PHOTOELECTRIC LIGHTCURVES AND ROTATION PERIOD OF THE
MINOR PLANET 59 ELpis

H. DEBEHOEGE
Observatoire Royal de Belgique
A. SURDEJ and J. SURDEJ
European Southern Observatory, La Silla, Chile

Received August 3, 1977

The minor planet 59 Elpis was observed photoelectrically with the ESO 50 cm telescope at La Silla (Chile) during the 1976 opposition. The lightcurve appears fairly continuous with two nearly symmetric maxima and minima. The synodic rotation period is found to be 13h41m24s±18s and the maximum amplitude about 0.1 mag.

Key words: asteroid — rotation period — lightcurve — 59 Elpis

1. INTRODUCTION

Ephemeris of Minor Planets for 1976 predicted the opposition for 59 Elpis on August 27, 1976 with B = 11.6 mag (I.T.A. 1976). We observed this asteroid during five consecutive nights since August 31, 1976. The measurements were performed by using a photoelectric photometer equipped with an EMI 6256 photomultiplier attached to the 50 cm telescope at the European Southern Observatory. No previous observations for 59 Elpis are reported in the literature (Gehrels 1970).

The general observing routine included frequent observations of the asteroid, sky and comparison stars (DM − 6°5971 (Go) and DM − 7°5755 (Ko)) chosen close to the path of 59 Elpis and of similar colours and magnitude. The integration time for each single measurement was 40 sec.

Parts of the obtained lightcurves were rejected because of poor meteorological conditions. Furthermore, no transformations from the instrumental system (UBV)' to the standard one (UBV) were performed.

The differences ΔV' between the instrumental magnitudes V' of the asteroid and of the comparison star DM − 6°5971 are plotted against U.T. in figures 1 to 5.

Table 1 contains the date of observations, the right ascension and declination, the ecliptic longitude and latitude, the geocentric distance Δ, the heliocentric distance r, the phase angle α, the light times for the asteroid and the number of the figure relative to the corresponding date.

A few photographic plates of 59 Elpis were taken with the 40 cm double refractor of the European Southern Observatory in order to improve the ephemeris of the minor planet. The final results presented in table 1 were determined by one of us (H.D.) at the Royal Observatory of Belgium (Debehogne et al. 1976).

2. LIGHTCURVES AND PERIOD

The ΔV' lightcurves for 59 Elpis presented in figures 1 to 5 are not corrected for the phase and distance effects, the abscissa are U.T. without correction for light time.

In figure 6 we superpose all preceding night curves in order to display the full light variation of the minor planet 59 Elpis. In that figure the ordinates are referred to the mean magnitude line constructed so that the areas enclosed by the curve above and below this line are equal.

The rotational lightcurve of 59 Elpis appears fairly continuous with two nearly symmetric maxima (M1, M2) and minima (m1, m2) and with a maximum amplitude of 0.1 mag. The magnitude difference between both maxima and both minima are almost negligible i.e. comparable to the mean scatter. The phase differences between the positions of the extrema M1 and M2 and between those of m1 and m2 are respectively about 0.52 and 0.51.
Different superpositions of the lightcurves obtained during the five observing nights allow to derive straight away the lapse of time separating two similar features in the asteroid's lightcurve. Location on time scale of such a feature (maximum, minimum) is determined within a precision of 30 sec. Table 2 encloses the epochs and lapses of time derived when comparing the extrema from all individual lightcurves. Finally, assigning weights proportional to the number of cycles we deduce the following mean rotational synodic period P:

$$P = 13^h 41^m 24^s 18^s = 0^d 57042 \pm 0.00021$$

3. DISCUSSION

Because of the continuous light variations observed for 59 Elpis and the presence of two very symmetric maxima and minima, it is very probable that the irregular shape of the asteroid's body accounts mainly for the rotational lightcurve displayed in figure 6. It is very likely too that a symmetric shape (ellipsoid, etc.) for 59 Elpis could fit the general pattern of the observed lightcurve. This is to be expected because at the time the two maxima (minima) occur, the projected area corresponding to opposite sides of the asteroid's surface will appear with the same light and at equal phase intervals.

The very small humps located in the bottom of both minima m_1 and m_2 (see figure 6) can be due to spottedness over the asteroid's surface. Van Houten (1965) proposed that such features could result from near-specular reflection from rather small flat areas.

ACKNOWLEDGEMENTS

Dr. H. Debehogne wishes to thank Professor M. G. Fracastoro, Director of Turin Observatory and Dr. V. Zappalà for having been introduced to the photometric observations of asteroids. His thanks are also due to H. van Diest for calculations of ephemeris on the Siemens 4004 computer at the Royal Observatory of Belgium.

