

side setback is 1 m. Therefore, configurations with a free space enclosed within a building (Ss = 0) 

are not considered. However, the findings of this study can be extended to these specific urban 

layouts by increasing the built-up coverage to reproduce the lack of access of the flow to the 

enclosed free-spaces. 
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Table 6.2: Input parameters for the parameterized urban model engine.  
 Parameter Min Value Max Value 
Ls Average street length 40 m 400 m 
α Road orienta on 0° 180° 
X Road curvature 0 rad. 0.42 rad. 
W Major road width 16 m 34 m 
w Minor road width 8 m 16 m 
Pc Park coverage 5% 40% 
Ap Average parcel area 300 m2 1,100 m² 
Sf Building front setback 0 m 5 m 
Sr Building rear setback 0 m 5 m 
Ss Building side setback 0 m 5 m 

Only the building footprints have an influence on the performed hydraulic computations. This 

enables merging some of the parameters listed in Table 6.2. For instance, parameters W (or w) 

and Sf  should not be considered independently. Indeed, urban layouts characterized by distinct 

values of the street width W (or w) and front setback Sf, but with the same value of the sum W + 2 sf 

(or w + 2 sf) would lead to the same distance between the buildings located on either sides of a 

street. This distance should be retained as the parameter which actually controls the flow 

conveyance through this street, instead of W (or w) and Sf independently. Therefore, although the 

parameters listed in Table 6.2 are the real inputs of the procedural system, we performed the 

statistical analysis of the results by considering a slightly modified set of variables (Table 6.3): 

 Parameters W, w and Sf were replaced by just two variables: x4 = W + 2 sf and 
x5 = w + 2 sf. 

 To account for the periodicity in the street orientation resulting from the symmetry of 
the domain and boundary conditions, the orientation parameter α was replaced by 
variable   2 sin 2 45x     (Figure 6.3). 

Road length, 
orientation, 
curvature and width  

Parcel area 

Parks ratio 

Buildings setbacks 

Number of floors  

Figure 6.2: Urban Procedural Parameters 
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 The park coverage Pc was not kept alone; but lumped into an overall built-up coverage 
ratio x9, evaluated as the ratio between the total area of building footprints and the area 
of the whole district (1 km2). Variable x9 is a function of all input parameters. 

 All other variables were each kept equal to one of the original input parameters listed in 
Table 6.2. 

 
Table 6.3: Variables used for the statistical analysis of the modelling results. 

Variable definition Minimum Maximum 

x1 = Ls 40 m 400 m 

  2 sin 2 45x     0 1 

x3 = χ 0 km-1 10 km-1 

x4 = W + 2 sf 18 m 38 m 

x5 = w + 2 sf 10 m 21 m 

x6 = Ap 350 m2 1,100 m2 

x7 = sr 1 m 5 m 

x8 = ss 1 m 5 m 

x9 = f(Ls, α , χ, W, w, Pc, Ap, sr, sf, ss) 0% 43% 

 
Figure 6.3: Relation between variable x2 and street orientation parameter α. 

6.2.2. Porosity-based hydraulic modelling 

In the second step, we applied a hydraulic model to compute the flow characteristics for each 

of the 2,000 building layouts, under the same hydraulic boundary conditions. The terrain was 

assumed horizontal and infiltration in the soil was neglected because it has a limited influence on 

river flooding in urbanized floodplains. 

Model description 

Two-dimensional shallow-water hydraulic models are considered state-of-the-art for the 

simulation of inundation flow in urban areas (Abderrezzak et al., 2009; Ghostine et al., 2015). In 

such model, the buildings are idealized as impervious obstacles sufficiently high for not being 

overtopped by the flood. In general, three approaches can be considered to account for obstacles 
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in inundation modelling (Dottori et al., 2013; Schubert and Sanders, 2012): (i) increasing the 

roughness parameter, (ii) representing the obstacles as holes in the mesh or (iii) using a porosity-

based model. The first one is particularly crude and requires calibration on a case-by-case basis. In 

the second one, each building needs to be explicitly resolved in the computational mesh, which 

makes this approach not suitable to investigate efficiently the 2,000 building layouts. In contrast, 

Schubert and Sanders (2012) showed that porosity-based models lead to the best balance between 

accuracy and run-time efficiency. They enable a coarsening of the mesh size by roughly one order 

of magnitude while preserving a good level of accuracy  (Bruwier et al., 2017a; Kim et al., 2014, 

2015; Özgen et al., 2016b; Schubert and Sanders, 2012). Therefore, we opted here for this third 

option. 

The shallow-water model with porosity used here was described in section 5.2 of Arrault et al. 

(2016) as well as in Bruwier et al. (2017a) and a comprehensive validation is presented in Bruwier 

et al. (2017b). It involves two types of porosity parameters: a storage porosity, defined at the 

center of each cell, represents the void fraction in the cell while anisotropic conveyance porosities, 

defined at the edges of the computational cells, reproduce the blockage effect due to obstacles 

(Chen et al., 2012; Özgen et al., 2016a; Sanders et al., 2008). The values of these porosity 

parameters were determined geometrically from the building footprints. 

The momentum equations involve the same drag loss term as in the formulation of Schubert and 

Sanders (2012). The drag coefficient cD was set to the standard value cD = 3.0. Bottom friction is 

modelled by Manning formula with a uniform roughness coefficient n = 0.04 sm-1/3. This value of 

the roughness coefficient is comparable with the values suggested by Mignot et al. (2006) to 

account for the various sources of flow resistances in urban areas such as bottom friction and small 

scale obstacles (debris, cars, urban furniture, etc.). 

The numerical discretization is based on a conservative finite volume scheme and a self-developed 

flux-vector splitting (Erpicum et al., 2010b). We used a Cartesian grid with a grid spacing of 10 m, 

which is comparable to the typical size of the buildings (>15 m) but the porosity parameters enable 

the fine-scale geometric features to be accounted for. 

To enhance computational efficiency in the presence of low values of the storage porosity ɸ, we 

used a merging technique which consists in merging each cell having a low value of storage 

porosity (ɸ < ɸ min = 10%) with a neighboring cell (Bruwier et al. 2017a). 

As detailed in Arrault et al. (2016) and Bruwier et al. (2017a, b), the model was successfully 

validated against fine scale computations and against experimental data for flow conditions similar 

to those prevailing here. The model is part of the academic code Wolf2D which was used in 

multiple flood risk studies (Beckers et al., 2013; Bruwier et al., 2015; Ernst et al., 2010). 
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6.2.3. Statistical analysis 

The outcome of steps 1 and 2 of the methodology (Figure 6.1) consists in a set of 2,000 gridded 

flow characteristics data, representing the water depth and the two components of horizontal flow 

velocity in the 10,000 cells of the computational mesh. To make the subsequent analyses tractable, 

we synthetized the dataset by means of a single indicator y of flood severity for each of the 2,000 

building layouts. We focused on the increase of the 90th percentile of the computed water depths 

along the upstream boundary of the domain (noted Δh90) compared to a configuration without any 

buildings (h90 = 61 cm). This quantity is representative of the overall flow resistance (or loss of flow 

conveyance) induced by the layout of buildings and, hence, of the increase in flood levels that the 

presence of the buildings causes upstream of the considered area. If the buildings result from new 

development, indicator y = Δh90 reflects the impact of this development on flood danger upstream. 

We performed the statistical analysis of the results by considering standardized variables, noted 

ix  (i = 1 to 9) and y , defined as: 

 ,mean mean

,std std

andi i
i

i

x x y y
x y

x y

 
    (6.2) 

with 
,meanix  and 

,stdix  (resp. meany  and stdy ) the mean and standard deviation of the variable ix  

(resp. y) over all the building layouts. 

We introduce the matrix notations X and Y with N
ix  and ny  the values of ix  and y  corresponding 

to the nth building layout: 
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  (6.3) 

with N being the number of building layouts. 

The influence of each of the nine variables xi on the inundation indicator y was determined using 

a multiple linear regression (MLR). The outputs of the regression are the least square linear 

coefficients  1 2 9, , ...,
T

a a aA , computed from Equation (6.4) and representing the sensitivity of 

y with respect to each variable xi: 

   1T T
A X X X Y .  (6.4) 

We also used Pearson correlation coefficients ρi defined as: 
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6.3. Results 

Although some urban layouts might not be represented accurately, our urban generation 

system supports a wide variety of typical urban layouts, which enables us to effectively find a 

desired layouts from an otherwise huge search space (Figure 6.4). 

 

Figure 6.5 illustrates six of the 2,000 generated urban layouts to enable the reader to appreciate 

the influence of the main input parameters (Tables 6.2 and 6.3). The variables x1 to x9 

corresponding to the six layouts of Figure 6.5 are given in Table 6.4. 

Layout (a) and (b) in Figure 6.5 correspond to the same input parameters, except for the average 

street length x1 and street curvature x3. In layout (a), the average street length is about 3.4 times 
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Figure 6.4 Real-world layouts 
versus procedural urban 
generator layouts.  



The Influence of Urban Layout on Inundation Flow (Microscale Analysis) 

102 
 

higher than in layout (b). This results in a more “fragmented” urban pattern in layout (b) compared 

to layout (a). Indeed, apart from the change in street curvature, layout (a) shows substantially 

larger building blocks than in layout (b). This observation also applies when layouts (c) and (d) are 

compared, as the average street length x1 in layout (c) is almost three times higher than in layout 

(d). Layout (d) exemplifies an urban pattern characterized by a high value of the street curvature 

x3. Comparing the urban layouts (c) with (d) also reveals that the mean parcel area x6 has a 

significant influence on the size of the building footprints, as x6 takes a value roughly three times 

larger in the case of layout (c) than for layout (d). 

The street orientation (x2) has a strong influence on the connectivity between the different faces. 

For instance, in layout (a) (x2 = 0) the building alignment tends to guide the flow entering through 

the west (resp. south) upstream face towards the north (resp. east) downstream face. In contrast, 

layout (f) (x2 ≈ 1) seems to promote flow connection from the west (resp. south) upstream face 

towards the east (resp. north) downstream face. 

The building rear setback x7 is of little significance in our analysis as it mainly controls the distance 

between the back of the buildings and the limit of the corresponding plot of land. This distance 

has no direct influence on the flow computation. In contrast, the side setback x8 plays a major part 

since it controls the distance in-between adjacent buildings and hence the possibility for water to 

penetrate inside a block of buildings. This is exemplified by building layouts (e) and (f). The side 

setback x8 in the former layout is twice smaller than in the latter. 

Table 6.4: Variables x1 to x9 (Table 6.3) characterizing the six building layouts displayed in Figure 6.5. 

 

6.3.1. Calibration and validation of the porosity-based model 

The coarse model errors on the water depths are expected to be lower than 5% without any drag 

loss term while a reduction up to only 0.5% error can be obtained with an optimal calibration of 

the drag coefficient (Bruwier et al. 2017a). Based on very different urban layouts, it was shown 

that the range of variation of the optimal drag coefficient falls between 2.0 and 3.0 for the urban 

configurations considered in this study. Therefore, using a constant drag coefficient ,0 3.0b
Dc   for 

all computations, the coarse model error on the water depths should not exceed a few percent. 
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Figure 6.5: Building footprints for six out of the 2,000 layouts generated by procedural modelling. 