A. and J. Surdej wish to express their appreciation for the help and enthusiasm they received from R. Donarski, R. Huidobro and L. Martinez at the European Southern Observatory in the preparation of this article.

REFERENCES

Houten, C.J. van: 1965, Hemel Dampkring 63, 162.

H. Debehogne

A. Surdej

J. Surdej

Observatoire Royal de Belgique
3, avenue Circulaire
Uccle
B–1180 Bruxelles (Belgium)

European Southern Observatory
La Silla
Casilla 16317
Santiago 9, Chile
Table 1 Aspect data, light times and figure numbers for 59 Elpis

<table>
<thead>
<tr>
<th>Date of observation (Oh U.T.)</th>
<th>R.A. (1950.0)</th>
<th>Dec. (1950.0)</th>
<th>λ (1950.0)</th>
<th>β (1950.0)</th>
<th>Δ (A.U.)</th>
<th>r (A.U.)</th>
<th>α</th>
<th>Light time</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 31, 1976</td>
<td>22h20m04</td>
<td>-06°28'7''</td>
<td>334°48'</td>
<td>3°56'</td>
<td>1.51694</td>
<td>2.52434</td>
<td>1°85</td>
<td>0d00'876</td>
<td>1</td>
</tr>
<tr>
<td>Sept. 01, 1976</td>
<td>22 19.29</td>
<td>-06 37.4</td>
<td>334.25</td>
<td>3.57</td>
<td>1.51795</td>
<td>2.52439</td>
<td>2.16</td>
<td>0.00'877</td>
<td>2</td>
</tr>
<tr>
<td>Sept. 02, 1976</td>
<td>22 18.54</td>
<td>-06 46.0</td>
<td>334.02</td>
<td>3.50</td>
<td>1.51923</td>
<td>2.52444</td>
<td>2.52</td>
<td>0.00'877</td>
<td>3</td>
</tr>
<tr>
<td>Sept. 03, 1976</td>
<td>22 17.79</td>
<td>-06 54.7</td>
<td>333.80</td>
<td>3.44</td>
<td>1.52078</td>
<td>2.52449</td>
<td>2.91</td>
<td>0.00'878</td>
<td>4</td>
</tr>
<tr>
<td>Sept. 04, 1976</td>
<td>22 17.06</td>
<td>-07 03.3</td>
<td>333.58</td>
<td>3.37</td>
<td>1.52260</td>
<td>2.52455</td>
<td>3.32</td>
<td>0.00'879</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2 Epochs and lapse of time between two similar extrema appearing in a pair of lightcurves (see text)

<table>
<thead>
<tr>
<th>Epoch (U.T., 1976)</th>
<th>Extremum</th>
<th>Lapse of time</th>
<th>Deduced N° of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug. 31, 4.445h±0.008h Sept. 01, 7.825</td>
<td>m₂</td>
<td>27.380h</td>
<td>2</td>
</tr>
<tr>
<td>Aug. 31, 4.445 Sept. 04, 4.273</td>
<td>m₂</td>
<td>95.828</td>
<td>7</td>
</tr>
<tr>
<td>Aug. 31, 8.078 Sept. 02, 1.165</td>
<td>M₁</td>
<td>41.087</td>
<td>3</td>
</tr>
<tr>
<td>Aug. 31, 8.078 Sept. 03, 4.528</td>
<td>M₁</td>
<td>68.450</td>
<td>5</td>
</tr>
<tr>
<td>Sept. 01, 0.860 Sept. 02, 4.258</td>
<td>m₁</td>
<td>27.398</td>
<td>2</td>
</tr>
<tr>
<td>Sept. 01, 0.860 Sept. 03, 7.615</td>
<td>m₁</td>
<td>54.755</td>
<td>4</td>
</tr>
<tr>
<td>Sept. 01, 7.825 Sept. 04, 4.273</td>
<td>m₂</td>
<td>68.448</td>
<td>5</td>
</tr>
<tr>
<td>Sept. 01, 4.942 Sept. 04, 1.385</td>
<td>M₂</td>
<td>68.443</td>
<td>5</td>
</tr>
<tr>
<td>Sept. 02, 1.165 Sept. 03, 4.528</td>
<td>M₁</td>
<td>27.363</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 1 Lightcurve of 59 Elpis on August 31, 1976

Figure 2 Lightcurve of 59 Elpis on September 1, 1976

Figure 3 Lightcurve of 59 Elpis on September 2, 1976
Figure 4 Lightcurve of 59 Elpis on September 3, 1976

Figure 5 Lightcurve of 59 Elpis on September 4, 1976

Figure 6 Mean lightcurve of 59 Elpis. The ordinates are referred to the mean magnitude line (see text)