Computed water depths and velocity fields 

The results of the hydraulic simulations are 2D maps of computed water depths and velocity 

fields. Figure 6.6 shows examples of hydraulic modelling results for the building layouts (c), (d) and 

(f) defined in Figure 6.5. The white areas in the maps of Figure 6.6 correspond to holes in the 

computational domain, i.e. cells which are inactive because they are mostly included within a 

building and therefore excluded from the computation. For layouts (c) and (f), virtually all buildings 

are reproduced explicitly by holes in the computational domain and the porosity parameters 

enable to improve the geometric description of inclined boundaries. In contrast, much of the urban 

pattern of layout (d) is reflected only through the porosity parameters because in this case the 

buildings have a typical size comparable to the grid spacing. This results from the relatively low 

value of the mean parcel area x6 in layout (d) (Table 6.4). 

The computed water depths are minimum close to the downstream faces (north and east) and 

maximum along the upstream faces (west and south), due to the overall flow resistance induced 

by the buildings. The selected flood level indicator h90 along the upstream faces varies between 

0.61 m and 1.14 m. Hence, for the tested configurations, varying the building layout may change 

the upstream flood level by a factor of almost two.  

Overall, the flow remains relatively slow within the urban area, with a Froude number  

F = ||v|| / ( g h )0.5 of the order of 0.1 (||v|| represents the velocity magnitude). The maximum 
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value of F does not exceed 0.4. The velocity increases at local contractions. This is particularly 

visible in layout (f), which is characterized by a side setback x8 more than twice larger than for 

layouts (c) and (d), enabling more intense flow exchanges between the streets and the void areas 

inside building blocks (“courtyards”). This is also remarkably shown by the higher flow velocity 

computed inside the building block in layout (f) (velocity magnitude ~ 0.20 m/s) compared to 

layout (c) (velocity magnitude ~ 0.1 m/s). This results also from the higher side setback value (x8) 

in the former layout compared to the latter (Figure 6.5), making the void area within the building 

blocks more accessible to the flow in layout (f). The absolute velocities are high around the top-

left and bottom-right corners where the flow avoids passing through the building area. 

 
Figure 6.6: Representation of water depths and flow fields for some urban layouts. 

6.3.2. Influence of urban characteristics on inundation water depths 

Figure 6.7 shows the regression coefficients ai computed with Equation (6.4) for an inundation 

indicator y = Δh90 computed based on the 90th percentile of the computed water depths along the 

upstream boundaries of the domain. A positive value for a regression coefficient ai indicates that 

an increase in the corresponding variable xi leads to an increase in the water depths, and 

conversely for a negative value of the regression coefficient. Using the regression coefficients of 

Figure 6.7, the Δh90 values can be predicted with a mean absolute error and a root mean square 

error of, respectively, 2.3 cm and 2.9 cm. This represents less than 15% of the mean value of Δh90 

(21.3 cm). 
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The results of the multiple linear regression (MLR) show that the built-up coverage (x9) is by far 

the most influential urban layout design parameter. Besides the built-up coverage, the average 

street length (x1) has also a substantial influence on the water depths, because it controls the size 

of the building blocks. As shown above, the lower the value of the average street length is, the 

more “fragmented” the urban layouts are. This contributes to avoid the creation of void areas 

surrounded by buildings, which are therefore not easily accessible to the flow. In a more 

fragmented urban pattern, a larger portion of void area contributes to the flow conveyance. 

Similarly, reducing of the building side setback (x8) leads to higher water depths, due to the 

reduction of the conveyance capacity between adjacent buildings. This is consistent with the 

negative value obtained for coefficient a8. 

The increase in building size resulting from an increase in the mean parcel area (x6) leads to higher 

water depths, as reflected by the positive value of a6. The street orientation (x2) and curvature (x3) 

seem to have no significant influence on the water depths. This is certainly a result of the relatively 

low values of flow velocity in the considered urban area (F ~ 0.1), which are typical of lowland 

rivers. This finding is expected not to apply in the case of floodplains that are characterized by 

steeper topographic gradients, where the flow velocity would be higher and more dynamic effects 

would prevail. 

The insignificant influence of the rear setback (x7) can be explained by the weak influence of this 

variable on the flow conveyance since it mainly describes the void area within building blocks, 

which contribute anyway only very little to the overall flow conveyance through the urban area. 

While the results of the MLR show no influence of the major street width (x4) on the inundation 

water depths, a slight influence is shown for the minor street width (x5). This should be explained 

by the high number of minor streets in the urban domain compared to only two major streets. 

 
Figure 6.7: Regression coefficients αi of the urban characteristics for Δh90. 
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6.4. Discussion 

The results are discussed here, based on a comprehensive sensitivity analysis (section 6.4.1) and 

by comparing them with those of a simple conceptual approach (section 6.4.2). 

6.4.1. Sensitivity analysis 

Indicator of inundation water depths 

The performed analysis is based on the increase of the 90th percentile of the water depths 

computed along the upstream boundaries of the urban area: Δh90. Here, we explore to which 

extent the conclusions of the analysis remain valid when another indicator of flood severity is 

chosen instead of Δh90. In doing so, we repeated the analysis by considering percentiles from 50th 

to 90th with a constant step of 5th and these percentiles were evaluated either along the upstream 

boundaries of the domain, or throughout the whole domain. 

In Figure 6.8-a, the sensitivity of the results of the MLR to the selection of the indicator of flood 

severity is shown through boxplots representing the variation of each coefficient ai when all 

options described in section 6.3.2 are tested. This sensitivity remains low for all coefficients ai. 

Coefficients a1 and a6 corresponding to the influence of the average street length (x1) and the mean 

parcel area (x6) show the highest sensitivity with values ranging respectively from 1.3 × 10-1 to 

2.1 × 10-1 and from 1.0 × 10-2 to 8.3 × 10-2. Nonetheless, the findings described in section 6.3.2 

remain generally valid whatever the choice of the indicator of flood severity. Comparing Figure 

6.8-b and Figure 6.8-c, the sensitivity of the results to the percentiles is higher when they are 

evaluated throughout the whole domain than along the upstream boundary. 

Sample size 

We investigated whether the sample size (2,000 building layouts) is large enough to produce 

robust and reliable results. For this purpose, we selected randomly 1,500, 1,000, 500 and 250 

configurations out of the initial sample. For each sub-sample, the random selection was performed 

10,000 times to assess the sensitivity of the results to the selected configurations.  
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Similar to Figure 6.8, we display the results in the form of boxplots obtained from the sets of 

regression coefficients corresponding to the 10,000 different sub-samplings (Figure 6.9). Again, 

the findings of section 6.3.2 are hardly affected by a reduction of the sample size, at least when 

the subsample size remains above 1,000. In all cases, the most influencing urban characteristic 

remains the built-up coverage (x9) and only variables x1, x5, x6, x8 and x9 show a significant influence 

on the computed water depths. Even for a sample size lower than 1,000, most of the results remain 

consistent with the findings of section 6.3.2, and only few coefficients show substantial variations. 

Hence, the sample size of 2,000 different urban layouts is deemed sufficient. 

Figure 6.8: Sensitivity of the regression coefficients to choice of the indicator of flood 
severity by considering percentiles from 50th to 90th computed (a) either along the upstream 
boundaries of the domain, or throughout the whole domain and (b) along the upstream 
boundaries of the domain and (c) throughout the whole domain.  
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Figure 6.9: Sensitivity of the absolute values of the regression coefficients of the urban 
characteristics for Δh90 to the sample size (N). 

Number of urban characteristics used in the regression analysis 

The respective influence of each of the nine selected urban characteristics on the computed 

water depths was shown to be very different, suggesting that some of the urban characteristics 

could be neglected in the regression analysis. Here, we compare the predictive capacity of 

regressions based either on all urban characteristics (variables x1 to x9) or just on the most 

influential ones. The predictive capacity of each regression is assessed through the resulting root 

mean square error. Using only the built-up coverage (x9) for the linear regression leads to a root 

mean square error roughly 37% higher than with the MLR based on all variables (Table 6.5). The 

prediction of Δh90 based on the five most influential variables (x1, x5, x6, x8 and x9) gives an accuracy 

similar to the one obtained with all nine variables. 

Table 6.5: Root mean square errors on the estimation of Δh90 for sets of urban characteristics used in the 
MLR. 

Considered variables x9 x1, x5, x6, x8 and x9 x1 to x9 
Root mean square error (cm) 4.01 2.93 2.93 

Model choice 

In all analyses above, a linear relationship was assumed between the rise in water depth 

y = Δh90 and variables x1 to x9: 
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   (6.6) 

Here, we check whether our findings are affected by the choice of another model. For this purpose, 

we tested two approaches: 
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 First, we used an alternate model, assuming that Δh90 can be predicted by means of a 
power law involving all parameters x1 to x9: 
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in which b0 to b9 are coefficients to be calibrated. Coefficients bi certainly do not take the 
same values as parameters ai; but still their relative values provide an indication on 
which of the variables xi have more influence on the determination of Δh90. 

 Second, we computed Pearson correlation coefficients ρi, which also reflect the link 
between variables, but it does so independently of the choice of a particular model. 

In practice, the estimation of coefficients bi in Equation (6.7) is performed by means of a MLR, after 

applying a logarithmic transformation to variables xi and y: 
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The configurations involving a street orientation (x2) equal to zero were disregarded; but they 

represent only 2.5 % of all building layouts in the sample. 

Coefficients ai, bi and ρi are compared in Figure 6.10. Each set of coefficients has been scaled so 

that the sum of the nine absolute values is one. The following observations can be made. 

 In all three approaches, variables x9 is shown to have a substantial influence on, or be 

strongly correlated with, the flood severity indicator Δh90. The prevailing influence of the 

built-up coverage is therefore a robust outcome of the analysis. 

 A major difference between different approaches is the mean parcel area, x6. On the one 

hand, the Pearson correlation approach indicates the same importance level for both x6 

and x9, mean parcel area and built-up coverage. On the other hand, x6 shows much lower 

magnitude than x9 in both standard MLR and MLR with logarithmic transform. This 

difference may result from the existing positive correlation between x6 and x9, as revealed 

in Figure 6.11. Given this correlation, the lower weight assigned to x9 by the Pearson 

correlation compared to the standard MLR is simply compensated by a higher weight 

assigned to x6. 

 In all approaches, the coefficients assigned to the minor street width (x5) and the building 

side setback (x8) are consistently negative and of substantial magnitude. This confirms 

that considering variables x5 and x8 as strongly controlling the flow through the urban area 

is a robust outcome of the analysis. 

 Likewise, the coefficients associated with the major street width (x4) and the building rear 

setback (x7) take consistently negative values of small magnitude, while those related to 



The Influence of Urban Layout on Inundation Flow (Microscale Analysis) 

110 
 

x2 (street orientation) are also consistently small but positive. Therefore, these variables 

may safely be disregarded, as shown also in Table 6.4. 

 The regression coefficients related to the average street length (x1) and the street 

curvature (x3) (a1, a3 and b1, b3) have an opposite sign compared to the corresponding 

Pearson correlation coefficients (ρ1 and ρ3). This is a result of the significant negative 

correlation between x1 and x3, as revealed in Figure 6.11. Although this correlation makes 

sense from an urban planning point of view, as a stronger street curvature implies more 

short streets in the inner area of the curved streets, it somehow hampers drawing truly 

robust conclusions on the relation between the street length and the upstream flood 

severity. 

 Another interesting finding obtained from the Pearson regression coefficients is that 

several variables have a similar importance to x9, while according to the standard MLR 

and the MLR with logarithmic transform, only x9 seemed to be of prevailing influence. This 

result is consistent with those presented in the next section, which indicate that the built-

up coverage is of lower importance than another composite indicator of flow conveyance 

at the scale of the urban area (district-scale), while x9 is stricto sensu a proxy for the 

storage capacity (and not the conveyance capacity) in the urban area. 

 

Figure 6.10: Comparison of regression coefficients αi and bi obtained from multiple linear regression, 
without and with logarithmic transform, and with Pearson correlation coefficients ρi. Each set of 
coefficients has been scaled so that the sum of the nine absolute values is one. 
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Figure 6.11: Pearson correlation coefficients between all variables x1 to x9. 

6.4.2. Conceptual approach 

The set of input variables x1 … x9 were selected for their significance in terms of urban planning. 

However, as such, they are neither optimal for statistical analysis (Figure 6.10) nor of direct 

relevance for hydraulic analysis. Therefore, we present here a simple conceptual model which 

relates these urban planning parameters to just two parameters of direct relevance for hydraulic 

analysis: a district-scale storage porosity D , and a district-scale conveyance porosity
D . 

The district-scale storage porosity is straightforward to evaluate from the built-up coverage

D 9( 1 )x   , while the district-scale conveyance porosity was estimated based on an 

idealization of the geometry of the considered urban layouts. Despite a number of simplifying 

assumptions, we show that these two district-scale porosity parameters well explain the results 

obtained in section 6.3 for the whole set of 2,000 quasi-realistic urban layouts. 

Conceptualization 

First, we aim to derive an expression relating the district-scale conveyance porosity 
D  to the 

input parameters of relevance for urban planning. To do so, we introduce the following simplifying 

assumptions, which enable obtaining analytical expression for 
D  (Figure 6.12): 

 the street orientation and curvature are neglected (α = χ = 0), so that all streets are 

straight and aligned either along the west-east direction or the north-south direction; 

 these streets are separated by building-blocks of identical size; 

 the size of a building-block is given by the average street length Ls; 

 all minor (resp. major) streets have the same width equal to w (resp. W); 

 each building-block is split into several identical square parcels of length equal to the 

square root of the mean parcel area Ap; 
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 the size of a building is determined from the parcel area and the three setbacks sf, sr and 

ss; 

 we estimate the conveyance porosity as the minimum void fraction in a section normal 

to the west-east direction (as if the flow as aligned with this direction). 

Consistently with our procedural modelling, the idealized urban layouts considered here also 

comply with the following rules: 

 one single major street is introduced in each direction; 

 only the external parcels of the building-blocks are urbanized while the others remain 

undeveloped. 

 

Figure 6.12: Idealized urban pattern at the district-scale (a) and block-scale (b). 

Under these simplified assumptions, the number n of building-blocks over the length LD of the 

urban area can be derived from the urban parameters by: 
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The number nb of buildings (or parcels) over the length Ls of a building-block is simply equal: 

s pL A . 

The block-scale conveyance porosity 
B  is estimated as the ratio between the minimum free 

length along the north-south or east-west direction and the total length of the building-block Ls: 
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Similarly, the district-scale conveyance porosity 
D  is computed as: 
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Results 

Based on the district-scale storage and conveyance porosities, D  and 
D , a regression 

analysis was performed as follows: 

    90 D D1 1
b c

h a       (6.12) 

Since Δh90 = 0 for D D 1   , Δh90 in Equation (6.12) is logically expressed as a function of 

1 - D and 1 - 
D . The values of parameters a, b and c were determined by minimizing the root 

mean square error between Δh90 derived from Equation (6.12) and the corresponding values 

extracted from the hydraulic simulations of the 2,000 building layouts. 

Figure 6.13 shows the remarkable correlation obtained between Equation (6.12), with calibrated 

coefficients a = 1.63, b = 0.75 and c= 2.24, and the reference values. The mean absolute and root 

mean square errors on the prediction of Δh90 from Equation (6.12) over the 2,000 computed urban 

patterns are respectively equal to 2.0 cm and 2.6 cm.  

Considering only the district-scale storage porosity in the regression analysis (c = 0) gives optimal 

coefficient a = 1.00 and exponent b = 0.91. The mean absolute and root mean square errors 

increase by respectively 47% and 57% when neglecting the district-scale conveyance porosity in 

the regression analysis. Neglecting the district-scale storage porosity (b = 0), the errors increase 

dramatically by more than a factor of 3. 

 

Figure 6.13: Relationships between the 
optimal regression analysis of the district-
scale porosities  and  and the 

inundation indicator Δh90 for the 2,000 
computed urban patterns. 
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Interpretation 

Although the conceptual model is based on an idealization of the urban layouts and on 

relatively crude assumptions, the results obtained with this simple model are promising. While the 

minimum value of the root mean square error computed with a regression analysis based on the 

nine urban characteristics is 2.9 cm (section 6.3.2), this error is found here to drop to 2.6 cm when 

only the two district-scale porosity parameters are used. 

The standard MLR analysis indicates that the storage porosity (i.e. the built-up coverage) is by far 

the urban characteristic influencing most the water depths (section 6.3.2). This is somehow 

misleading since we find here, based on parameters of direct hydraulically significance, that the 

conveyance porosity has actually an even stronger influence (exponent c = 2.24 ~ 3 × exponent b), 

which, in turn, implies a nonlinear relationship between the dependent and independent 

variables. This aspect was already suggested in section 6.4.1, which highlighted that other 

parameters than the built-up coverage (x9) seem to have a similar importance when a logarithmic 

transformation was applied to all variables, as well as based on Pearson regression coefficients. 

However, the storage porosity is a key parameter to capture the influence of urban layout 

characteristics on inundation water depths. While the accuracy of the conceptual model decreases 

by around 50% when neglecting the conveyance porosity, it drops by a factor 3 when the storage 

porosity is not considered. 

Implication for urban planning 

Figure 6.14 provides two examples of urban layouts leading to similar water depths upstream, 

although they are characterized by significantly different building coverage ratios, i.e. different 

values of the district-scale storage porosity ( D ~ 0.6 vs. D ~ 0.8). In both cases, the higher value 

of the built-up coverage is compensated by a higher value of the district-scale conveyance porosity. 

These results are fully consistent with Equation (6.12), which highlights that potential detrimental 

effect of reduction of the storage porosity (i.e. new developments increasing the built-up 

coverage) can be mitigated by means of a suitable layout of the buildings which increases the 

conveyance porosity. This finding is of high relevance to guide more flood-resilient urban 

developments. 

Equations (6.10) and (6.11) reveal that the district-scale conveyance porosity can be increased 
mainly in two ways: 

 at the district-scale, increasing the fragmentation of the urban pattern (i.e. increasing the 

value of n) by reducing the average street length Ls or by favoring a high number of 

narrow streets to a low number of large ones; 
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 at the building-block scale, increasing the building side setback ss or reducing the building 

size (i.e. reducing the mean parcel area pA ). 

The findings described above were obtained based on fixed hydraulic boundary conditions. 

Nonetheless, the overall conclusions would certainly remain unchanged if, for instance, the inflow 

magnitude was varied. Indeed, we expect that increasing (resp. decreasing) the inflow discharge 

would mainly magnify (resp. shrink) the water level differences between the upstream and 

downstream faces of the urban area for all configurations, without changing substantially the flow 

distribution within the street network. This effect was shown by Arrault et al. (2016) based on a 

laboratory model of an urban district, in which the inflow discharge was varied systematically over 

one order of magnitude. Consequently, varying the inflow discharge is unlikely to substantially 

modify the ranking of the various urban layouts in terms of flood-resilience. Similarly, Arrault et al. 

(2016) demonstrated that varying the inflow partition between the upstream faces has a limited 

influence on the flow within the urban area. In contrast, introducing a bottom slope would 

promote higher flow velocity so that parameters which play a little part in the configuration 

considered here (flat bottom) would become far more important (e.g., street orientation and 

curvature). 

 

Figure 6.14: Urban layouts with different district-scale porosity values leading to similar upstream water 
depths. 
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6.5. Conclusions 

This research presents a novel systematic study of inundation flow in quasi-realistic urbanized 

areas, which links hydraulic modelling results to parameters of direct significance for urban 

planning. Based on porosity-based hydraulic computations of inundation flow for a set of 2,000 

different urban layouts, the relative influence of nine urban characteristics (average street length, 

street orientation and curvature, major and minor street widths, mean parcel area, rear and side 

building setbacks and built-up coverage) on inundation water depths were assessed. We focused 

on the water depth upstream of the considered urban area, as it reflects the impact of the 

developed area on the severity of flooding upstream. The terrain slope was neglected, so that the 

analysis results apply mostly to floodplains of typical lowland rivers. 

The most influential parameters were found to be the built-up coverage, the mean parcel area 

(controlling directly the building size), the building side-setbacks, and to a lesser extent, the length 

and width of the streets. For the tested configurations, the more fragmented the urban pattern is 

(relatively small parcel sizes and street length), the lower the upstream water depths. This aspect 

is related to urban design at the district and building-block scales. Additionally, increasing the voids 

in-between the buildings (i.e. larger side setbacks) was shown to also contribute to a decrease in 

the upstream water depth. This aspect relates to urban planning at the local level of a single parcel. 

This goes against usual urban planning guidance that recommends increasing compactness and 

density especially in areas with good accessibility.  

We also proposed a simple conceptual model based on storage and conveyance porosity 

parameters determined at the district-scale. Although particularly simple, the model was shown 

to provide surprisingly accurate predictions of the influence of the building layout on upstream 

water depths. The model parameters reveal that an increase in built-up coverage in an urban area 

(i.e. new developments, leading to a decrease in the district-scale storage porosity) can be 

compensated by a suitable location of the buildings so that the district-scale conveyance capacity 

increases. 

This study paves the way for more quantitative approaches in water-sensitive urban design, based 

on process-oriented modelling of the interactions between complex urban systems and flooding 

mechanisms, enabling more flood-resilient urban developments. 

Further research is needed to reach a deeper understanding of the influence of environmental 

parameters, such as the terrain slope and imperviousness, man-made structures (sewage system, 

underground structures …) and obstacles (cars, trees …) as well as varying hydraulic conditions 

(unsteady flood waves, pluvial flooding …). 
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6.6. Key contributions  

 Built-up coverage has a strong contribution to flood damage. In addition, the mean parcel 

area and the building side-setbacks show moderate contribution to the flood damage. 

 General guidelines to design more flood-resilient urban layouts are: 

increasing the distance between the buildings (i.e. larger side setbacks), and  

increasing the fragmentation of the urban pattern, by reducing the average street length 

or by favoring a high number of narrow streets to a low number of large ones. 

 Since 1000 samples are sufficient for discriminating variables, we can adopt a different 

approach for the simulation. It could be exclusively based on observed samples from the 

territory instead of synthetic urban layouts.  

 The h90 indicator is robust to test the relation between urban layout parameters and flood 

risk. 

 Less number of urban layout variables, 5 in our case, are enough to predict the water depth 

at 100% accuracy compared to the model with full layout variables. 

 The results reveal a nonlinear relationship between the model variable.
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Chapter 7: General Conclusions  

I will conclude this thesis by revisiting the research questions and providing recommendations 

for future research. Beside climate change, urbanization is widely acknowledged to be one of the 

major causes of a substantial increase in the frequency and magnitude of urban flooding across 

the globe. Thus, there is a need to monitor urban development to support efficient planning 

policies. This thesis sought to understand and mitigate the potential impact of future urbanization 

on flood risks up to 2100. In doing so, four scientific challenges considered as research questions 

in this thesis. Wallonia (Belgium) was selected as a case study. Wallonia represents two major 

challenges in terms of urbanization modeling: urban sprawl, and low development rates. Many 

regions, especially in USA and Europe, are characterized by sprawl expansion. Having low rate of 

development means having less information to calibrate any model.  

7.1. Revisiting research questions 

The main research questions addressed in the thesis were:  

Q1. What is the potential of analyzing and modeling multiple urban densities in a highly 
fragmented built-up landscape? 

Q2. Which urban expansion model structure is the most appropriate? 

Q3. What is the relative impact of future urbanization on the flood damage across Wallonia? 

Q4. What is the relation between urban layout design and flood damage? 

In what follows, each of this questions will be answered and the key findings will be summarized. 

Q1. What is the potential of analyzing and modeling multiple urban densities in a highly 

fragmented built-up landscape? 

Many studies assumed a binary process of expansion, i.e., urban vs non-urban. Chapter one 

showed that the assumption of a binary approach led to inaccurate conclusions as the relative 

importance of the controlling factors typically varies with density, for both expansion and 

densification processes. Chapter one also demonstrated the importance of analyzing both 

development processes, expansion and densification. Urban sprawl is acknowledged as a 

significant environmental, economic, and social challenge in both the USA and Europe, policies 



General Conclusions                                                                                                                                

120 
 

have been developed to curb this phenomenon by promoting densification. This thesis 

provided a deep analysis of the densification spatial drivers. Chapter one concluded that 

densification processes are mainly driven by self-organization dynamics whereas the 

expansion processes are strongly controlled by the zoning plan (policy). 

Q2. Which urban expansion model structure is the most appropriate? 

This question was answered by examining different modeling approaches and considering 

uncertainty in the future forecasting. All models were calibrated using 1990-2000 Belgian 

Cadastral data in a raster format. The calibration results were then used to validate the 

models’ performances against the actual map of 2010. It is worth noting that the validation is 

only possible for historic patterns and cannot provide a full assessment of the model 

performance for future. However, the validation in this research meant provided information 

about the quality of models against each other. Several performance measurements were 

used to evaluate the models’ abilities to locate new developments. In regard to calibration, all 

models are calibrated with statistical models (logistic regression) and/or an advanced genetic 

algorithm (GAs). Therefore, the thesis explored the potential of GAs for land-use planning 

tools.  

In chapter two, a coupled multinomial logistic regression and cellular automata model (MNL-

CA) was proposed to simulate urbanization. Whereas, chapter three proposed a coupled CA 

and agent-based model (CA-AB). The performance of both models was measured and 

compared. The main finding was that CA-AB model outperformed MNL-CA model and 

furthermore the calibration results of CA-AB were more stable than MNL-CA in terms of future 

simulations. 

Simulating urban development for up to 2100 was the main aim of this research. Forecasting 

land-use change over such time frames entails very significant uncertainties. As a result, this 

study paid much attention to uncertainty modeling. Chapter four proposed a novel approach 

for tuning uncertainty over time. This approach was referred to as Time Monte-Carlo (TMC) 

technique. The analysis revealed that the TMC produces results comparable with well-known 

methods to modeling uncertainty over the short-term validation period (2000-2010). 

Furthermore, it is capable of tuning uncertainty on longer-term time horizons, which is 

essential feature of our method as the far future involves more uncertainty. It has been 

demonstrated that introducing uncertainty always improved the performance of the model 

when compared to pure deterministic approaches. 
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Q3. What is the relative impact of future urbanization on the flood damage across Wallonia? 

In chapter five, a set of 24 urbanization scenarios for 2030, 2050, 2070, and 2100 for the entire 

Wallonia were produced, with a spatial resolution of 100 m, considering two modules: (i) a 

non-spatial module that was applied to predict the quantity of new urban development, and 

(ii) a spatially-explicit allocation module that allocated new development. This research 

extrapolated three development rates (1990-2000, 2000-2010, and 1990-2010/2) to assume 

the future quantity of new development. The CA-AB model was used to allocate new 

development. Again, the research considered both expansion and densification processes. By 

means of sensitivity analysis, we showed the added-value of having land-use maps containing 

sub-grid information about the built-up density, and not just a binary information (urban/non-

urban). 

The proposed scenarios differed in development rate (high, medium, and low), spatial policies 

(business-as-usual vs. densification) and flood management policies (ban on new development 

with flood-prone zones). The results revealed that without considering any flood management 

policies, the increase in total flood risk varied by a factor of approximately two at the end of 

the century depending on the urbanization scenario. More importantly, the sensitivity of the 

computed flood risk to the spatial policy was shown to be higher than the development rate. 

This highlighted that spatial policy, especially densification, may have a substantial influence 

on future flood risk. 

Q4. What is the relation between urban layout and flood damage? 

One of the main conclusions of chapter five was that floodplain development may continue 

apace, regardless of potential planning policies to control this development. Chapter six 

concerned with accommodating the unavoidability of floods through modifications to urban 

layout design. This chapter answered Q4 by systematically exploring the inundation flow in 

quasi-realistic urbanized areas, which links hydraulic modeling results with parameters of 

direct significance for urban planning. Based on porosity-based hydraulic computations of 

inundation flow for a set of 2,000 different urban layouts, the relative influence of nine urban 

characteristics (average street length, street orientation and curvature, major and minor street 

widths, mean parcel area, rear and side building setbacks and building coverage) on inundation 

water depths were assessed. The research found that the most influential urban layout 

parameters was the built-up coverage, the mean parcel area (controlling directly the building 

size), the building side-setbacks, and to a lesser extent, the length and width of the streets. In 

a sense, chapter six provided guidelines for urban geometric grammars that help passively 

reduce flood damage. 
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7.2. Recommendations for future research 

Several considerations and recommendation can be drawn from the thesis. In this extensive 

research, I dealt with huge amounts of data and with different scientific domains. As I progressed 

through this thesis, many further research directions were raised.  

1. The spatial data used in this research exhibited spatial autocorrelation, which biases the 

results of the analysis. Following previous studies, the regression analysis was calibrated 

based on a data sampling approach. A number of scholar proposed alternative solution 

which is the auto-logistic regression model. However, some authors (e.g. Dormann, 2007) 

have reported that the logistic regression model tends to outperform the auto-logistic 

model in terms of estimation of model parameters. Future research could be oriented 

towards handling autocorrelation in spatial land-use models. 

2. This research underlay competitive advantage of using several urban densities, however, 

it did not capture the variety of very local responses to each urbanization driver. This offers 

urban planners and modelers the potential for analyzing of urbanization process at the 

urban micro-level. Many studies employed geographically weighted regression model to 

analyze the behavior of drivers at a local level. I used the genetic algorithm (GA) to 

calibrate the land-use models presented in this thesis. Due to their use of a population, 

GAs can find multiple optima, as opposed to a single calibration solution. This may enable 

researchers to explore each single solution in terms of spatial variation by incorporating 

an advanced GA in land-use models. 

3. Two land-use change models were proposed in this research, MNL-CA and CA-AB. I found 

that the performance of CA-AB is slightly better than MNL-CA. However, I assumed that 

this improvement might be related to the interactions between different agents. 

Nonetheless, this could also related to the fact that MNL-CA was calibrated using both 

logistic regression and GA whereas CA-AB was solely calibrated using GA. Further research 

can examine the performance of GA against logistic regression. 

4. I found that the effect of accessibility indicators outpaced many other drivers behind urban 

development. According to many studies (e.g. Cammerer et al., 2013; Poelmans and Van 

Rompaey, 2010), I used the distance to roads and cities as the measurement of 

accessibility. Although this spatial measurement is easy to interpret and communicate to 

planners, but it does not take into account the temporal and individual components and 

therefore it does not reveal the full potential of the accessibility impacts. Land Use and 

Transport Integrated models (LUTIs) is promising research direction as it can provide 

advanced accessibility measures based on weighting the opportunities located in an area 
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and/or an individual’s ability to reach opportunities given the person’s daily activity 

pattern and spatiotemporal constraints. 

5. Addressing allocation uncertainty by the TMC technique, chapter four, I assumed that the 

future land-use patterns exposed to the same source of allocation uncertainty. More 

research on how to quantify several allocation uncertainty sources such as uncertainties 

related to the model structure, model simplification, and model parameter estimates need 

to be conducted.  

6. This research considered only damages related to buildings and it did not pay attention to 

damages related to other land-uses like infrastructure, agriculture, and forest. 

Furthermore, it was assumed that flow characteristics do not change with the future urban 

development. Further research should, therefore, explore these two limitations when 

coupling urban development scenarios and inundation models. 

7. It was found that the most influential parameters of urban layout configuration were the 

built-up coverage, and far less, the mean parcel area, the building side-setbacks, and to a 

lesser extent, the length and width of the streets. Offering further analysis of the 

relationship between urban layout parameters and inundation, considering several fixed 

built-up coverages will also provide more understanding of how urban geometrical 

configurations affect flood. 

8. The results revealed that about 1000 samples were enough to discover the relationship 

between inundation water depth and a number of urban layout design parameters. 

Therefore, future research can exclusively use real samples from the territory, which 

would easily allow integrating other aspects, not included in this research, such as slopes 

at the micro-level, drainage systems, building typologies etc. 

9. The proposed land-use change models and the procedural generation systems are generic 

and can be applied to other case studies. Still, an explicit investigation of the transferability 

of the model by proposed to other regional/context, characterized by different 

urbanization processes, is an important direction for future research.  
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